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1. Introduction 

Naive Bayes classifier is among the most popular 

learners used in the machine learning community [6]. 

The study of probabilistic classification is the 

approximation of a joint distribution with a product 

distribution. Probabilistic learners operate on data sets 

where each example x consists of attribute values     

<a1, a2, ..., ai> and the target function y can take on any 

value from a pre-defined finite set V = (v1, v2, ..., vj). 

Classifying unseen instances involves calculating the 

most probable target value vmax and is defined as: 

( )
j

max j 1 2 i
v V

v max P v | a , a , ..., a .
∈

=  Using Bayes theorem 

vmax can be rewritten as: 

( ) ( )
j

max 1 2 i j j
v V

v max P a , a , ..., a | v P v .
∈

=  Bayes rule is 

used to estimate the conditional probability of a class 

label y, and then assumptions are made on the model, to 

decompose this probability into a product of 

conditional probabilities. Under the assumption that 

attribute values are conditionally independent given the 

target value, the formula used by the simple Bayes 

classifier is: ( ) ( )
j

max j i j
v V

i

v max P v P a | v
∈

= ∏ , where V is 

the target output of the learner and P(ai|vj) and P(vi) can 

be calculated based on their frequencies in the training 

set. 

The assumption of independence is clearly almost 

always wrong. However, a large-scale comparison of 

naive Bayes classifier with state-of-the-art algorithms 

for decision tree induction and instance-based learning 

on standard benchmark datasets found that simple 

Bayesian classifier sometimes is superior to each of the 

other learning schemes even on datasets with 

substantial feature dependencies [8]. An explanation 

why simple Bayes method remains competitive, even 

though it provides very poor estimates of the true 

underlying probabilities can be found in [14].  

However, there are comparisons where the 

accuracy of the naive Bayes algorithm is near the 

bottom as for instance in the experiment of [27]. 

Nevertheless, in that case too, this algorithm had the 

best accuracy per needed training time [9]. It predicts 

the class attribute in a very short time. Another 

advantage of simple Bayesian classifier is that during 

classification can easily handle data with missing 

values, whereas decision tree and neural network 

cannot.  

In this study, we attempted to increase the 

prediction accuracy of the simple Bayes model by 

integrating global and local application of Naive 

Bayes (NB) classifier. During the classification of a 

test instance the model calculate the probabilities each 

class and if the probability of the most possible class 

is at least two times the probability of the next 

possible class then the decision is that of global NB 

model. However, if the global NB is not so sure e.g., 

the probability of the most possible class is less than 

two times the probability of the next possible class; 

the model finds the k nearest neighbors using a 

distance metric and train the local simple Bayes 

classifier using these k instances. Finally, in this case 

the model averages the probabilities of global NB with 

local NB classifier for the classification of the testing 

instance.  

We performed a large-scale comparison with other 

attempts that have tried to improve the accuracy of the 

simple Bayes algorithm as well as other state-of-the-

art algorithms on 28 standard benchmark datasets and 

the proposed method actually gives better accuracy in 

most cases using less time for training, too. 

Description of some of the attempts that have been 

tried to improve the performance of simple Bayesian 
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classifier is given in section 2. Section 3 discusses the 

proposed algorithm for improving the performance of 

simple Bayesian classifier. Experiment results in a 

number of data sets are presented in section 4, while 

brief summary with further research topics are given in 

section 5. 
 

2. Previous Attempts for Improving the 

Performance of Simple Bayes Classifier 

The application of simple Bayes formula is 

straightforward for the categorical attributes. For 

numerical attributes, one can model the component 

marginal distributions in a wide variety of ways. The 

simplest would be to adopt some parametric form e. g., 

marginal Gaussian estimators [8]. Yang and Webb [39] 

propose proportional discretization and fixed frequency 

discretization, two efficient unsupervised discretization 

methods that are able to effectively manage 

discretization bias and variance of naive-Bayes 

classifier. 

Another problem with simple Bayes formula is the 

zero counts. Zero counts are obtained when a given 

class and attribute value never occur together in the 

training set, and is problematic because the resulting 

zero probabilities will wipe out the information in all 

the other probabilities when they are multiplied. A 

solution to this problem is to incorporate a small-

sample correction into all probabilities, such as the 

Laplace correction [8]. If an attribute value does not 

occur given some class, its probability is set to 1/N, 

where N is the number of instances in the training set. 

An exception occurs when there is an equal probability 

for the class label value in the Naive Bayesian 

algorithm. Balamurugan et al. [1] suggest a solution 

with the help of a partial matching method. 

The most well known attempt for improving the 

performance of the simple Bayes algorithm is the 

discretization of the continuous attributes into intervals, 

instead of using the default option to utilize the normal 

distribution to calculate probabilities. Numerous 

discretization methods have been examined such as the 

partition of the range of the features into k equal sized 

intervals and the partition of the range into intervals 

containing the same number of instances. A brief 

survey of these attempts and an empirical study 

comparing the performance of the most well-known 

discretization methods is given in [10, 28]. Yang and 

Webb [39] propose proportional discretization and 

fixed frequency discretization, two efficient 

unsupervised discretization methods that are able to 

effectively manage discretization bias and variance of 

naive-Bayes classifier. Hsu et al. [18] propose 

Extended Naive Bayes (ENB), which is capable for 

handling mixed data. 

The performance of the naive Bayes Classifier on 

domains with redundant features can be also improved 

by removing redundant features [7]. Kohavi and John 

[24] used the best first backward selection method as 

search method for applying the wrapper approach. The 

‘selective Bayesian classifier’, has been explored by 

numerous researchers such as [3]. Other researchers 

have explored the possibility of using a decision tree 

algorithm as a pre-processor to discover useful feature 

subsets for simple Bayes classifier [16, 32]. They 

showed that this combination has very good results 

with simple Bayes algorithm.  

An iterative approach of simple Bayes is presented 

in [15]. The iterative Bayes begins with the 

distribution tables built by the simple Bayes and then 

the algorithm iteratively cycles through all the training 

examples using a hill-climbing technique. 

Experimental evaluation of iterative Bayes showed 

minor but consistent gain in accuracy in relation to 

simple Bayes [15]. However, the contingency tables 

are incrementally updated each time a training 

example is seen, which implies that the order of the 

examples could influence the final prediction. 

Another attempt for improving the simple Bayes 

model was the Bayesian trees [40]. A Bayesian tree-

learning algorithm builds a decision tree, and 

generates a local simple Bayesian classifier at each 

leaf. The tests, leading to a leaf, can alleviate feature 

inter-dependencies for the local simple Bayesian 

classifier. Zheng and Webb [40] also proposed the 

application of lazy learning techniques to Bayesian 

tree induction and presented the resulting lazy 

Bayesian rule-learning algorithm, called LBR. For 

each test instance, it builds a most appropriate rule 

with a local naive Bayesian classifier as its 

consequent. Kohavi [23] also, presents a model 

NBTree to combine a decision tree with naive Bayes. 

In an NBTree, a local Naive Bayes is deployed on 

each leaf of a traditional decision tree, and an example 

is classified using the local naive Bayes on the leaf 

into which it falls.  

Hidden naive Bayes (HNB) creates a hidden parent 

for each attribute, which represents the influences 

from all other attributes [20]. The AODE classifier 

[37] is also considered an improvement on NB. 

Sahami [33] introduced the notion of k-dependence 

estimators, through which the probability of each 

attribute value is conditioned by the class and, at most, 

k other attributes. In order to maintain efficiency, 

AODE is restricted to exclusively use 1-dependence 

estimators (ODEs). Specifically, AODE makes use of 

SPODEs, as every attribute depends on the class and 

another shared attribute, designated as superparent. 

AODE weakens the attribute independence 

assumption by averaging all models from a restricted 

class of one-dependence classifiers. Motivated by their 

work, other authors [19] assigned different weights to 

these one-dependence classifiers in at attempt to 

obtain better results. This algorithm called Weightily 

Averaged One-Dependence Estimators, simply 

WAODE. 
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Shengtong and Langseth [34] focus on an alternative 

technique for learning the conditional probability tables 

from data. Instead of frequency counting (which leads 

to maximum likelihood parameters), they learn the 

(local) conditional probability tables under the guidance 

of the (global) NB model learnt thus far. 

Calders and Verwer [5] present three approaches for 

making the naive Bayes classifier discrimination-free:  

1. Modifying the probability of the decision being 

positive. 

2. Training one model for every sensitive attribute 

value and balancing them.  

3. Adding a latent variable to the Bayesian model that 

represents the unbiased label and optimizing the 

model parameters for likelihood using expectation 

maximization. 

Jiang et al. [21] single out another two algorithms: 

Instance Weighted Naive Bayes (IWNB) and 

Combined Neighbourhood Naive Bayes (CNNB). In 

IWNB, each training instance is firstly weighted 

according to the similarity between it and the mode of 

the training instances, and then a NB classifier is built 

on the weighted training instances. In CNNB, multiple 

NB are firstly built on multiple neighbourhoods with 

different radius values for a test instance, and then their 

class probability estimates are averaged to estimate the 

class probability of the test instance. 

Lately in the area of ML the concept of combining 

classifiers is proposed as a new direction for the 

improvement of the performance of individual 

classifiers. Kim et al. [22] built an ensemble of simple 

Bayes classifiers using boosting procedure [13]. Other 

authors made use of boosting, with the difference that 

in each iteration of Adaboost, they used a discretization 

method and they removed redundant features using a 

filter feature selection method [25]. The same authors 

combined simple Bayesian method with Logitboost 

[26]. However, as it is well known, Logitboost requires 

a regression algorithm for base learner. For this reason, 

they slightly modify simple Bayesian classifier in order 

to run as a regression method. Another way that has 

been examined for generation of ensemble of simple 

Bayesian classifiers is by using different feature subsets 

randomly and taking a vote of the predictions of each 

classifier that uses different feature subset [35].  

 

3. The Proposed Algorithm 

The proposed model simple trains a Naive Bayes 

classifier during the train process. For this reason, the 

training time of the model is that of simple Naïve 

Bayes. During the classification of a test instance the 

model calculate the probabilities each class and if the 

probability of the most possible class is at least two 

times the probability of the next possible class then the 

decision is that of global NB model. However, if the 

global NB is not so sure e.g., the probability of the most 

possible class is less than two times the probability of 

the next possible class; the model finds the k nearest 

neighbors using the selected distance metric and train 

the local simple Bayes classifier using these k 

instances. Finally, in this case the model averages the 

probabilities of global NB with local NB classifier for 

the classification of the testing instance. It must be 

mentioned that local NB classifier is only used for a 

small number of test instances and for this reason 

classification time is not a problem for our model. 

Combining instance-based learning with naive 

Bayes is motivated by improving naive Bayes through 

relaxing the conditional independence assumption 

using lazy learning. It is expected that there are no 

strong dependences within the k nearest neighbors of 

the test instance, although the attribute dependences 

might be strong in the whole data. Essentially, they are 

looking for a sub-space of the instance space in which 

the conditional independence assumption is true or 

almost true. Generally, the proposed ensemble is 

described by the pseudo-code in Figure 1.  

 
Training: 
Build Global Naive Classifier in all the training set e. g. calculate P(c) for 

each class c, and all P(f|c): The probability of each feature f in each class 

c. 
Classification: 

1. Obtain the test instance. 

2. Calculate the probabilities of belonging the instance in each class of 
the dataset e. g. take P(c) times the calculated probability of each 

feature in class c, i. e. each P(f|c) based on the test instance. 
3. If the probability of the most possible class is at least two times the 

probability of the next possible class then the decision is that of global 

NB model else 
a. Find the k (=50) nearest neighbors using the selected distance 

metric (manhattan in our implementation). 

b. Using as training instances the k instances train the local simple 
Bayes classifier. 

c. Aggregate the decisions of global NB with local NB classifier by 

averaging of the probabilities for the classification of the testing 
instance. 

Figure 1. Integrating global and local application of naive Bayes 

classifier. 

 

The proposed algorithm requires choosing the value 
of K. There are several ways to do this. A first, simple 
solution is to fix K a priori before the beginning of the 
learning process. However, the best K for a specific 
dataset is obviously not the best one for another 
dataset. A second, more time-consuming solution is 
therefore to determine this best K automatically 
through the minimization of a cost criterion. The idea 
is to apply a model selection process upon which the 
different hypothesis that can be built. One way to do 
that is to evaluate the mean error on a test set and thus 
keep as K the value for which the error is the least. In 
the current implementation we decided to use a fixed 
value for K (=50) in order to a) keep the training time 
low and b) since about this size of instances is 
appropriate for a simple algorithm, to build a precise 
model according to [12]. According to our 
experiments, the results are quite similar for K values 
between 30 and 60. K (=50) is most suitable for 
datasets with many features. 
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The proposed algorithm has as free parameters the 

distance metric. For two data points, X  = <x1, x2, x3, …, 

xn-1> and Y = <y1, y2, y3, …, yn-1>, the euclidean 

similarity function is defined as:  

                       ( )
1/ 2

2

1

1 ,
m

i i

i

x yD x y
=

−
 
 
 

= ∑                         

Where as manhattan similarity function is defined as:  

( )
1

2 ,
m

i i

i

x yD x y
=

−= ∑                          (2)  

And chebychev similarity function is defined as:  

( )
1

3 max,
m

i i
i

x yD x y
=

−=                          (3)  

The manhattan metric is a little cheaper to compute 

than the Euclidean distance so it may be used if the 

speed of a particular application is important. As a 

result, we used the manhattan similarity function as 

distance metric in our implementation. 
 

4. Comparisons and Results 

For the purpose of our study, we used 28 well-known 

datasets from many domains from the UCI repository 

[11]. These data sets were hand selected so as to come 

from real-world problems and to vary in characteristics. 

In order to calculate the classifiers’ accuracy, the whole 

training set was divided into ten mutually exclusive and 

equal-sized subsets and for each subset the classifier 

was trained on the union of all of the other subsets.  

Then, cross validation was run 10 times for each 

algorithm and the median value of the 10-cross 

validations was calculated.  

In Tables 1, 2 and 3, we represent with “v” that the 

proposed algorithm looses from the specific algorithm. 

That is, the specific algorithm performed statistically 

better than the proposed algorithm according to 

corrected t-test with p<0.05 [29]. The simple t-test 

assumes the samples are independent. However, due to 

the way cross validation works, the samples are not 

independent. Ignoring this assumption generally gives 

very high type I errors (that is, the test saying there is a 

difference between the tested algorithms while in fact 

there is not). The corrected t-test uses a fudge factor to 

counter the dependence between samples which in 

practice results in acceptable type I errors [29]. 

Furthermore, in the following Tables “*” indicates that 

the proposed algorithm performed statistically better 

than the specific classifier according to corrected t-test 

with p<0.05. In all the other cases, there is no 

significant statistical difference between the results 

(Draws). In the last row of the following Tables one 

can see the aggregated results in the form (a/b/c). In 

this notation “a” means that the proposed algorithm is 

significantly less accurate than the compared algorithm 

in a out of 28 data sets, “c” means that the proposed 

algorithm is significantly more accurate than the 

compared algorithm in c out of 28 data sets, while in 

the remaining cases (b), there is no significant 

statistical difference between the results.  

In Tables 1 and 2, one can see the comparisons of 

the proposed algorithm with the other attempts that 

have tried to improve the classification accuracy of the 

simple Bayes algorithm. Eight well-known algorithms 

were used for the comparison: discretize simple Bayes 

[17], NB with kernel estimation [17], locally weighted 

naive Bayes [12], lazy bayesian rule-learning 

algorithm [40], discretize NB [17], averaged one-

dependence estimator [37], weightily averaged one-

dependence estimator [19], hidden naive Bayes 

algorithm [20].  

Thus, the proposed algorithm is significantly more 

accurate than simple Bayes (NB) in 8 out of the 28 

data sets, while it has significantly higher error rates 

than simple Bayes in none data set. The average error 

rate of our algorithm is also about 23% less than that 

of simple Bayes algorithm. In addition, the proposed 

algorithm has significantly lower error rates in 6 out of 

the 28 data sets than the simple discretize version of 

simple Bayes, while it is significantly less accurate in 

none data set. Furthermore, the proposed algorithm is 

significantly more accurate than NB with kernel 

estimation in 7 out of the 28 data while, the proposed 

algorithm has significantly higher error rate in none 

data set.  

Moreover, the proposed algorithm is significantly 

more accurate than LBR algorithm in 6 out of the 28 

data sets and even though, the proposed algorithm has 

significantly higher error rates in other 2 data sets it 

uses much less time for training and classification. 

The proposed algorithm is significantly more accurate 

than locally weighted naive Bayes (Local NB) 

algorithm in 4 out of the 28 data sets, while it is 

significantly less accurate in1data sets. Furthermore, 

the proposed algorithm is significantly more accurate 

than WAODE in 2 out of the 28 data sets using less 

time for training, too. In none data set, the proposed 

algorithm has significantly higher error rate. 

Moreover, the proposed algorithm is significantly 

more accurate than HNB algorithm in 3 out of the 28 

data sets and the proposed algorithm has significantly 

higher error rates in other 1 data set. Finally, the 

proposed algorithm is significantly more accurate than 

AODE algorithm in 3 out of the 28 data sets, while it 

is significantly less accurate in none data set. 

In addition, a representative algorithm for each of 

the other sophisticated machine learning techniques 

was tested Table 3. SMO algorithm was the 

representative of the support vector machines [30] and 

K2 as a representative of bayesian networks [38]. We 

also used the 3-NN algorithm as a representative of 

kNN [38] and C4.5 as a representative of decision 

trees [31]. NBTree [23] also used as combination 

method of a decision tree with naive Bayes. 

(1) 
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Table 1. Comparing the proposed algorithm with other attempts to improve the simple Bayes. 
 

Dataset IGLNB NB  NB with Kernel Estimation  Discretize NB  

Audiology 74.04 72.64  72.64  72.64  

Autos 77.79 57.41 * 61.33 * 65.17 * 

Balance-Scale 90.69 90.53  91.44  71.56 * 

Breast-Cancer 72.05 72.7  72.7  72.7  

Wisconsin-Breast-Cancer 96.94 96.07  97.51  97.2  

Horse-Colic 82.2 78.7 * 79.24 * 79.54 * 

German_Credit 76.29 75.16  74.38  75.04  

Pima_Diabetes 75.36 75.75  74.96  75.26  

Glass 73.62 49.45 * 51.09 * 71.94  

Haberman 75.09 75.06  74.77  71.57  

Cleveland-14-Heart-Diseas 83.61 83.34  84.17  83.47  

Hungarian-14-Heart-Diseas 84.36 83.95  84.97  84.2  

Heart-Statlog 83.15 83.59  84.07  82.56  

Hepatitis 86.04 83.81  85.16  84.34  

Ionosphere 91.31 82.17 * 91.8  89.4  

Iris 95.8 95.53  96.2  93.33  

Labor 94.23 93.57  93.4  88.57  

Lymphography 83.76 83.13  83.15  85.1  

Monk1 81.1 73.38 * 73.38 * 73.38 * 

Monk2 61.06 56.83  56.83  56.83  

Monk3 93.2 93.45  93.45  93.45  

Primary-Tumor 47.23 49.71  49.71  49.71  

Sonar 85.7 67.71 * 72.4 * 76.71 * 

Students 85.8 85.7  85.7  85.7  

Titanic 78.33 77.85 * 77.85  77.85  

Vehicle 68.87 44.68 * 60.9 * 61.06 * 

Wine 98.88 97.46  97.34  98.71  

Zoo 96.73 94.97  95.17  93.21  

Average 81.90 77.65  79.13  78.93  

a/b/c  [0/20/8]  [0/21/7]  [0/22/6]  

 

Table 2. Comparing the proposed algorithm with other attempts to improve the simple Bayes. 
 

Dataset IGLNB Local NB  AODE  WAODE  HNB  LBR  

Audiology 74.04 78.85  71.66 * 77.05  73.94  72.20 * 

Autos 77.79 77.94  74.75  81.72  82  73.80 * 

Balance-Scale 90.69 89.91  69.96 * 70.06 * 69.67 * 72.17 * 

Breast-Cancer 72.05 72.86  72.73  71.97  70.23  72.35  

Wisconsin-Breast-Cancer 96.94 96.25  97.05  97.2  96.37  97.21  

Horse-Colic 82.2 82.28  82.25  81.66  81.69  82.33  

German_Credit 76.29 75.08  75.83  75.72  75.65  86.1 v 

Pima_Diabetes 75.36 70.38 * 75.7  75.61  74.57  75.38  

Glass 73.62 72.2  74.53  73.26  73.77  72.32  

Haberman 75.09 70.59 * 71.57  71.57  71.57  71.57  

Cleveland-14-Heart-Diseas 83.61 81.39  82.87  82.64  81.95  83.54  

Hungarian-14-Heart-Diseas 84.36 82.3  84.67  85.28  84.87  84.54  

Heart-Statlog 83.15 79.33 * 82.7  82.07  82.74  82.59  

Hepatitis 86.04 86.27  84.06  83.87  84.64  84.91  

Ionosphere 91.31 82.91 * 91.09  92.4  91.48  90  

Iris 95.8 95.53  93.07  92.93  92.07 * 93.2  

Labor 94.23 93.3  91.07  90.7  90.67  87.50 * 

Lymphography 83.76 83.82  86.86  88.22  85.57  85.45  

Monk1 81.1 84.42  82.32  75.46  97.66 v 94.91 v 

Monk2 61.06 61.24  59.62  57.96  60.65  60.40  

Monk3 93.2 91.65  93.21  93.53  93.14  93.45  

Primary-Tumor 47.23 44.52  47.87  47.94  47.85  48.85  

Sonar 85.7 88.15  77.05 * 77.24 * 76.13 * 76.04 * 

Students 85.8 83.47  85.96  85.3  86.58  85.38  

Titanic 78.33 79.05  78.21  78.88  79.04  78.31  

Vehicle 68.87 75.01 v 70.32  70.89  70.62  69.43  

Wine 98.88 98.93  98.21  97.98  97.59  98.71  

Zoo 96.73 97.21  94.66  98.1  97.11  93.21 * 

Average 81.90 81.24  80.35  80.61  81.06  80.93  

a/b/c  [1/23/4]  [0/25/3]  [0/26/2]  [1/24/3]  [2/20/6]  

 

The proposed algorithm is also significantly more 

precise than C4.5 algorithm in 11 out of the 28 data 

sets, whilst it has significantly higher error rates in none 

data set. In addition, the proposed algorithm is 

significantly more accurate than SMO algorithm in 5 

out of the 28 data sets, whereas it has significantly 

higher error rates in 2 data sets. The proposed 

algorithm is significantly more precise than 3NN 

algorithm in 8 out of the 28 data sets, while it has 

significantly higher error rates in none data set. The 

proposed algorithm is significantly more precise than 

NBTree algorithm in 4 out of the 28 data sets, while it 
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Table 3. Comparing the proposed algorithm with other state-of-the-art classifiers. 
 

Dataset IGLNB 3NN  SMO  C4.5  K2  NBTree  Adaboost NB  

Audiology 74.04 67.97 * 80.77 v 77.26  76.79  76.82  79.26 v 

Autos 77.79 67.23 * 71.34 * 81.77  67.26 * 77.87  57.12 * 

Balance-Scale 90.69 86.74 * 87.57 * 77.82 * 71.56 * 75.97 * 91.68  

Breast-Cancer 72.05 73.13  69.52  74.28  72.59  70.99  68.68  

Wisconsin-Breast-Cancer 96.94 96.6  96.75  95.01 * 97.2  96.38  95.55  

Horse-Colic 82.2 80.95  82.66  85.16  80.98  81.71  77.62  

German_Credit 76.29 72.21 * 75.09  71.25 * 74.97  74.27  75.14  

Pima_Diabetes 75.36 73.86  76.8  74.49  75.25  75.24  75.86  

Glass 73.62 70.02  57.36 * 67.63  71.56  69.90  49.63 * 

Haberman 75.09 69.77  73.4  71.05  71.57  71.94  73.91  

Cleveland-14-Heart-Diseas 83.61 81.82  83.86  76.94 * 83.34  80.43  82.97  

Hungarian-14-Heart-Diseas 84.36 82.33  82.74  80.22 * 84.57  82.26  84.81  

Heart-Statlog 83.15 79.11 * 83.89  78.15 * 82.56  79.26 * 82.59  

Hepatitis 86.04 80.85 * 85.77  79.22 * 84.18  80.93 * 84.62  

Ionosphere 91.31 86.02  88.07  89.74  89.54  89.15  91.06  

Iris 95.8 95.2  96.27  94.73  93.2  93.80  94.8  

Labor 94.23 92.83  92.97  78.6 * 90.6  92.27  89.6  

Lymphography 83.76 81.74  86.48  75.84  85.64  80.80  81.27  

Monk1 81.1 78.97  79.58  80.61  73.46 * 91.78 v 72.68 * 

Monk2 61.06 54.74 * 58.7  57.75  56.78  63.72  56.83  

Monk3 93.2 86.72 * 93.45  92.95  93.45  92.94  90.9  

Primary-Tumor 47.23 44.98  47.09  41.39 * 47.11  47.50  49.71  

Sonar 85.7 83.76  76.6 * 73.61 * 76.71 * 77.07 * 80.77  

Students 85.8 82.29  86.72  86.75  85.76  84.62  85.18  

Titanic 78.33 78.9  77.6 * 78.55  77.86 * 78.00  77.86 * 

Vehicle 68.87 70.21  74.08 v 72.28  61.05 * 70.99  44.68 * 

Wine 98.88 95.85  98.76  93.2 * 98.65  96.62  96.18 * 

Zoo 96.73 92.61  96.05  92.61  94.37  94.44  97.23  

Average 81.90 78.84  80.71  78.53  79.23  80.27  78.15  

a/b/c  [0/20/8]  [2/21/5]  [0/17/11]  [0/22/6]  [1/23/4]  [1/21/6]  

 

has significantly higher error rates in one data set. In 

addition, the proposed algorithm is significantly more 

accurate than K2 algorithm in 6 out of the 28 data sets, 

whereas it has significantly higher error rates in none 

data set. Subsequently, we compare the performance of 

the proposed algorithm with the accuracy of the simple 

Bayes algorithm after applying the boosting procedures 

(with 10 classifiers) [2]. The proposed algorithm is 

significantly more accurate than single boosting simple 

Bayes (AdaBoostNB) algorithm (using 10 classifiers) 

in 6 out of the 28 data sets, while in 1 data set, the 

proposed algorithm has significantly higher error rates. 

In brief, we managed to improve the performance of 

the simple Bayes Classifier obtaining better accuracy 

than other well known methods that have tried to 

improve the performance of the simple Bayes 

algorithm. The proposed algorithm also gave better 

accuracy than other sophisticated state-of-the-art 

algorithms on most of the 28 standard benchmark 

datasets. 

 

5. Conclusions 

Ideally, we would like to be able to identify or design 

the single best learning algorithm to be used in all 

situations. However, this is not possible. The simple 

Bayes classifier has much broader applicability than 

previously thought. Besides its high classification 

accuracy, it also has advantages in terms of simplicity, 

learning speed, classification speed and storage space. 

Turhan and Bener [36] analyze the assumptions of 

Naive Bayes using public software defect data from 

NASA. Their analysis shows that independence 

assumption is not harmful for software defect data 

with PCA pre-processing. 

We managed to improve the prediction accuracy of 

the simple Bayes model by integrating global and 

local application of Naive Bayes classifier. We 

performed a large-scale comparison with other 

attempts that have tried to improve the accuracy of the 

simple Bayes algorithm as well as other state-of-the-

art algorithms and ensembles on 28 standard 

benchmark datasets and we obtain better accuracy in 

most cases.  

Local weighted learning algorithms must often 

decide what examples to store for use during 

generalization in order to avoid extreme storage and 

time complexity [38]. By removing a set of examples 

from a dataset the response time for classification 

decisions will decrease, as fewer examples are 

examined when a query example is presented. This 

objective is primary when we are working with large 

dataset and have limited storage. In a following work 

we will focus on the problem of reducing the size of 

the stored set of instances while trying to maintain or 

even improve generalization accuracy by avoiding 

noise and overfitting. Numerous instance selection 

methods that can be combined with the proposed 

technique can be found in [4]. Features can be also 

selected by keeping those for which gain ratio [7] 

exceeds a fixed threshold e. In order to have a robust 

selection, we can set e to 0. 02 of the gain ratio filter, 

in an attempt to discard only features with negligible 
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impact on predictions. However, such a low threshold 

can discard many features. 
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