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Abstract: This paper presents a new method for finding shortest node-disjoint paths in optical-switched networks with no 

wavelength conversion. The proposed method is based on a modified version of Dijkstra algorithm that works on an expanded 

so-called dual-network topology with n×n- nodes and 2×m×n links, where n is the number of nodes and m is the number of 

links in the original network. Despite the larger network size, the execution time of the algorithm is in polynomial order 

(mn+n
2 

log n). Considering that the problem is NP-complete, the presented algorithm takes much less time than using Integer 

Linear Programming (ILP), which takes exponential time. Yet, it is able to find all available disjoint paths obtainable by ILP. 
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1. Introduction 
 

Optical networks constitute the core infrastructure of 

metropolitan and wide area networks. This is due to 

their enormous transmission capacities and their ability 

to span large geographical areas. A single optical fibre 

link can carry thousands of phone calls per second 

across a desert or undersea. Due to the nature of these 

environments, risks of optical link or node failures are 

common. When they happen, they can cause huge 

service outages or data losses. For this reason, 

survivability is an indispensable part of optical 

network design and planning. Survivability is 

classified into two main categories: protection and 

restoration. Protection schemes provide alternative 

paths between endpoints prior to connection 

establishment. Restoration schemes attempt to find 

alternative path after the failure occurs in the primary 

path. Protection schemes generally have faster 

recovery time and thus are preferred over restoration 

schemes [6]. Protection involves finding a backup path 

along with the primary path when a connection request 

arrives. For the backup path to be effective, the 

primary and backup paths should either be link-disjoint 

(no common links) or node-disjoint (no common 

nodes). 

To improve network performance, it is required that 

the two paths (primary and backup) are the shortest 

(i.e., least cost) paths. Lightpaths in optical networks 

require using the same wavelength along the path, 

unless wavelength conversion is used. Combining the 

two constraints (disjoint and shortest) with the 

wavelength-continuity constraint, the problem of 

finding the two shortest disjoint paths becomes an NP-

Complete problem [5]. 

This paper focuses on the case of node-disjoint 

paths, which provides more fault-tolerance and load 

sharing [1]. We also, assume no wavelength 

conversion. The goal of this paper is to present an 

algorithm for finding the two shortest node-disjoint 

paths in optical switched network. The algorithm 

presented in this paper takes a new approach for 

addressing this problem by making it similar to the 

single shortest path problem on an auxiliary network 

topology called dual-network topology. This allows 

using ordinary shortest path algorithms to solve this 

problem. There are some constraints that must be 

considered when applying the shortest path algorithm 

to the dual-network topology to ensure that the two 

paths are actually node-disjoint. In this paper we base 

our method on Dijkstra algorithm and show the 

modifications required for it to work on the dual-

network topology. 

The remainder of this paper is organized as follows: 

section 2 provides literature review and related work 

on path recovery algorithms for optical networks. In 

section 3, we describe how to construct the dual-

network topology. Following that, the details of using 

modified shortest path algorithm are presented in 

section 4. To demonstrate the effectiveness of our 

method, we compare it with two well-known heuristics 

and with the optimal solution using Integer Linear 

Programming (ILP). To do this, we develop the ILP 

formulation of the problem and apply the three 

methods on the STC optical backbone network and the 

ARPANET network, using random network usage 

scenarios. This is done in section 5. Section 6 provides 

an analytical study on the performance of the presented 

method. Finally, section 7 concludes the paper by 

providing a summary and future work. 
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2. Related Work 
 

The topic of optical network survivability has been 

addressed extensively in the literature.  Techniques for 

both protection and restoration have been published 

and analysed. In this paper, we focus on protection 

techniques, which involve finding two optimal disjoint 

paths prior to connection setup. The simplest method 

for finding the two shortest paths is known as the two-

step algorithm. In the first step of this algorithm, the 

shortest path is calculated using Dijkstra algorithm. 

Then, the links used in the shortest path are eliminated 

from the network. The second step applies Dijkstra to 

the modified network to find the second shortest path. 

Despite its simplicity, this algorithm doesn’t work for 

many network topologies. In some “trap topologies”, 

the first shortest path splits the network in such a way 

that no other paths between the two end points can be 

found, although, they were available in the original 

network [3]. A more efficient algorithm for finding 

optimal disjoint paths was developed by Suurballe [8] 

and later improved by Suurballe and Trajan [9]. This 

algorithm also, works in two steps. In the first step, 

Dijkstra is applied to the original network. In the 

second step, the links which belong to the shortest path 

are reversed and assigned negative costs. Then, 

Dijkstra is applied to the modified network. The links 

common between the paths of step 1 and step 2 are 

eliminated, yielding the two shortest paths between the 

two end nodes. The Suurballe algorithm is guaranteed 

to find in polynomial time the two shortest disjoint 

paths if they exist, provided that the same wavelength 

is used in both paths [2, 11]. In the cases where the two 

disjoint paths have to use different wavelengths, 

Suurballe algorithm may not always work. 

Although, the problem of finding the two shortest 

disjoint paths with the wavelength-continuity 

constraint has long been believed to be NP complete, 

the first formal proof was provided in [2]. Moreover, 

another study has shown that the problem is NP 

complete even without length constraint [5]. The 

optimal solution for this problem can be obtained using 

ILP. ILP Problem formulations for the problem have 

been developed in [2, 5, 11]. However, the execution 

time for ILP is exponentially proportional to network 

size, which prohibits using such a method for moderate 

to large scale networks. Therefore, most of the studies 

that addressed this problem have focused on 

developing heuristic algorithms. In [2], two simple 

algorithms are proposed. The first algorithm, Active 

Path First (APF), is essentially the two-step algorithm 

mentioned earlier. It attempts to find the first shortest 

path. It then removes the channels used in that path 

before attempting to find the second path on the 

modified network. If either attempt fails, the call 

request is blocked. The second algorithm, APF 

Enhanced (APFE), improves the APF by reducing the 

number of shared links between the two paths. In [11], 

two heuristic solutions are proposed. The first one, 

Route-First, scans all fibre links and increases the cost 

of each link linearly with the number of wavelengths 

already in use. It then runs Suurballe algorithm and 

checks the two returned routes. If each route has at 

least one wavelength available in its links, the 

algorithm will succeed. Otherwise, the algorithm will 

fail. The second algorithm, Wavelength-Scan, scans 

each wavelength for two link-disjoint paths using 

Suurballe. If this fails, it searches on a different 

wavelength for two link-disjoint paths using the simple 

two-step procedure mentioned above. Because of their 

good performance, we compare our method with 

Route-First and Wavelength-Scan algorithms in 

section 7. In [4], a heuristic algorithm is proposed 

which is a hybrid combination of ant-based mobile 

agents and genetic algorithms. The hybrid algorithm 

aims to combine speed of finding first population of 

disjoint paths set using Ant Colony Optimization 

(ACO) with the efficiency of finding better routes from 

the first set using genetic algorithms. 

The aforementioned studies aimed to provide 

survivability through dedicated protection, which 

means that a single link cannot be used for more than 

one backup path. Other studies consider sharing links 

among multiple backup paths to reduce blocking 

probability and increase network utilization. In [10], 

the authors introduce heuristic iterative algorithm to 

compute two disjoint paths under wavelength 

continuity constraint and dependent cost structure. The 

algorithm computes k shortest paths and uses one path 

per iteration as a seed along with the best solution so 

far to find a better one. The algorithm uses a layered 

graph which is a transformation of the original graph in 

which finding the shortest path is equivalent to finding 

the shortest path and wavelength assignment in the 

original graph. After removing trap links of the seed 

path, the algorithm computes two disjoint paths p and 

q. It then uses path p as a seed path to compute cost 

dependent protection path. The iterations are stopped 

when the k-th shortest path is reached or when the 

value of the best solution is less than half the value of 

the current seed path. 

 

3. Constructing Dual-Network Topology 
 

The main idea behind the method proposed in this 

paper is to construct the disjoint paths in parallel, 

rather than in sequence. This approach is equivalent to 

constructing another network, which we’ll refer to as 

dual-network, and find the shortest path on that 

network. If such path is found, then the two shortest 

disjoint paths are found for the original network. In this 

section, we describe how to construct the dual-

network. In the following section, we describe the 

algorithm to find the shortest path on that network. 

Figure 1 shows a simple example constructing dual-

network topology for a 3-node network. Although, 
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such a network is too small to represent a real network, 

it is instructive to use it as an example. 

Let n denote the number of nodes and m denote the 

number of links in the original network. The dual-

network topology consists of n×n nodes and 2×m×n 

links. Each node in the dual topology is denoted by 

two letters which represent the two current nodes in the 

dual path. i.e., node (ba) indicates a step in disjoint 

path where path 1 currently, ends at node (b) and path 

2 currently, ends at node (a). Note that the order 

matters. (ba) is different from (ab). 
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b) Dual-network representation. 

 

Figure 1. Example constructing dual-network topology for a 3-node 

network. 

 

Looking for two shortest disjoint paths from source 

node (a) to destination node (c) in the original network 

is equivalent to looking for a single shortest path from 

node (aa) to node (cc) in the dual-network. This 

explains the number of nodes in the dual-network. 

Each link in the dual-network represents a single 

step in one of the two paths using the two nodes from 

which the link originates. For example, link from (ab) 

to (ac) indicates a step in path 2 from (b) to (c) while 

path 1 is still at (a). Therefore, the number of links 

originating from each node in the dual-network equals 

the sum of the number of links originating from both of 

its constituents. The number of links in the dual-

network is explained in section 6. 
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a) 4-node network topology. 

 
b) dual-network representation. 

 

Figure 2. Example of constructing dual-network topology for a 4-

node network. 

 

Figure 2 shows an example of constructing dual-

network topology for a 4-node network. The dual-

network has 16 nodes and 40 links. 

A formal description of the algorithm for 

constructing the dual-network is shown in Algorithm 1. 

Algorithm 1 TransformGraph(G) 

#dist(L) is the cost of the link L 

n=number_of_nodes(G) 

#construct nodes 

dnode=array[n*n] 

#construct links 

for(i=1 to n) 

    for(j=1 to n) 

   { 

       foreach (x in link[i, x]) 

      { 

          create dlink[ij, xj] 

          dist(dlink[ij, xj])=dist(link[i, x]) 

       } 

       foreach (y in link[j, y]) 

      { 

          create dlink[ij, iy] 

          dist(dlink[ij, iy])=dist(link[j, y]) 

       } 

    }  

return DG=graph(dnode, dlink) 

 

4. Disjoint Shortest Path Algorithm 
 

The main idea behind the method proposed in this 

paper is to build on the well-established Dijkstra’s 

algorithm. The algorithm Disjoint-WaveLength-Paths 

(DWLP) makes few modifications on Dijkstra. The 

objective is to not affect the proven optimality of 

Dijkstras’ algorithm. The detailed algorithm is shown 

in Algorithm 2, with changes from the original Dijkstra 

are emphasized with bold text. The DWLP algorithm 

works on the dual-network topology obtained by 

running the TransformGraph algorithm on the original 

network topology. Each node in the dual-network is 

referred to as dnode. 

The algorithm starts by initializing the costs of all 

dnodes to infinity and label them as tentative (lines 11-

18). The source dnode [ss] is marked as 

PERMANENT and assigned a cost of zero. 
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Algorithm 2 DWLP(s, λ1, λ2) 

#s is the source node in G 

#λ1, λ2 are the two wavelengths to be 

#   used in the disjoint paths 1, 2 

#ss is source node in DG 

#n is the number of nodes in G 

#dist(L) is the cost of link L 

#wl_available(λ, i, j) returns true if the  

#   wavelength λ is available on link 

#   between nodes i, j 

for i = 1 to n 

  for j = 1 to n 

 { 

   cost(dnode[ij]) = INFINITY 

   visited(dnode[ij]) = new list(empty) 

   label(dnode[ij]) = TENTATIVE 

  } 

label (dnode[ss]) = PERMANENT 

cost (dnode[ss]) = 0 

s_adjacent = NULL 

(x, y) = (s, s)  #current working node 

while exists dnode[ii]  

          with label(dnode[ii]) == TENTATIVE 

{ 

   #loop until reach all the destinations 

   #with two paths 

   if previous(dnode[xy]) == dnode[ss] 

   { 

     #exceptional case 

     if (s==x) 

      s_adjacent = y 

     elseif(s==y) 

      s_adjacent = x 

   } 

   foreach neighbor dnode[vu] of dnode[xy] 

  { 

    if (u==y) #only x changed 

   { 

       λ=λ1; node2=v; prev1=x 

   } 

 

    if(v==x) #only y changed 

   { 

      λ=λ2; node2=u; prev1= y 

   } 

    if  label(dnode[vu)] != PERMANENT 

        and node2 not in visited(node[xy]) 

        and node2 != s_adjacent 

        and wl_available(λ, prev1, node2) 

   { 

     if cost(dnode[xy])+dist(dlink[xy, vu])  

          < cost(dnode[vu]) 

     {  

       previous(dnode[vy]) = dnode[xy] 

 

      cost(dnode[vu]) = cost(dnode[xy]) 

                                  + dist(dlink[xy, vu]) 

      visited(dnode[vu])= visited(dnode[xy]) 

                                      + node(prev1) 

     } 

   } 

   first = NULL 

 

   do 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

   { 

   #get min cost node; make it PERMANENT 

   (x,y)= (i,j) with min(cost(dnode[ij])) 

       and label(dnode[ij])!= PERMANENT 

 

   if cost(dnode[xy])==INFINITY 

      return 

   else 

     label(dnode[xy]) = PERMANENT 

   } while (x==y) 

}# end while 
 

The main loop of the algorithm is then started (line 

23), which continues until no more dnodes [ii] are left 

with TENATIVE label. Recall from the previous 

section that reaching a dual-network node (dnode) 

which has identical two-letter label [ii] means that the 

destination node with that letter [i] in the original 

network has been reached with two disjoint paths. 

Lines 36-62 loop on all neighbouring dnodes [uv] 

for the current working dnode [xy], as done in the 

regular Dijkstra (relaxation phase). If the cost of dnode 

[xy] + cost of link between [xy] and [uv] is less than the 

original cost of dnode [uv], then the cost of [uv] is 

updated and the previous dnode for [uv] is changed to 

[xy].  

Three precautions need to be considered here. First, 

to ensure that the path is node-disjoint, the algorithm 

maintains an array called visited for each dnode. This 

array contains the list of nodes in the original network 

which have been traversed in the current dual path. 

This is handled in line 48. Because the visited array 

does not contain the constituent nodes of the current 

dnode, an exception needs to be added to split the path 

after the initial step. For example, in Figure 2, if we 

start from dnode (bb), the first neighbour can be (cb). 

From (cb), we can’t allow the next step to be (cc), 

otherwise the path won’t be disjoint. Therefore, a 

condition is added in lines 28-35 and checked in line 

49 to prevent the paths from initially colliding. 

Finally, to satisfy the wavelength continuity 

constraint, the algorithm must check that the 

wavelength to be used in the corresponding side of the 

path is available. This is done in line 50. 

 The do-while loop in line 65 performs the search 

for minimum-cost dnode with cost less than infinity, if 

such dnode is found, it will be marked. If the dnode [ij] 

has two identical constituents (i equals j), one 

destination is reached and so the algorithm doesn’t 

examine the neighbour of that dnode, and continue to 

search for the next minimum dnode. The loop will end 

when a dnode [ij] with i ≠ j is found. 

In a wavelength-switched network with w possible 

wavelengths per link, the DWLP algorithm needs to be 

executed once for each possible λ1 and λ2 

combinations, including the case where (λ1=λ2) but 

not considering the order. The number of executions is 

thus equal to w(w+1)/2. The  values  of  (λ1, λ2)  that 

 yield the lowest cost disjoint paths are selected. 
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At the end, the disjoint paths from the source node 

(s) to any destination node (i, i=1 to n, i≠s) are 

obtained by following the previous of each dnode [ii] 

marked as PERMANENT back to dnode [ss]. 

 

5. Performance Study 

As mentioned in section 2, the problem of finding 

shortest disjoint path under wavelength continuity 

constraint is considered NP-complete. As such, the 

optimal solution of the problem can only be obtained 

using ILP. Execution time of ILP is exponentially 

proportional to the number of nodes in the network but 

is guaranteed to find all possible disjoint paths. 

Heuristic solutions, on the other hand, require much 

less time, but may not find all possible disjoint paths 

and the shortest path obtained by heuristic algorithms 

is not necessarily the ultimate shortest path. The 

purpose of this section is to compare the performance 

of the DWLP algorithm proposed in this paper with 

both ILP and heuristic algorithms. The comparison is 

based on both the execution time and the number of 

obtainable disjoint paths. 

 

5.1. ILP Formulation of the Problem 
 

The ILP formulation of the problem of finding two 

disjoint paths has been developed in several related 

works as mentioned in section 2. We use the 

formulation developed in [2]. Some modifications are 

made to the formulation to make it applicable for node-

disjoint instead of link-disjoint paths. 

Let V denote the set of nodes and E denote the set of 

links in the network. Links belonging to E are defined 

as pairs (u, v) that represent the nodes they are 

connecting. The source and destination nodes are 

denoted as s and t, respectively. The two wavelengths 

to be used in the two paths are denoted as λR and λB, 

which refer to the red and blue paths, respectively. R(u, 

v) is set to 1 if wavelength λR is available on the link 

(u, v) and 0 if it is unavailable. Similarly, B(u, v) is set 

to 1 if wavelength λB is available on the link (u, v) and 

0 if it is unavailable. For each link (u, v) that belongs to 

E, four variables are defined: r(u, v), r(v, u), b(u, v) and 

b(v, u). These variables can take value 0 or 1. If the 

link from u to v belongs to the red path, r(u, v)=1, else, 

r(u, v)=0. Note that order of u of v is important, 

because it defines the direction of the path. Same can 

be said about b(u, v) and b(v, u). The function δ () is 

defined as follows: 









−=

0

1

1

)x(s     

otherwise

tx

sx

=

=

                          (1) 

 

With the previous definitions, the ILP formulation can 

be stated as follows: 

            
[u ,v ] E

m in r(u ,v )+r(v ,u )+b (u ,v )+b (v ,u )
∈
∑  

Subject to the following equations: 

        v V v V

r ( x ,v ) r ( u , x ) ( x ), x Vδ
∈ ∈

− = ∀ ∈∑ ∑  

u V v V

b ( x ,u ) b ( u , x ) ( x ), x Vδ
∈ ∈

− = ∀ ∈∑ ∑          (4) 

               
v V

r ( v , x ) b ( v , x ) 2 , for x t
∈

+ = =∑  

               
v V

r(v , x ) b(v , x ) 0 , for x s
∈

+ = =∑
 

 

v V

r( v , x ) b(v , x ) 1 , x V , x { s ,t }
∈

+ ≤ ∀ ∈ ∉∑           (7)

 
                       r(u,v)+r(v,u)≤R(u,v),∀(u,v)∈E                    (8) 

 

                    b(u,v)+b(v,u)≤B(u,v),∀(u,v)∈E                    (9) 
 

  r(u,v)+r(v,u)+ b(u,v)+b(v,u)≤1,∀x(u,v)∈E         (10) 
 

                r(u,v), b(u,v)∈{0,1}                           (11) 
 

The requirement in equation 2 is to find the minimum 

total number of red and blue links. Note that all links 

have equal cost of 1. Hence, minimizing the number of 

links means minimizing the total cost. The equation 3 

ensures that the red path is connected. Each node in the 

path is connected to two nodes, with the exception of s 

and t nodes, which have only connected to one node 

each. Equation 4 ensures that same for the blue path. 

The equations 5, 6 and 7 ensure that, excluding the 

source and destination nodes, if any node is found in 

the red path, it is not in the blue path and vice versa. 

i.e., the path is node disjoint. The equation 8 ensures 

that the red path can only have links with λR. 

Similarly, equation 9 ensures that the blue path can 

only have links with λB. The equation 10 ensures that 

the two paths are also, link disjoint. Finally, equation 

11 ensures that r(u, v) and b(u, v) can only take values 

0, 1. 

 

5.2. Network Topologies and Setup 
 

We study the performance of our DWLP algorithm 

compared to ILP and two heuristic algorithms 

developed in [2]. The comparative studies have been 

done on two network topologies: STC backbone 

network, shown in Figure 3, and ARPANET network, 

shown in Figure 4. 

For both topologies, we examined networks with 5, 

10 and 20 available wavelengths. For each case, we 

tested network loads of 25%, 50% and 75%. The 

network load refers to the average number of 

wavelengths per link that are already in use before 

starting the simulation. The STC backbone network 

has 35 nodes and 45 links, while the Arpanet network 

had 20 nodes and 32 links. 

The algorithms which have been compared include 

ILP, as formulated in this section, Route-First and 

Wavelength-Scan heuristics described in section 2, and 

our DWLP algorithm. Recall that Route-First and 

Wavelength-Scan as described in [2] aim to find link-

(5) 

(3) 

(6) 

(2) 
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disjoint rather than node-disjoint paths. However, 

Suurballe’s algorithm, which is used in these 

heuristics, can easily be adapted to find node-disjoint 

paths using a transformation called node splitting [8]. 

We have used this transformation when we 

programmed Route-First and Wavelength-Scan in 

order to provide a fair comparison. We have used C# 

programming language for coding our DWLP 

algorithm, as well as the Route-First and Wavelength-

Scan algorithms. ILP implementation was programmed 

using Mathematica software. Simulations were done 

on Core 2 Duo computers with about 2GHz speed. 

 

 
Figure 3. STC backbone network. 

 

 
Figure 4. ARPANET network. 

 

5.3. Results and Discussion 
 

Simulation results for STC backbone network and the 

ARPANET network are shown in Tables 1 and 2, 

respectively. In both tables, the left half shows the 

execution time in seconds and the right half shows the 

number of disjoint paths. The rightmost column shows 

the total number of cases considered, which equals the 

number of source/destination pairs. 

Several observations can be made on Tables 1 and 

2. In almost all cases, the execution time is lowest for 

Route-First, then Wavelength-Scan, then our DWLP, 

while the ILP always comes last with at least three 

orders of magnitude more than other three algorithms. 

On the other hand, the ILP always find all possible 

disjoint paths, which can be used to benchmark other 

algorithms. We note that both STC backbone network 

and ARPANET are well planned so that for each 

source/destination pair, a node-disjoint path always 

exists. The number of disjoint paths found decreases 

with increasing network load, whereas it increases with 

more number of wavelengths per link. 

The most significant result in both tables is that our 

DWLP links always finds all possible paths obtainable 

by ILP, while the execution time required for DWLP is 

only a fraction of that required for ILP. We also note 

that the advantage of DWLP over Route-First and 

Wavelength-Scan is more apparent in larger networks, 

than in smaller networks. The results in Table 1 are 

graphically illustrated in Figures 5 and 6. It should be 

noted that our algorithm and the algorithms we have 

studied for comparison can use link-state routing, 

which means that information about available 

wavelengths in each link in the network is readily 

available at the time of algorithm execution. Link state 

information is advertised using extended OSPF 

protocol [7]. 

Table 1. Simulation results for STC network. 

Wavelengths/ 

Link 

Network 

Load 

Execution Time (seconds) Number of Disjoint Paths Found Total Number 

of Cases R-First W-Scan DWLP ILP R-First W-Scan DWLP ILP 

5 25% 1.4976 2.844163 7.9092 8455.99 369 409 487 487 595 

5 50% 1.56 3.104178 2.4336 14950.8 55 57 58 58 595 

5 75% 1.5444 2.490142 1.6848 16730.7 2 2 2 2 595 

10 25% 1.482 3.176182 22.0116 9668.33 448 510 560 560 595 

10 50% 1.5912 4.408252 5.6472 59662.02 53 59 84 84 595 

10 75% 1.5288 4.035231 3.6348 66606.2 2 2 2 2 595 

20 25% 1.6068 4.827276 20.7324 14020 439 510 595 595 595 

20 50% 1.6536 7.612435 20.0928 184975 81 92 228 228 595 

20 75% 1.5288 7.286417 10.3272 252400 5 5 10 10 595 

Table 2. Simulation results for ARPANET network. 

Wavelengths/ 

Link 

Network 

Load 

Execution Time (seconds)  Total Number 

of Cases R-First W-Scan DWLP ILP R-First W-Scan DWLP ILP 

5 25% 0.394023 0.423024 0.947054 44.086 190 190 190 190 190 

5 50% 0.450026 0.501029 0.757043 126.906 84 111 117 117 190 

5 75% 0.669038 0.494028 0.731042 146.532 7 7 7 7 190 

10 25% 0.417024 0.418024 1.091062 58.548 189 190 190 190 190 

10 50% 0.431025 0.650037 1.252072 267.558 86 127 163 163 190 

10 75% 0.732042 0.718041 1.57809 520.404 14 17 18 18 190 

20 25% 0.585034 0.398023 1.711098 133.46 184 190 190 190 190 

20 50% 0.507029 1.026059 2.012115 359.863 76 154 188 188 190 

20 75% 0.562032 1.181068 1.851106 1964.8 12 12 34 34 190 
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Figure 5. Execution time in seconds (log scale)-STC. 
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Figure 6. Number of disjoint paths found-STC. 

 

6. Analytical Study 
 

From the previous section, we can observe that the 

execution time of our DWLP algorithm is in 

polynomial order. To provide a more accurate 

estimation of the execution time of the algorithm, note 

that Dijkstra algorithm can find the shortest path in 

O(m+n log n), where n is the number of nodes and m is 

the number of links. The DWLP algorithm works on an 

n×n dual-network topology with 2nm links.  

To show that the number of links in the dual-

network topology is 2mn, recall from section 3 that the 

number of links originating from each node in the 

dual-network equals the sum of the number of links 

originating from both of its constituents. Let the 

number of links coming from nodes i and j equal li and 

lj, respectively. The number of links originating from 

dnode [ij] in the dual-network equals li+lj. To calculate 

the total number of links, note that each link is 

connected to two nodes. If we add the number of links 

originating from each node, every link will be counted 

twice. Thus, the summation of the number of links 

should be divided by 2, i.e. 

     

n n

i j

i 1 j 1

n n n n

i j

i 1 j 1 i 1 j 1

1
Number of links ( l l )

2

1 1
l l

2 2

= =

= = = =

= +

= +

∑ ∑

∑ ∑ ∑ ∑
 

 

We can see that 
1

2
n

j

j

l m
=

=∑ . Similarly 
1

2
n

i

i

l m
=

=∑ . 

Substituting in equation 12: 

n n

i

i 1 i 1

1 1
n l 2 m

2 2

1 1
( 2 m ) ( 2 m ) ( n ) 2 mn

2 2

= =

⋅ +

   
= + =   
   

∑ ∑

           

(13) 

A single run of the DWLP algorithm yielding a run 

time of approximately: 

)nlognmn2(OrunglesinDWLP 22+≈                (14) 

We have mentioned in section 4 that, in order to 

attempt all possible combinations between the two 

wavelengths, the number of DWLP executions is equal 

to w(w+1)/2, where w is the number of wavelengths 

per link. Adding this result to c14 yields: 

))nlognmn(w(OrunfullDWLP 22 +≈                (15) 

 

7. Summary and Conclusions 
 

In this paper, we have developed a new method for 

finding node-disjoint paths in optical-switched 

networks under wavelength continuity constraint. The 

new method transforms the original network topology 

into an auxiliary graph called dual-network topology. 

After that, it applies a modified version of the proven-

optimal Dijkstra’s algorithm to find the shortest path 

on the dual-network topology. The shortest path in the 

dual-network topology becomes equivalent to a node-

disjoint path in the original network. The modifications 

to the original Dijkstra algorithm ensure that no 

common nodes between the two paths exist and that 

the wavelength-continuity constrained on each path is 

satisfied. We have provided a detailed description of 

the algorithm based on our new method, DWLP, and 

compared its performance with the ILP solution and 

two famous heuristic algorithms in terms of the 

execution time and the number of node-disjoint paths 

found on two different networks. We found that our 

algorithm was able to find all node-disjoint paths 

obtainable by ILP algorithm in a fraction of the time 

required by ILP. 

We argue that the method developed in this paper 

provides a solution that is practically optimal for the 

problem of finding node-disjoint optical paths with 

wavelength-continuity constraint and challenges the 

commonly held belief that such optimal solution can 

only be obtained by ILP. 

Future work should consider the overhead of 

advertising the link state information on the 

performance of the algorithm in terms of speed and 

blocking probability. 
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