
The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014 69

A Critical Comparison for Data Sharing Approaches

Sofien Gannouni, Mutaz Beraka, and Hassan Mathkour

Department of Computer Science, King Saud University, KSA

Abstract: Integrating and accessing data stored in autonomous, distributed and heterogeneous data sources have been

recognized as of a great importance to small and huge-scale businesses. Enhancing the accessibility and the reusability of

these data entail the development of new approaches for data sharing. These approaches should satisfy a minimal set of

criteria in order to support the development of effective and comprehensive data sharing applications. In this paper, we first

outline the four data sharing approaches and define a set of fundamental criteria for data sharing approach. Moreover, we

investigate the motivation and importance of these criteria, and the inter-dependencies among them. Additionally, we compare

the existing data sharing approaches based on the available options for each criterion.

Keywords: Data sharing approaches, data access, data integration, data consistency, performance, criteria options.

Received January 2, 2012; accepted September 23, 2012; published online January 29, 2013

1. Introduction

The variety of data sources and vast amount of data

hosted by these sources mean that they play a very

important role in small and large-scale business [16],

as well as in research. Sharing of heterogeneous,

autonomous, and remote data sources has long been a

hot topic, and has added value to both personal users

and companies. This type of sharing allows us to take

advantage of enterprise data stored in these sources,

and opens up opportunities to integrate data from

multiple data sources to gain a holistic understanding

of data integration [4]. Thus, the demand for sharing

existing data sources is more important now than ever

before.

Due to the different data sharing approaches

reviewed and explained in [9], we need a set of criteria

that must be considered and taken into account before

choosing one of these approaches to develop a new

data sharing application. Moreover, data source

sharing, or simply data sharing, requires at least

support for a set of fundamental criteria to meet the

minimal requirements. So far, such criteria have not

been discussed in current research. They haven't been

described or explained in terms of supporting data

sharing or for examining data sharing approaches that

have been proposed during the last decade. In this

paper, we present four fundamental criteria that must

be satisfied when selecting one of the data sharing

approaches for use in developing and implementing

data sharing applications.

Different data sharing approaches have been

introduced and applied in different computing

environments. These approaches vary in terms of

concepts and standards used in implementations

thereof. The data sharing approaches under

consideration are: transaction processing monitor,

tuplespace, resource description framework, and data

service approach [9]. Transaction Processing Monitor

(TPM) is a database middleware based on transactions

that allows users to submit their queries, which are

then processed and executed over multiple database

servers as transactions [9]. Tuplespace is a

coordination language that provides shared memory

space into which users can post data, or from which

data can be retrieved [9]. Resource Description

Framework (RDF) is a W3C standard for describing,

representing and storing data from heterogeneous data

sources as web resources on the web [9]. Data Service

Approach (DSA) relies on a Service Oriented

Architecture (SOA) to expose heterogeneous data

sources as data services [9]. A preliminary study of

these data sharing approaches with the fundamental

criteria has been presented in [10]. However, [10] does

not specify for none of them neither options nor

mechanisms.

It is not obvious what the basis and the criteria upon

which a specific approach would be more appropriate

for a given application. It is desired, therefore, and

beneficial to determine a set of criteria that can guide

users to adopt the suitable data sharing approach for

the application at hand. To the best for knowledge, no

attempt has been in this regard. In an attempt to

determine an applicable set of comparative criteria, we

discuss in this paper four evaluation criteria namely,

data access, data integration, data consistency and

performance, and show how they can be used to adopt

a given data sharing approach for the application at

hand. We also shed light on the inter-dependencies

among them. Additionally, we compare the existing

data sharing approaches based on the available options

for each criterion.

In the following sections, we describe four

evaluation criteria that should be supported by

70 The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014

different data sharing approaches and compare

between these approaches based on the available

options for each criterion. We strongly believe that any

approach to data sharing should aim to satisfy these

criteria, albeit without limiting the minimal criteria to

only these. These criteria help developers to decide,

after a review of the data sharing approaches, which

approach is the most suitable to be applied during the

development of a new data sharing application.

2. Data Access

The most common demand from enterprises and

applications is the access to enterprise data stored in

distinct heterogeneous data sources. These sources

store a vast amount of data, which is either structured,

such as a relational database, semi-structured such as

an XML file, or unstructured such as a document [2,

3]. Additionally, the current demand for data sharing is

more important than ever before. Access to data stored

in heterogeneous data sources is needed to allow users

to benefit from such data and to create opportunities

for novel use of the data.

Providing access to many kinds of heterogeneous

data sources effectively requires dealing with different

formats, structures, and platforms, and the sources

being distributed over a network. Additionally,

functions for manipulating and accessing data stored in

these sources should also be provided, so that users do

not need to know the data formats, platforms,

locations, distribution, and so on. Thus, providing a

uniform solution for accessing and manipulating data

stored in various data sources is not a trivial task.

Instead, this challenging task should deal with all the

issues noted above to provide transparent access to

enterprise data stored in heterogeneous data sources.

This transparency should also be extended to

developers to enable them to provide this type of

access [13].

Therefore, the solution should mask the

heterogeneity between data sources and address some

related issues such as custom-code, performance, and

so on. A solution is to provide an abstract layer,

preferably as middleware, which can access and

manipulate data stored in various types of data sources

in a generic way. This layer typically uses a variety of

common interfaces to access different data sources

such as Java DataBase Connectivity (JDBC) or Open

DataBase Connectivity (ODBC), etc. [5].

Access to homogenous data sources is much easier

than to heterogeneous data sources. In homogenous

data sources, there is only one type of data format that

must be dealt with, albeit with multiple vendors of the

data source. For example, for structured data stored as

a relational database, the vendors include Oracle,

MySQL, etc. On the other hand, for heterogeneous

data sources, different types of data formats as well as

different types of data sources must be considered. In

addition, accessing structured data stored in data

sources is much easier than semi-structured and

unstructured data. The representation of structured data

is based on a well-defined schema such as data stored

in database, whereas unstructured data differ both in

the format and method of representation.

Finally, although providing access to heterogeneous

data sources is very important, it doesn’t absolve the

need for data integration. This allows data to be moved

at runtime as opposed to in batches, thereby enabling

users to retrieve data from multiple data sources to

gain a holistic understanding of data integration [19].

3. Data Integration

Data integration provides the ability for users to

retrieve data from integrated data sources. The data

extracted from these sources would not be possible if

the data sources were viewed in isolation. Thus,

providing a unified view of data integration helps us to

avoid duplicating effort in gathering data and enables

data to be retrieved from heterogeneous data sources

that would otherwise be impossible [29].

Integrating data stored in autonomous, distributed

and heterogeneous data sources is important for both

business companies and personal users, as well as for

researchers. It establishes a solid data foundation to

meet strategic business intelligence and to achieve

their objectives [17]. As for personal users, integrating

shared data allows them to benefit from vast amount of

data stored in data sources by querying and retrieving

the data from multiple heterogeneous data sources.

Providing uniform access to multiple data sources is

the main goal of data integration. This is significant in

a variety of situations in both commercial and

scientific research. Besides the main goal, data

integration is followed by one of two sub goals. The

first one applies when we know exactly the question

we want answered and we need to know the amount of

data available. The second goal understands the power

of the data at large when the availability of data

sources varies [4]. However, supporting data

integration is not an easy task, and is typically

accompanied by a set of challenges include

exponential data growth, huge numbers of data sources

and moves to cloud computing and high development

costs [3, 6].

Most of the existing approaches, mechanisms, and

techniques are based on a global schema or mediation

schema to support data integration. They require great

effort in dealing with different data formats, models,

schemas, and query languages, as well as heterogeneity

between data sources and their locations. Wang et al.

[27], describe three methods to integrate data stored in

heterogeneous data sources. Relational database

integration method focuses on accessing relational

databases and integrates data stored in these databases.

XML data integration method provides a single

A Critical Comparison for Data Sharing Approaches 71

uniform XML view of various data sources, and allows

querying these sources using this view. Ontology data

integration method provides a semantic integration

infrastructure that uses ontology as the mediated

schema for representing the semantics of the data

sources. This mediated schema allows users to query

data using a uniform query interface. There are also

other data integration approaches, such as the data

warehouse approach, that is, Extract, Transform, and

Load (ETL), Enterprise Information Integration (EII),

and so on [3].

Finally, integrating data using minimum efforts

opens the door to share data that can satisfy most of the

integration needs in current decade for both companies

and researchers [20]. So, potentially the best solution

to integrating data stored in heterogeneous data sources

is to not rely on a global or mediation schema. Such a

solution should provide virtual data integration based

on set of proposed standards and technologies to

integrate heterogeneous data sources at runtime.

4. Data Consistency

Data consistency means that data remain consistent,

accurate and valid over time, and do not violate any

application-logic constraints. This ensures that each

user consuming the data sees a consistent view of the

data, including visible changes made by user’s own

transactions and those of other users. However, the

importance of data consistency comes from the fact

that the users are retrieving and updating data that is

stored on autonomous, distant and heterogeneous data

sources; which means that users’ statements are

running simultaneously on several systems and may

perform concurrent operations on the same data [22].

Hence, systems or applications may generate erroneous

results or take inappropriate actions because they are

handling inconsistent data [24]. The need for data

consistency mechanisms has become very important to

control transactions’ processing and management

among autonomous, distributed and heterogeneous

data sources. Achieving data consistency means users

can retrieve valid, accurate and up-to-date data at all

times.

One of the earlier simple assumptions made by most

application programmers was that to maintain data

consistency, data should exist in one place and

database transactions should be used as a method of

ensuring the integrity of business actions [24]. This

assumption simplified the code needed to manipulate

data. However, the current demand for data

consistency is more complex than this simple

assumption, since heterogeneous data sources are

typically distributed over a network. A uniform

consistency model, the ACID model, which sets forth

the four properties of Atomicity, Consistency, Isolation

and Durability that all transactions must satisfy, is the

best solution to ensure consistency of data in a

distributed computing environment. The responsibility

of the application programmer is to define transaction

boundaries in a manner that is consistent with the

application’s behavior [24]. Accordingly, supporting

this consistent model is not an easy task. Much effort is

needed in implementing solid mechanisms that achieve

these properties absolutely.

However, satisfying the ACID properties on

homogeneous data sources is much easier than on

heterogeneous ones. Moreover, achieving ACID

properties on local data sources is easier than on

distributed data sources. The difficulty of working in

distributed environments stems from data sources

being distributed over a network and the fact that the

availability and reliability of these sources vary.

Therefore, there are many things that need to be

considered and taken into account when working in a

distributed environment.

Finally, enterprise data stored in heterogeneous data

sources are imported by unknown users and

companies, and such data become part of the user or

company’s application for processing and/or

consumption. For this reason, support for and

satisfying ACID properties means that data remain

consistent over time, resulting in high quality data,

efficient data sharing, efficient data integration,

findings based on solid evidence, and saving time and

resources [8].

5. Performance

It is the property that measures amount of time

required to accomplish the work based on the used

resources [28]. In software engineering, it is

considered as a fundamental property of a system

under development and it is one of the non-functional

requirements of that system [23]. Some analysts

consider performance to be a functional requirement in

certain systems.

In data sharing, performance is one of the most

important criteria affecting the usage of the data

sharing application. Users willing to share data stored

in heterogeneous data sources need high performance

for both integrating and accessing the data stored in

these sources. Therefore, to provide a high

performance data sharing application for accessing and

integrating enterprise data, one first needs to

understand the application’s behavior, and then address

the access and integration challenges to make it faster.

Providing a single access layer that supports

heterogeneous data sources and uses fast access

interfaces, fast query execution, and concurrency

control is an example of the data access challenges [3,

6]. If sources are reliant on slower interfaces, for

example, this means a slower connection with the data

sources and longer response-time for the given query.

Furthermore, examples of the challenges of integrating

data stored in data sources include the heavy reliance

72 The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014

on global schemas, transformations, and mappings

between different schemas. This heavy reliance on

schema mappings, for example, tends to consume a lot

of computer resources and provides a lower

throughput.

Accordingly, meeting both current and future

performance requirements is important for all

commercial and open-source solutions for data sharing.

A variety of mechanisms such as parallel processing

and workload balancing can be used to accomplish the

intended work effectively [17]. From our point of

view, using parallel processing mechanisms in data

sharing will provide a higher level of performance for

accessing, retrieving and integrating data from multiple

data sources. Working with heterogeneous data sources

in parallel and using an asynchronous mode in some

situations will reduce the time required to realize the

intended work as well as allow complex data

integration to be carried out. Additionally, using

techniques that capture data changes, one can easily

track and extract the changes that have occurred in the

correct order to the relevant fields in the data source

since the last extract [17].

Finally, everything affects performance: from the

system itself to all underlying layers, such as the

operating system, middleware, and so on [28]. In

addition, performance affects the usability, reliability

and availability of the system. In data sharing,

performance also affects the access and the integration

of data stored in heterogeneous data sources. Thus,

providing a high-level of performance results in a high

performance data sharing application that provides

effective and efficient data sharing, as well as short

response-time for given work, high throughput, low

overhead, low resource usage and high reliability and

availability of the system.

6. Inter-Dependencies between Evaluation

Criteria of Data Sharing Approaches

Figure 1 shows inter-dependencies between criteria.

Figure 1. Inter-dependencies between criteria.

Data integration criterion is fully dependent of the

data access criterion for the following reasons:

• Without providing the ability to access data stored

in data sources, it is not possible to retrieve data for

subsequent integration.

• Accessing heterogeneous data sources for data

integration involves dealing with different data

formats, schemas, and so on.

The data integration criterion is fully dependent on the

data consistency, since integrating inconsistent data

means poor integration and useless data. The

performance criterion is partially dependent of the data

integration criterion. Indeed, there are several options

that could be adopted to implement the data integration

criterion. The performance of each of these options

depends also on the mechanisms and techniques, such

as parallel processing techniques, that could be used to

accomplish the option.

7. Options for Evaluation Criteria of Data

Sharing Approaches

7.1. Data Access

It has two options as follows [3]:

• Homogeneous: This option supports one type of

data sources from various vendors meaning the

same data model but different implementations.

• Heterogeneous: This option supports different types

of data sources from various vendors meaning

different data models with various implementations.

7.2. Data Integration

It has three available options as follows [21, 27]:

• Structured Data Integration Approach: It aims to

integrate heterogeneous structured databases. It

doesn’t capture semantic behind database schema;

only reflecting database structure. So, integrating

databases is obviously hard.

• Semi-Structured Data Integration Approach: XML

as a standard language used to represent different

kinds of data, could be used to support data

integration. This approach provides a single uniform

XML view of various data sources, and allows users

using this view to submit their queries to retrieve

data from these sources.

• Ontology Data Integration Approach: Concerning

to semantic Web, this approach has been proposed

to support data integration using ontology. It

captures the semantic behind the data sources

schema and provides a semantic integration

infrastructure that uses an ontology as the mediated

schema for representing semantics of data sources.

In addition, data integration criterion has two available

mechanisms as follows [3]:

• Extract, Transform and Load (ETL): It is designed

to process huge amount of data stored in

heterogeneous data sources and in data

warehousing. It extracts data from different daily

Data Integration

Performance

Data Access Data Consistency

Fully dependent of Partially dependent of

A Critical Comparison for Data Sharing Approaches 73

operational heterogeneous data sources, transforms

and loads it into a target data source.

• Enterprise Information Integration (EII): It is the

process of data integration which provides a single

virtual interface to uniform data access for

heterogeneous data sources. From the viewpoint of

data integration, EII supports data integration using

the federated databases approach.

• Data Integration through Service Composition: It is

the process of data integration, which enables the

different data sources to publish services providing

access to their related data. Users are willing to

compose a set of services, publishing by the data

sources, in one business process and execute this

process to retrieve and integrate data from multiple

data sources. Hence, the data integration is done

through the service composition process unlike

other techniques.

7.3. Data Consistency

It has two options models as follows [5, 24, 25, 26]:

• ACID Transactions: In this model, each transaction

must satisfy the ACID properties in order to

guaranty the database consistency and to guard the

user’s operations against hardware and software

failures [5].

• Eventual Consistency: It is used in distributed

shared memory, distributed transactions and

optimistic replication [25, 26]. The system will

eventually become consistent [24]. It means that

given a sufficiently long period of time over which

no changes are sent, all updates can be expected to

propagate eventually through the system and all the

replicas will be consistent.

ACID transactions model supports the following

options models [1, 18]:

• Flat Transaction Model: It does not allow

transactions to be nested within other transactions.

Therefore, two transactions are executed in different

scopes.

• Nested Transaction Model: In this model, a

transaction is composed of an arbitrary number of

sub-transactions that may be executed concurrently.

Top-level transactions must satisfy ACID

properties. The dependencies between the sub-

transactions and the top-level transaction are fixed

in the model.

• X/Open Distributed Transaction Processing (DTP)

Model: It is an industrial standard defined by the

open group consortium. The X/Open allows

multiple applications to share resources provided by

multiple resource managers and allows their work to

be coordinated into global transactions [1, 15]. A

two-phase commit protocol with presumed rollback

is performed across all the involved resource

managers to assure global atomicity

• Flexible Transaction Model: It is trying to

overcome the restrictions of previous models It is

suitable for structured and long-running transactions

and it supports both ACID and non-ACID

transactional requirements. Therefore, it gives the

flexibility to specify which sub-transactions should

satisfy ACID properties and which aren’t.

Therefore, the dependencies that exist between a

top-level transaction and its sub-transactions are no-

longer fixed in the transactional model; they are

specified by user.

• Business Transaction Model (BTP): It is published

by the OASIS Business Transaction Technical

Committee (BTTC) as a standard for coordinating

transactions between applications controlled by

multiple autonomous parties. No single party

controls all resources needed in a business

transaction. Parties manage their own resources but

coordinate in a defined manner to accomplish the

work scoped by a transaction. Individual service

providers either agree to join a transaction or not.

Eventual consistency model supports following options:

• Immediate Refresh: In this option, distributed

replicas are updated automatically at the end of each

transaction that updates the original data source.

• Periodic Refresh: In this option, replicas are

periodically updated.

• Differed Refresh: In this option, replicas are updated

when someone attempts to retrieve data from them.

7.4. Performance

Of course, we can easily know that it is difficult to

determine general options that could be supported by

data sharing approaches to achieve high performance

for developing data sharing solution. Therefore, we

will present performance metrics that help developers

during the selection phase of an appropriate data

sharing approach. These metrics are as follows [14]:

• Overhead: It is the additional processing required

by the approach performs a regular task. This

metric is sensitive to the following overhead

sources:

1. Communication: Its type between parties may

form an overhead such as cost of initialization

communication variables, shared communication

data, memory allocation and so on.

2. Mode of Execution: The cost of synchronous

execution mode is different to those of the

asynchronous mode [11].

3. Computation: The way the computation is

accomplished is an important indictor on the

performance. It may be inherently sequential or

parallel. Unlike the parallel processing mode, the

sequential computation doesn’t benefit from the

possibility of multicore microprocessors.

74 The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014

• Memory: The amount of the allocated memory and

its usage is very important indicator on the level of

overall performance.

• Contention for Resources: It’s a special case of

overhead when consumers compete for shared

resource. So, its effects can often lead to slowdown

that the result is worse performance.

8. Comparison between Data Sharing

Approaches

We compare hereby the different data sharing

approaches according to the four evaluation criteria

described above. The result of this comparison is

summarized in Table 1.

• Data Access

 TPM and tuplespace were originally proposed to

support one king of data source, which is a

structured data source relational database. Whereas,

RDF and DSA approaches were originally proposed

to hide the heterogeneity between various data

sources.

• Data Integration

TPM uses structured data integration approach

along with one of the two options ETL or EII.

Therefore, it can support data integration through a

mapping process of all extracted data and load it in

one target database, or it can build a virtual data-

integration layer. Tuplespace uses structured data

integration approach with one option, which is ETL

option to support data integration. It may not be able

to support EII option. It allows users to post their

data in a shared space; so building a mediated

schema is impossible. RDF, as data sharing

approach dedicated to the semantic Web, is

adopting the ontology data-integration approach to

support data integration. This approach allows the

developer to adopt the EII option by specifying a

mediated schema in order to support data

integration. Moreover, developers of data sharing

application may integrate data from different data

sources through the service composition option.

The DSA approach adopts the semi-structured

data integration approach to support data

integration. It relies on Web service technology as

standard language that heavily relay on XML

standard. It enables the adoption of EII option since

the developer may define a mediated schema in

order to support data integration. However, the

service composition option is the natural process to

integrate data from various heterogeneous data

sources for the DSA approach. Unfortunately, RDF

and DSA aren’t supporting ETL option because they

aim to benefit and reuse existing heterogeneous data

sources and integrating them with minimal effort.

• Data Consistency

Satisfying the data consistency requirements

between homogeneous data sources is much easier

than heterogeneous data sources. In addition, it is

much easier to satisfy ACID properties in

centralized environment rather than decentralized

environment. However, TPM supports ACID

transaction models such as flat transaction model,

nested transactions model, flexible transactions

model or X-Open transaction model. But, it doesn’t

support business transaction model, since there is no

business processes.

Tuplespace supports both flat model and X/Open

ACID models. RDF supports ACID models such as

nested transactions model, flexible transaction

model or X/Open transaction model. But, it doesn’t

support flat model since data sources are distributed

across the network. In addition, RDF supports

eventual model with one of its options, because

replicas are residing on different sites and the

requirement of making the overall system consistent

is very important.

DSA support both models, ACID and eventual

with their options. It supports well the business

transaction model since it relies on SOA, which

exposes data sources as services. So, it requires

creating a business transaction that involves different

business parities [24].

Table 1. Summary of comparison between data sharing approaches based on proposed evaluation criteria.

 TPM Tuplespace RDF DSA

Data Access Homogeneous (relational databases)
Homogeneous (relational

databases)

Heterogeneous (from structured to

unstructured data sources)

Heterogeneous (from structured to

unstructured data sources)

Data Integration

Structured data integration approach
Structured data

integration approach
Ontology data integration approach

Semi-structured data integration

approach

ETL or EII ETL
EII or data integration through service

composition

EII or data integration through

service composition

Data Consistency

ACID model with one of the

following models: Flat transaction

model, nested transaction model,

X/Open model or flexible

transaction model

ACID model with one of

the following models:

Flat transaction model or

X/Open model

ACID model with one of the following

models: Nested transaction model,

X/Open model or flexible transaction

model

or

Eventual model with one of the

following options: Immediate refresh,

periodic refresh or differed refresh

ACID model with one of the

following models: Flat transaction

model, nested transaction model,

X/Open model, flexible transaction

model or business transaction model

or

Eventual model with one of the

following options: Immediate

refresh, periodic refresh or differed

refresh

Performance No options

A Critical Comparison for Data Sharing Approaches 75

9. Related Issues for Data Sharing

Approaches

In addition to the criteria explained above there are

currently some issues that should be considered for the

selection of a data sharing approach, and for the

implementation of a new data sharing system. In this

paper, we provide a summary of these important

issues, which are the infrastructure environment,

appropriate standard technologies, security and

execution mode.

The main aim of data sharing is to share a huge

amount of data distributed across network. Therefore,

the important issue is either to support this type of

sharing in a centralized environment or in a

decentralized heterogeneous environment. The Peer-

to-Peer (P2P) infrastructure has presented creditable

advantages than centralized environments, avoiding

both computational performance and information

update bottlenecks, and providing other significant

issues including scalability, reliability, availability and

so on [12]. However, a valuable result for both

business companies and users is to selecting an

appropriate data sharing approach supporting P2P

infrastructure efficiently, and developing a new data

sharing system based on this approach in P2P

environment to share heterogeneous and autonomous

data sources across the network.

Another issue related to the development of a new

data sharing solution is the choice of an appropriate

standard technology that will be used to implement the

main concepts related to data sharing approaches for.

This technology may be proprietary, or an open

standard technology. Moreover, the implementation of

the technology should be selected carefully. However,

selecting a standard technology should satisfy at least

set of main characteristics, which are well-defined,

enables reuse of IT existing assets, platform

independent and provides a clear API for the most

widely used programming languages.

Yet another important issue is security. The

requirements of data sharing systems in terms of

security are organized into the following areas:

availability, authenticity, anonymity, and access

control [7]. Supporting and implementing these

techniques in order to apply and enforce the security

policy on the developed system is directly affecting the

performance.

Another issue that is valuable to enhance the overall

system performance is the execution mode. There are

two modes, which are synchronous and asynchronous.

Synchronous mode is blocking until the result becomes

available, whereas, asynchronous mode is not blocking,

it fires call, continue working and handles result when

it is available. However, supporting one or both modes

depend on the selected approach and the system

requirements. Nevertheless, in some cases, supporting

parallel technique along with asynchronous mode has

advantages for the overall system performance.

10. Conclusions

In this paper, we identified and explained four

comparison criteria, data access, data integration, data

consistency and performance. Each of these criteria

may be accomplished in different ways. We have

studied and discussed the available options for every

criterion. This study allows us to compare the existing

data sharing approaches based on the proposed criteria

and their related options. This comparison can help the

developer to select the most appropriate data-sharing

approach for the development of a new comprehensive

data sharing solution.

In the near future, we will present the open issues

such as security issues, robustness, etc., that are related

to data sharing approaches in order to provide a

concrete study and a deeper analysis between these

approaches. We expect that the current and the future

study will become a powerful guide for researchers and

developer to build, design and implement a

comprehensive data sharing solution.

Acknowledgment

This work was supported by the Research Center,

College of Computer and Information Sciences, King

Saud University.

References

[1] Anna‐Brith A., “The xTrans Transaction Model

and FlexCP Commit Protocol,” Technical

Report, University of Tromsoe, 2006.

[2] Bloomberg J. and Goodson J., “Best Practices for

SOA: Building a Data Service Layer,” SOA

World Magazine, vol. 8, no. 5, pp. 1-6, 2008.

[3] Bloomberg J. and Schmelzer R., “The Data

Services Layer: Building a Solid Foundation for

SOA,” available at: http://www.zapthink.com/

2009/06/23/ video -the- data-services-layer

building-a-solid-foundation-for-soa/, last visited

2009.

[4] Brazhnik O. and Jones J., “Anatomy of Data

Integration,” Journal of Biomedical Informatics,

vol. 40, no. 3, pp. 252-269, 2007.

[5] Cappellen M., Cordewiner W., and Innocenti C.,

“Data Aggregation, Heterogeneous Data Sources

and Streaming Processing: How Can XQuery

Help?,” in Proceedings of the IEEE Computer

Society Technical Committee on Data

Engineering, pp. 1-8, 2008.

[6] Chandrasekaran S. and Alvarez P., “2011: The

Year of Data Virtualization,” available at:

http://www.sfdama.org/Presentations/2011/2011

%20Year%20of%20Data%20Virtualization%20-

76 The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014

%20Best%20Practices_20110309_SFDAMA_De

nodo.pdf, last visited 2011.

[7] Daswani N., Garcia-Molina H., and Yang B.,

“Open Problems in Data Sharing Peer-to-Peer

Systems,” in Proceedings of the 9
th
 International

Conference on Database Theory, Italy, pp. 1-15,

2003.

[8] Eynden V., Corti L., Woollard M., Bishop L.,

and Horton L., Managing and Sharing Data, UK

Data Archive, University of Essex, Wivenhoe

Park, 2011.

[9] Gannouni S., Mathkour H., and Beraka M., “A

Comparative Survey of Data Sharing Approaches

and their Applications in Distributed Computing

Environments,” Journal of Theoretical and

Applied Information Technology, vol. 33 no. 1,

pp. 42-57, 2011.

[10] Gannouni S., Mathkour H., and Beraka M.,

“Comparison Criteria for Data Sharing

Approaches”, in Proceedings of the 6
th

International Conference on Computer Sciences

and Convergence Information Technology,

Seogwipo, pp. 442-445, 2011.

[11] Goldsmith B., “Distributed Computing and

Communication in Peer-to-Peer Networks,” PhD

Thesis, University of Tasmania, 2010.

[12] Haase P., Broekstra J., Ehrig M., Menken M.,

Mika P., Plechawski M., Pyszlak P., Schnizler

B., Siebes R., Staab S., and Tempich C.,

“Bibster- a Semantics-Based Bibliographic Peer-

to-Peer System,” in Proceedings of the 3
rd

International Semantic Web Conference, Berlin,

pp. 122-136, 2004.

[13] Huang F., “Heterogeneous Data Source Access in

Web Applications,” available at:

http://ee85.yi.org/cisc832/cisc832paper.pdf, last

visited 2000.

[14] Lin C. and Snyder L., Principles of Parallel

Programming, Addison-Wesley, San Francesco,

2009.

[15] Maabreh K. and Al-Hamami A., “Implementing

New Approach for Enhancing Performance and

Throughput in A Distributed Database,”

International Arab Journal of Information

Technology, vol. 10, no. 3, pp. 290-296, 2013.

[16] Manes T., “SOA Principles Apply to Data

Access and Management,” available at:

http://searchsoa.techtarget.com/news/1266439/S

OA-principles-apply-to-data-access-and-

management, last visited 2007.

[17] MAS Strategies., “Data Integration: Creating a

Trustworthy Data Foundation for Business

Intelligence,” BusinessObjects
TM
 an SAP

®

Company, White Paper, 2008.

[18] McGovern J., Tyagi S., Stevens M., and Mathew

S., Java Web Services Architecture, Morgan

Kaufmann, USA, 2003.

[19] MicroStrategy, “Accessing Heterogeneous Data

Sources using MicroStrategy MultiSource

Option,” available at: http://www.ts.avnet.com/

clientsolutions/accessing_heterogeneous_data_so

urces_using_microstrategy_multi-source_option,

last visited 2011.

[20] Miller B., “Data Integration Demand will Grow

in 2008,” available at: http://www.zdnet.com/

news/data - integration - demand - will - grow -

in - 2008/181807, last visited 2011.
[21] Mostefai S., Bouras A., and Batouche M., “Data

Integration in a PLM Perspective for Mechanical
Products,” International Arab Journal of
Information Technology, vol. 2, no. 2, pp. 141-
147, 2005.

[22] Oracle, “Oracle9i Database Concepts,” available

at: http://docs.oracle.com/cd/ B10501_01 /

server.920/a96524.pdf, last visited 2002.
[23] Park D. and Kang S., “Design Phase Analysis of

Software Performance using Aspect-Oriented
Programming,” in Proceedings of the 5

th
 Aspect-

Oriented Modeling Workshop in Conjunction
with UML Lisbon, Portugal, pp. 1-7, 2004.

[24] Sholler D. and Schulte W., “Data Consistency

and SOA: Old Challenges Rear Their Ugly

Heads,” available at: http://www.gartner.com/

id=1183313, last visited 2009.

[25] Terry D., Theimer M., Petersen K., Demers A.,

Spreitzer M., and Hauser C., “Managing Update

Conflicts in a Weakly Connected Replicated

Storage System,” in Proceedings of the 15
th
 ACM

Symposium on Operating Systems Principles,

USA, pp. 172-182, 1995.

[26] Vogels W., “Eventually Consistent,” ACM

Queue, vol. 6, no. 6, 2008.

[27] Wang J., Lu J., Zhang Y., Miao Z., and Zhou B.,

“Integrating Heterogeneous Data Source using

Ontology,” Journal of Software, vol. 4, no. 8, pp.

843-850, 2009.

[28] Woodside M., Franks G., and Petriu D., “The

Future of Software Performance Engineering,” in

Proceedings of Future of Software Engineering,

USA, pp. 171-187, 2007.

[29] Zeng J., “Research and Practical Experiences in

the Use of Multiple Data Sources for Enterprise

Level Planning and Decision Making: A

Literature Review,” Technical Report, Center for

Technology in Government University, Albany,

1999.

A Critical Comparison for Data Sharing Approaches 77

Sofien Gannouni received his Msc

degree in computer science from

Paul Sabatier University France, and

his PhD degree in computer science

from Pierre & Marie Curie

University France. Currently, he is

an assistant professor at College of

Computer and Information Sciences, King Saud

University. His main research interests include service-

oriented computing, distributed computing, parallel

processing, middleware grid computing and cloud

computing.

 Mutaz Beraka received his BSc

and MSc degrees in computer

science from University of Petra,

Jordan and King Saud University,

KSA respectively. Currently, he is a

PhD student at College of Computer

and Information Sciences, KSU. His

main research interests include service-oriented

computing, Web service technologies, cloud

computing, distributed systems, intelligent systems and

software engineering.

Hassan Mathkour received his MSc

and PhD degree in computer science

from the University of Iowa, USA.

Currently, he is a professor and the

vice dean for development and

quality, College of Computer and

Information Sciences, KSU. His

main research interests include service-oriented

computing, distributed computing, artificial

intelligence, bioinformatics, image processing and

software engineering.

