
The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013 349

Using Model Driven Architecture to Develop

Multi-Agent Systems

Mohamed Elammari and Zeinab Issa
Faculty of Information Technology, University of Benghazi, Libya

Abstract: In recent years, Multi-Agent Systems (MAS) had started gaining widespread acceptance in the field of information

technology. This prompted many researchers to attempt to find ways to facilitate their development process, which typically

includes building different models. The transformation of system specifications into models and their subsequent translation

into code is often performed by relying on unstandardized methods, hindering adaptation to rapid changes in technology.

Furhtermore, there is a big gap between the analysis, the design and the implementation in the methodologies of multi-agent

systems development. On the other hand, we have seen that the top-down Model Driven Architecture (MDA) approach can be

used to provide an efficient way to write specifications, develop applications and separation of business functions and

application from the technical platform to be used. In this work, we propose using the MDA architecture for developing MAS.

We demonstrate several different approaches, resulting in a variety of methods for developing MAS. This, in turn, increases

the flexibility and ease of the development of MAS, and avoids any previously imposed restrictions.

Keywords: MDA, MAS, web ontology language, XMI.

Received May 4, 2011; accepted July 28, 2011; published online August 5, 2012

1. Introduction

The importance, the prevalence, the difficulty of
management and control of software development
processes are the key factors that lead to the need for
providing development mechanisms that would shorten
project life cycles and make the software components
more reusable. This became particularly important
with the emergence of new technologies such as
agents.
Due to the widespread usage of software in many

fields, a software agent should be able to provide
designers with a way to structure the applications into
the components capable of independently responding
to changes in the environment.
 In this paper, we propose using Model Driven

Architecture (MDA) [10] for the development of
Multi-Agent Systems (MAS). It has been issued by the
Object Management Group (OMG) and defined as a
way to organize and support project management and
architectural models by using tools that define the
models and make their communication easy [4]. MDA
is comprised of four stages and set of transformations
from one stage to another. For example, the
Computational Independent Model (CIM) stage does
not show the system structure details, and is, thus,
sometimes referred to as domain model. The Platform
Independent Model (PIM) stage offers a degree of
platform independence, making it suitable for a wide
range of platforms. The next stage is the Platform
Specific Model (PSM) stage; it integrates existing
specifications in the PIM with the details that define

how the system uses a particular type of platform. The
final stage generates the application code. MDA
objectives are portability, interoperability and
reusability [10]. This paper focuses on using MDA to
develop MAS.
The paper is organized as follows. Section 2

describes some related work, and the use of MDA to
develop MAS is presented in section 3. Finally,
conclusions and future work are given in section 4.

2. Related Work

Brandão et al. [3] were the first to use MDA to the
development of MAS. In their work, the authors
suggested using Web Ontology Language (OWL) in
the CIM stage, the TXL programming language in the
transition from this stage to PIM stage, followed by the
use of MAS-ML modeling language. Finally, they
advocate for relying on MAS-ML grammar in the
transition to XMI and then using JADE platform for
the transition to UML models, considered a PSM stage.
De-Maria et al. [6] subsequently used MDA for the
development of MAS, which can be considered as an
extension of their previous work. They started the PIM
stage by using the MAS-ML modeling language, and
translated these models into the MAS-ML XMI,
followed by translation to the UML XMI. These two
steps were based on ASF framework. In the final stage,
the authors generated Java code from UML models by
using the MDA tools.
Using MDA, Amor et al. [1] bridged the gap

between the design and the application of Agent

350 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

oriented systems. They demonstrated how the MDA
could be used to derive practical applications of Agents
from Agent oriented design. The authors proposed an
independent form, derived from any selected
methodologies and agent platforms, in addition to the
partial automatic support to the derivation of the
applications of MAS. Their major contributions were
in the definition of a common, agent-neutral model that
applies to all the concepts required by the FIPA-
compliant agent platform. They also pioneered the use
of MDA mechanisms for the definition of
transformations between design models produced by
the agent oriented methodologies and Malaca model.
They implemented some aspects of their expertise in
the derivation and application of these conversions to
Tropos methodology.
In a similar work, Nikraz et al. [11] developed

methodology for developing MAS using JADE
platform, which primarily focuses on analysis and
design phases. They used FIPA-compliant JADE
Platform in the design phase.
DeLoach and Wood [7] proposed developing MAS

using Multiagent Systems Engineering (MaSE)
methodology and agent tool. The methodology focused
on capturing goals and combing them to form roles,
including tasks that specify how the roles satisfy their
goals. In the design phase, the roles are combined to
define agent classes, whilst tasks are used to identify
conversations between the classes. The authors used
object-oriented principles as a basis for their
methodology, and relied on UML deployment diagram
in run-time system structure. MaSE and agent tool has
been designed to develop five to ten small to medium
sized multi-agent systems. Dikenelli et al. [8]
developed MAS by using framework called
SEAGENT, which works in the semantic web
environment.
 Xuet et al. [12] proposed role-based methodology
for multi-agent systems to separate the conceptual
roles and their practical instances. In this work, role
organization is defined for modeling roles as well as
their relationships. The inheritance relationship is
explicitly defined using Object-Z formalization. Role
space is then defined as a set of role instances (created
at runtime), and serves to provide services for software
agent. Thus, agents can dynamically take or release
role instances from a role space.

3. The Use of MDA to Develop MAS

Our proposal focuses on applying the top-down MDA
architecture to build MAS and-based on its
characteristics-define the MDA stages, and the
transitions between them. In this work, we focus on the
representation of CIMs, their transformation into PIMs,
and the definition of MAS PIMs. We also present
transformations from these models into PSMs, their
specification and subsequent transformations into code.

Figure 1 illustrates the conceptual overview of the
proposed solution.

Figure 1. Conceptual overview of the proposed solution.

3.1. Computational Independent Models

Definition of CIMs requires the following steps:
problem definition and description of system
requirements, achieved by defining the functions the
system performs (i.e., what, rather than how). The use
case diagram is proposed to clarify the main system
functions, whereas the scenarios will be described by
using Use Case Map (UCM).
“The UCM notation aims to link behavior and

structure in an explicit and visual way.” It provides a
powerful visual notation for a review and the ability to
efficiently design of complex systems. Furthermore,
this approach allows for detailed critique of the design
[2, 9]. Figure 2 illustrates the conceptual overview of
the CIM stage.

Figure 2. Conceptual overview of the CIM stage.

The UCM illustrated in Figure 3 describes part of the
system's scenarios of an example system referred to as
EU-Rent. The first step in the UCM is the Cus_Agent
request for a car reservation. The Rent_Agent performs
a search, and, unless the customer is found in the

Using Model Driven Architecture to Develop Multi-Agent Systems 351

company’s black list, the customer is prompted to
specify the car type, model and duration of the
reservation. In the next step, the Rent_Agent checks
car on site availability, or requests an order from
another branch, and subsequently issues the reservation
document.

Figure 3. UCM (Car Reservation).

3.2. Transforming CIMs into PIMs

The first transformation from CIM to PIM will be done
manually. Each path defined in UCM represents
agents' goals, where each precondition and post-
condition represents agents' beliefs, while the
responsibilities represent agents' tasks. Figure 4
illustrates the conceptual overview of the
transformation operation from CIMs into PIMs.

Figure 4. Conceptual overview of the transformation from CIMs
into PIMs.

3.3. Platform Independent Models

In this stage, the MAS structural aspects (the
abstractions, their properties and their relationships)
and the MAS dynamic aspects (interactions between
the abstractions and their internal executions) are
modeled. The implementation of the proposed models
is not restricted to a specific platform. Furthermore,
some models are modified models available within the
HLIM methodology.

3.3.1. Structure Model

The term organization is used to represent partitions
and groups of entities, such as departments,
communities and societies [6]. Similar to agents,
organizations are autonomous, interactive and adaptive
entities that have goals, beliefs, plans and actions.
Agents, organizations and objects comprise
environments, where they are executed and interact

with each other. The aggregation relationship is used to
represent the relationship between entities and the
environments that they inhabit. An object is an
interactive entity, rather than an autonomous one.
Thus, the autonomy property is one of the most
important differences between an agent and an object,
given that objects are reactive and passive entities. The
organization diagram illustrated in the Figure 5 depicts
models of the above example of EU-Rent Car Rentals,
defined in the previous stage. The roles of Agents and
objects defined by the organization are represented by
the model.
The Org_Car defines roles played by the Cus_Agent

agent (the customers in the systems) and Rent_Agent
agent (the employee who is responsible for the rental
procedures in the system). Furthermore, the
organization also defines the negotiations among
agents about the object (car).

Figure 5. Conceptual overview of the structural model.

In order to exemplify some properties of
Cus_Agent, they are defined in an entity. The
properties of an agent are defined as goals, beliefs,
plans, and tasks and are detailed in Table 1 below.

Table 1. Cus_Agent properties.

Agent name: Cus_Agent

Goal Plan Tasks Beliefs

car rent
use
internet

Task name Task

description
• Car information
• Credit card
validity
• Driver license
validity

• Sending order to
rent a car

• Sending personal
data

• Sending driver’s
additional data

• Determine
payment method

• Sending
insurance details

• Signing rent
agreement

Finishing
the car
return
procedures

Use credit
card

• Sending credit
card data

 • Rent value
• Branch
information • Delivering

insurance

Use bank
data

• Sending bank
account data

• Delivering
insurance

Extending
Rent

Order
extended
rental

• Sending request
to extend rental
period

 • Period of rent

Agent Beliefs

1. Car information
2. Branch information
3. Credit card validity
4. Driver license validity
5. Rent value
6. Period of rent

352 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

3.3.2. Dynamic Model

The purpose of the dynamic model is to represent the
interactions among agents, their policies and
commitments to each other. It comprises both the
commitment and the conversation model. The
Commitment model illustrates the commitments
between agents and as shown in Table 2 below is
comprised of four parts: the committed participants,
authorizations that specify the services that the agents
are committed to provide to each other, policies that
specify the service quality and capacity, and relevant
information regarding their importance to an
application as well as their usage policy [9]. Table 2
describes commitments between Cus_Agent and
Rent_Agent from the previous example.

Table 2. Example of a commitment model.

 Cus_Agent CONTRACT Rent_Agent

Authorizations
request of car rent()
request of extending rent()

determine period of rent()
issuing scrip of receiving()
determine the end of rental period ()
extending rent()

Obligations
Provide: determine payment
method()
Provide: sending insurance
details()

Provide: issuing receiving model () when
receiving car
Provide: insurance returning when receiving
rent value
Policies

• Determine car set and car model
when making rent order.

• Check of car procedures before car rent
• Check car date for maintenance before
renting car

• Informing Police and Insurance Company
on failure to return the car after three days

Beliefs
• Car information
• Branch information
• Credit card validity
• Rent value

• Customer information
• Driver license validity
• Car condition

3.3.3. Conversations Between Cus_Agent and

Rent_Agent

The conversation model illustrates the messages
exchanged between agents, depicted by UML sequence
diagram (see Cus_Agent and Rent_Agent in Figure 6).

Figure 6. Conversation model.

3.4. Transforming PIMs into PSMs

After PIMs modeling, the models are transformed into
PSMs (UML class diagrams). The transformation into
UML models occurs in two steps. The first step
consists of describing the models in a textual form,
based on OWL ontology (Figure 7. illustrates the first
step of the transformation from PIM to PSM), and the
second step is to transform the OWL ontology into
UML XMI. The OWL generated in the second step is
converted into a UML XMI through the instantiation of
the Jadex platform, using UML XMI file that contains
the platform specifications. This file describes all
classes defined in the platform and the relationships
among them. These two steps are performed using the
protégé tool.

Figure 7. Transformation from PIM into OWL.

Organization: Org_Cars

Goal Tasks Beliefs

management_of_re

nt_process

Task name
Task

description

Axiom

send information about rent

Plan

creating_rent_Agent

Beliefs

List of branches

<owl: Class RDF: ID="Organization"/>
<owl: DatatypeProperty RDF: ID="Belief">
<Rdfs: range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs: domain RDF: resource="#Organization"/>
</owl: DatatypeProperty>
<owl: DatatypeProperty RDF: ID="Axiom">
<rdfs: domain RDF: resource="#Organization"/>
<Rdfs: range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl: DatatypeProperty>
<owl: DatatypeProperty RDF: ID="Plan">
<Rdfs: range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs: domain RDF: resource="#Organization"/>
</owl: DatatypeProperty>
<owl: FunctionalProperty RDF: ID="Goal">
<Rdfs: range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<RDF: type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
<rdfs: domain RDF: resource="#Organization"/>
</owl: FunctionalProperty>
<Organization RDF: ID="Org_Cars">
<Belief rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
></Belief>
<Goal rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>management_of_rent_process</Goal>
<Plan rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
></Plan>
<Axiom rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

></Axiom>

</Organization>

</rdf:RDF>

Using Model Driven Architecture to Develop Multi-Agent System 353

3.5. Platform Specific Models

The generated UML XMI represents the application
PSM. By using of the Poseidon tool, the UML XMI is
imported to generate the application's UML model.
This is a class diagram that contains the Jadex platform
classes and the classes related to the application that
instantiates the platform. Figure 8 illustrates an
example of the PSM stage.

Figure 8. An example of the PSM stage.

All entities, properties and relationships of our
application are modeled using the structural diagrams
(the abstractions, their properties and their
relationships) during the PIM stage, whereas, in the
PSM stage, these models are represented by UML
class diagram.

3.6. Transforming PSMs into Code

According to the MDA top-down approach, this stage
corresponds to the transformation of PSMs into
application code. Using the Poseidon tool, the UML
models that represent the MAS are automatically
transformed into object-oriented code. This process
corresponds to the last stage of the MDA approach that
transforms PSMs into code. However, it is worth
noting that the generated code requires some
modifications in order to be run on the Jadex platform,
as it contains only the main classes and their methods.
Furthermore, the methods contain only basic
instructions, which are insufficient for the code
execution as shown in Figure 9.

Figure 9. An example of the Jadex platform.

4. Conclusions

In this paper, the MAS development process has been
presented, as an effective and efficient approach to
modeling and implementing MAS using MDA. The
proposed process consists of four stages.
In the first stage, the approach based on UML uses

case diagram to describe the main system functions,

and describes the system's scenarios by using UCM.
UCM provides a powerful visual notation for a review
and ability efficiently depict complex system designs.
In addition, it enables detailed critique of that design,
which allows for further modifications, if necessary.
In the second stage, the UCMs are transformed

manually into PIM models by describing the system at
an Agent oriented level, whereby agent goals are

Agent Platform

 ADF
<agent name="CARRENT"
 Package="jadex.bdi.examples">
 <Beliefs>
 <belief name="msg" class="String"
exported="true">
 <Fact>"Welcome to EU-Rent Car
Rentals"</fact>
 </belief>
 </beliefs>
 <Plans>
 <plan name="rent">
 <body class="CarRentPlan"/>
 </plan>
 </plans>
 <Properties>
 <property name="debugging">false</property>
 <property name="profiling">false</property>
 </properties>
 <Configurations>
 <configuration name="default">
 <Plans>

 <initial plan ref="rent"/>
 </plans>
 </configuration>
 </configurations>
</agent>

Plan
Public class CarRentPlan extends Plan
{
 Public void body ()
 {
 Scanner scan=new Scanner (System. in);
 String name Car;
 String model, NumCus, NameCus,
No, Name1;
 Char choice='n';
 String set;
 Int sizeOfList, choice Menu;
 String DateRes, DateRet;
 String na1, mod1, s1, N1, mo1, ss1;
 String pi;

 // System.out.print ("Enter maximum number of
cars in list :");
 //sizeOfList = scan.nextInt ();
 //Arraycar CarList = new Arraycar (sizeOfList);

 Do
 {
 System.out.println ();
 System.out.println ("[1] Add car to list");
 …….
 }

Jadex Agent

354 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

represented by paths, responsibilities correspond to
agent's tasks, and preconditions and post-conditions
relate to agent's beliefs.
In the third stage, the PIM models are transformed

into UML models according to the Jadex platform, by
describing the system as an Object oriented level.
Here, the automatic transformation was performed by
using the protégé tool to transfer the models of PIM
into OWL, followed by the transfer of OWL into UML
XMI. Finally, the UML XMI is transferred into UML
class diagram by using the Poseidon tool.
In the fourth and final stage, the UML models are

automatically transformed into code using the
Poseidon tool.
The proposed MAS development process has three

main characteristics that can be summarized as
follows:

1. Using UCM in the CIM stage: UCM is a visual
notation that helps in understanding the system
requirements in the form of high-level system
overview. This approach allows the user to describe
the system without focusing on its detailed
structure.

2. Portability and reusability: Separating the
implementation details from design models is the
fundamental prerequisite of any system. In the
present work, the models used to define the design
models are portable; consequently, they can be used
by different implementing platforms. This is due to
the fact that MAS can be described without
including the implementation details. Thus, these
models can be reused by several developers to
implement the system on different platforms.

3. Interoperability: Interoperability between PIM and
PSM models is achieved by the use of OWL to
describe models created during the development
process. Furthermore, PIM models and UML
models are interoperable due to the use of OWL and
UML XMI.

4. Low coupling: Owing to the intrinsic characteristics
of MDA, conceptual models (PIM) and computation
models (PSM) are low coupling. In the present
work, PIM models do not include details related to a
specific platform, as they are present in PSMs only
(UML models).

5. Future Work

• More empirical applications are needed for
thorough assessment and evaluation of the proposed
approach. Practical evaluations allow for immediate
identification of issues that can be taken into
consideration when improving the effectiveness of
the proposed approach.

• The present work, more specifically the PIM stage,
was based on HLIM methodology, albeit with some
modifications. Thus, it is necessary to conduct an

evaluation of the proposed approach when other
existing methodologies for multi-agent system
development are used. This may be useful in the
enhancement of the proposed approach.

• A work on replacing many tools currently, needed
to cover MDA stages with a single tool for
developing MAS-which covers all the MDA stages
and the transformations between them-may be
developed to simplify and enhance the process of
developing MAS.

References

[1] Amor M., Fuentes L., and Vallecillo A.,
“Bridging the Gap Between Agent-Oriented
Design and Implementation Using MDA,” in
Proceedings of the 5

th
 International Workshop on

Agent-Oriented Software Engineering, New
York, vol. 3382, pp. 93-108, 2004.

[2] Amyot D., “Use Case Maps Quick Tutorial,”
Version 1.0. SITE, University of Ottawa,
available at: http://cserg.site.uottawa.ca/ucm/
pub/UCM/VirLibTutorial99/UCMtutorial.pdf last
visited 1999.

[3] Brandão A., Alves F., Da-Silva V., and De-
Lucena C., A Model Driven Approach to Develop
Multi-Agent Systems, RIO De Janeiro, Brasil,
2005.

[4] Brown A., “An Introduction to Model Driven
Architecture,” avalabile at: http://www.ibm.com/
developerworks/rational/library/3100.html, last
visited 2010.

[5] Dastani M., Hulstijn J., Dignum F., and Meyer J.,
“Issues in Multiagent System Development,” in
Proceedings of the 3

rd
 International Joint

Conference on Autonomous Agents and Multi-

Agent Systems, USA, vol. 2, pp. 922-929, 2004.
[6] De-Maria B., da-Silva V., and de-Lucena C., “An

MDA-Based Approach for Developing Multi-
Agent Systems,” in Proceedings of the CAiSE
Forum, Portugal, 2005.

[7] De-Loach S. and Wood M., Developing
Multiagent Systems with agentTool, Lecture
Notes in Artificial Intelligence, Springer-Verlag,
Berlin, 2001.

[8] Dikenelli O., Erdur R., Kardas G., Gümüs Ö.,
Seylan I., Gürcan Ö., Tiryaki A., and Ekinci E.,
“Developing Multi Agent Systems on Semantic
Web Environment using SEAGENT Platform,”
in Proceedings of the 6

th
 International

Conference on Engineering Societies in the

Agents World, Berlin, pp. 1-13, 2005.
[9] Elammari M. and Lalonde W., “An Agent-

Oriented Methodology: High-Level and
Intermediate Models,” in Proceedings of the 1st
International Workshop on Agent-Oriented

Information Systems, Germany, pp. 1-8, 1999.

Using Model Driven Architecture to Develop Multi-Agent Systems 355

[10] Miller J. and Mukerji J., MDA Guide Version
1.0.1.OMG, avalibale at: http://www.omg.org/
docs/omg/03-06-01.pdf, last visited 2003.

[11] Nikraz M., Caire G., and Bahri P., “A
Methodology for the Analysis and Design of
Multi-Agent Systems using JADE,” International
Journal of Computer Systems Science and

Engineering,” vol. 21, no. 2, pp. 1-40, 2006.
[12] Xu H., Zhang X., and Patel R., “Developing

Role-Based Open Multi-Agent Software
Systems,” International Journal of

Computational Intelligence Theory and Practice,
vol. 3, pp. 246-253, 2007.

Mohamed Elammari received his
BSc and MSc degrees in computer
science from Acadia University in
Nova Scotia, Canada and a PhD
degree in computer science from the
Carleton University in Ottawa,
Canada. Currently, he is Dean of the

Faculty of Information Technology at the University of
Benghazi, where he is also a professor in the
Department of Software Engineering. His research
interests include software engineering, agent systems,
and e-government.

Zeinab Issa received his BSc and MSc degrees in
computer science from University of Benghazi in
Benghazi, Libya. Currently, she is working towards
PhD degree in software engineering. Her general
research interests include software engineering and
Multi-agent systems.

