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Abstract: Two adaptive non-contiguous allocation strategies for 2D-mesh multicomputers are proposed in this paper. The 

first is first-fit-based and the second is best-fit-based. That is; for a given request, the proposed first-fit-based approach tries to 

find a free submesh using the well-known first-fit strategy, if it fails, the request at hand is partitioned into two sub-requests 

that are independently allocated using the first-fit approach. Partitioning is gradually performed at the longest dimension of 

the parallel request. This partitioning mechanism aims at 1). lifting the condition of contiguity, and 2). at the same time 

maintaining good level of contiguity. Gradual partitioning of requests produce two sub-requests one of which is relatively big 

and as close as possible to the square-shape and, thus; reducing communication latency caused by non-contiguity. Using 

extensive simulations, we evaluated the proposed strategies and compared them with previous contiguous and non-contiguous 

strategies.  Simulation outcomes clearly show the proposed allocation schemes produce the best Average Response Time 

(ART), the Average System Utilization (ASU) and also produce relatively low communication overhead. 
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1. Introduction 

In parallel systems, processors are connected through 

interconnection network; one of the most widely used 

architectures is the 2D and 3D mesh-connected 

architectures. This is because mesh architecture is 

simple, regular and scalable [2, 6]. Several recent 

commercial and experimental parallel computers have 

been built based these architectures such as the IBM 

BlueGene/L and the Intel Paragon [2, 3, 19].  

Processor allocation in 2D-Mesh multicomputer is a 

major issue as it significantly affects the performance 

of any parallel system [2]. Processor allocation is 

concerned with the way for allocation submesh to a job 

request. Many processor allocation strategies in 

literature try to allocate a submesh, i.e., a contiguous 

set of processing units, of the same size and shape of 

request [1, 2, 3, 4, 9, 10, 13, 24, 25]. This, however, 

may produce low level of system utilization and cause 

either internal or external fragmentation or both [8, 

15]. Internal fragmentation occurs when the number of 

processors allocated to a job is more than that it 

requested [4, 21]. External fragmentation, on the other 

hand, occurs when enough number of idle processors is 

available in the system but cannot be assigned to the 

scheduled job because of the requirement of contiguity 

[8]. Several studies have attempted to reduce or solve 

external fragmentation [3, 6, 8, 15, 20, 21, 22], one of 

the proposed solutions is to use non-contiguous 

allocation. 

In non-contiguous allocation the contiguity 

condition is relaxed [8]; therefore, a job can execute on 

multiple disjoint smaller sub-meshes rather than 

always waiting until a single sub-mesh of the requested 

size and shape is available [6, 8, 15, 22]. Studies show 

that non-contiguous allocation of requests may solve 

the drawbacks of contiguous allocation; non-

contiguous allocation strategies produce relatively high 

system utilization and eliminate fragmentation. 

However, since communication between processors 

running the same job can be indirect due to non-

contiguity [21], communication latency is usually high. 

However, the introduction of wormhole routing [12] 

has lead researchers to consider noncontiguous 

allocation on multicomputers with a long 

communication distances, such as the 2D mesh [6, 8, 

15]. One of main advantages of wormhole routing over 

earlier communication schemes, e.g., store-and-

forward, is that message latency is less dependent on 

the distance traversed by the message from source to 

destination [8, 12]. Thus, non-contiguous allocation 

has recently received attention of researchers. 

Partitioning allocation requests in existing non-

contiguous allocation schemes can be performed in 

multiple ways. For example, allocation requests are 

subdivided into two equal partitions in [8]. The sub-

partitions are recursively subdivided into further 

smaller sub-requests if allocation fails for any of them. 

In the study of [15], a promising strategy Multiple 

Buddy System (MBS) expresses the allocation request 

as a base-4 number, and bases allocation on this 

expression. 

In this paper, two adaptive noncontiguous allocation 

strategies for 2D-mesh multicomputers are proposed 
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and evaluated through simulation. The first is a first-

fit-based approach that tries to find a contiguous set of 

processing units of the same shape and size to the 

request at hand using the well-known first-fit approach. 

If it fails, the request at hand is divided into two sub-

requests after removing one from the longest 

dimension of the request. That is, for a given request of 

size αxβ and assuming β>α, the two partition-sizes are 

αx(β-1) and αx1 after removing one from the longest 

dimension of the request. The two new sub-requests 

are then allocated using the first-fit approach again. 

This procedure continues recursively until the request 

is fulfilled. This approach is referred to a PALD-FF for 

PArtitioning at the Longest Dimension with First-Fit 

(FF). 

The second approach is also PALD-based. 

However, the Best Fit (BF) allocation strategy is used 

to allocate requests and sub-requests. The used 

partitioning mechanism aims at: 

1. Lifting the condition of contiguity. 

2. At the same time maintaining good level of 

contiguity. Removing one from the longest 

dimension of a request is expected to produce two 

sub-requests one of which is relatively big and as 

close as possible to be square-shaped and, thus; 

reducing communication latency caused by non-

contiguity.  

Using extensive simulations, we evaluated the 

proposed strategies and compared them with previous 

promising strategies.  Simulation outcomes clearly 

show the proposed PALD-based schemes produces the 

best Average Response Time (ART), the Average 

System Utilization (ASU) and produce relatively low 

communication overhead. The performance of PALD-

FF and PALD-BF is compared against the performance 

of the MBS non-contiguous allocation strategy. This 

strategy is selected as it has been shown to perform 

well in [15]. Furthermore, proposed approaches are 

also compared against the contiguous FF and BF 

strategies as this has been used in several previous 

related studies [8, 9, 15].  The proposed approaches are 

tested under two job scheduling strategies, namely; 

First-Come-First-Served (FCFS) and Shortest-Service-

Demand-First (SSD). In FCFS, the allocation request 

that arrived first is scheduled for allocation first. In 

SSD, the job with the shortest service demand is 

scheduled first [11]. The FCFS scheduling strategy is 

chosen as it is fair and it is widely used in other similar 

studies [2, 6, 8, 9, 20], while the SSD scheduling 

strategy is used to avoid performance loss due to 

blocking [11]. 

 

2. Related Work  

In this section, we provide an overview of some 

existing contiguous and non-contiguous allocation 

strategies. 

2.1. Contiguous Allocation Strategies  

The FF strategy is a contiguous allocation strategy. 

This scheme start search at the lowest leftmost node in 

mesh, and put a virtual grid that’s equal size request, 

and then shifts by one column to the right until first 

large enough free submesh is found [17]. The BF is 

also a contiguous allocation strategy. This scheme is 

the same as first fit scheme, but it reserves a submesh 

after consider all large enough free submeshes and 

chooses the closest requests, i.e., the submesh with 

minimal leftovers is selected [17]. We use both 

strategies to search for free submeshes for the 

partitioned requests as should be shortly illustrated 

more. 

 

2.2. Non-Contiguous Allocation Strategies  

The introduction of wormhole routing [12] has made 

communication latency less sensitive to the distance 

traversed by messages between communicating entities 

[8]. This has made allocating a job to non-contiguous 

processors reasonable, in terms of performance, in 

networks characterized by a relatively long-diameter, 

such the 2D mesh. Non-contiguous alleviates the 

contiguity and thus allowing jobs to be executed 

without waiting for sufficient and contiguous set of 

idle processing nodes [6, 8, 15].  

In the paging allocation strategy, for instance [19], 

the entire 2D mesh is virtually sub-divided into pages 

or sub-meshes of equal sides’ length of 2
i
 where i is a 

positive integer number that represents the index 

parameter of the paging approach. The pages are 

indexed according to several indexing schemes, 

namely; row-major, shuffled row-major, snake-like, or 

shuffled snake-like indexing.  

• Example: Paging-page size=1, snake-line order. 

This type divide mesh into pages with size 2*2 

(2^1*2^1), and the search manner for free pages is 

snake line order as shown in Figure 1. 
  

 

Figure 1. Paging with page size=1, snake line order search. 

 

• Example: Paging-Page size=1, row-major order. 

This type divide mesh into pages with size 2*2 

(2^1*2^1), and the search manner for free pages is 

row-major order as shown in Figure 2. 
 

 
Figure 2. Paging with paging size=1, row-major order search. 
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In the MBS strategy, the mesh of the system at hand 

is divided into non-overlapping square sub-meshes 

with side lengths that are powers of 2. The number of 

processors, p, requested by a scheduled job is 

factorized into a base-4 block. If a required block is 

unavailable, MBS recursively searches for a larger 

block and repeatedly breaks it down into four buddies 

until it produces blocks of the desired size. If that fails, 

the requested block is further broken into four sub-

requests until the job is allocated [15].  

In the Adaptive Non-Contiguous Allocation 

(ANCA) strategy work differently. ANCA first 

attempts to allocate the job at hand contiguously. If the 

allocation attempt fails, it partitions the request into 

two equi-sized sub-requests. These sub-frames are then 

allocated to available locations, if possible; otherwise, 

each of these sub-requests is recursively further 

partitioned into two equi-sized sub-requests, and then 

ANCA tries to map these sub-requests to available 

locations [8]. 

Maintaining a good level of contiguity can prove 

useful in non-contiguous allocation. In Paging, there is 

some degree of contiguity because of the indexing 

schemes used. Contiguity can also be increased by 

increasing the index parameter. However, this may 

produce internal processor fragmentation for large 

index sizes [15]. In MBS, contiguous allocation is 

explicitly sought only for requests with sizes of the 

form 2
2n
, where n is a positive integer.  

An issue with the ANCA strategy is that it can 

disperse the allocated sub-meshes more than it is 

necessary through over partitioning. Over-partitioning 

may cause skipping over the possibility of identifying 

and thus allocating larger free sub-meshes for a large 

part of the request at hand which has been shown to 

maintain a higher level of contiguity [7]. Thus the 

communication overhead can be reduced by adaptively 

and gradually partitioning allocation requests into as 

large as possible contiguous sub-meshes.  

 

3. The Proposed Allocation Strategy  

The target system is a W×L two-dimensional mesh, 

where W and L are the width and the length of the 

mesh, respectively. Every processor is denoted by a 

pair of coordinates, namely; x and y, where 0≤x<W and 

0≤y<L [6]. Each processor is connected by 

bidirectional communication links to its neighbor 

processors. The following definitions have been 

adopted from [6, 7].  

• Definition 1: A sub-mesh S(w,l) of width w and 

length l, where 0≤w<W and 0≤ l<L is specified by 

the coordinates ( x, y) and (x′, y′ ), where (x, y) is the 

lower left corner of submesh S and (x′, y′) is its 

upper right corner, i.e., x′=x+w and y’=y+l. The 

lower left corner node is called the base node of S 

and the upper right corner node is the end node.  

• Definition 2: The size of submesh S(w,l) is w×l.  

• Definition 3: An allocated submesh is one whose 

processing units are all allocated to a job. A free 

submesh is one whose processors are all idle.  

In this paper, two adaptive noncontiguous allocation 

strategies for 2D-mesh multicomputers are proposed 

and evaluated through simulation. The first is a first-

fit-based approach that is shown in Algorithm 1. This 

approach tries to find a contiguous set of processing 

units of the same shape and size to the request at hand 

using the well-known first-fit approach (step 10 of 

Algorithm 1). If it fails, the request at hand is divided 

into two sub-requests after removing one from the 

longest dimension of the request (steps 14 to 17 of 

Algorithm 1). That is, for a given request of size αxβ 

and assuming β>α, the two partition-sizes are αx(β-1) 

and αx1 after removing one from the longest 

dimension of the request. The two new sub-requests 

are then allocated using the first-fit approach again 

steps 18 and 19 of Algorithm 1. This procedure 

continues recursively until the request is fulfilled. This 

approach is referred to a PALD-FF for PArtitioning at 

the Longest Dimension with FF. 

Algorithm 1. Pseudo code for the PALD-FF allocation 

strategy: 

1. Procedure PALD-FF(a, b):  

2. Begin Procedure 

3. JobSize=a×b  

4. If (number of free processors < JobSize) return failure  

5. List AllocatedPIDs={}; // the list of PIDs allocate to the 

job 

6. Return PALD-FFAllocate(a, b, AllocatedPIDs); 

7. End Procedure 

8. Procedure PALD-FFAllocate (a, b, AllocatedPIDs) 

9. Begin Procedure 

10. S(x, y)=FIND_FF (S(a, b); 

11. If (S(x, y)!=null)  

12. Add the PIDs of S to the list AllocatedPIDs; 

13. Else { 

14. If(a>=b)  

15. α1= a-1;  β1=b; α2=1;  β2=b; 

16. Else 

17. α1=a;  β1=b-1; α2=a;  β2=1; 

18. PALD-FFAllocate (α1, β1, AllocatedPIDs); 

19. PALD-FFAllocate (α2, β2, AllocatedPIDs); } 

20. End Procedure 

The second approach is also PALD-based and is 

sketched in Algorithm 2. However, the BF allocation 

strategy is used to allocate requests and sub-requests 

(step 10 of Algorithm 2). The above described 

partitioning mechanism aims at: 

1. Lifting the condition of contiguity. 

2. At the same time maintaining good level of 

contiguity. Removing one from the longest 

dimension of a request is expected to produce two 

sub-requests one of which is relatively big and as 

close as possible to be square-shaped and, thus; 
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reducing communication latency caused by non-

contiguity.  
 

Algorithm 2. Pseudo code for the PALD-BF allocation 

strategy: 

1. Procedure PALD-BF(a, b):  

2. Begin Procedure 

3. JobSize=a×b  

4. If (number of free processors<JobSize) return failure  

5. List AllocatedPIDs={};//the list of PIDs allocate to the 

job 

6. Return PALD-BFAllocate(a, b, AllocatedPIDs); 

7. End Procedure 

8. Procedure PALD-BFAllocate (a, b, AllocatedPIDs) 

9. Begin Procedure 

10. S(x, y)=FIND_BF (S(a, b);  

11. If (S(x, y)!=null)  

12. Add the PIDs of S to the list AllocatedPIDs; 

13. Else { 

14. If(a>=b)  

15. α1=a-1; β1=b; α2=1; β2=b; 

16. Else 

17. α1=a; β1=b-1; α2=a; β2=1; 

18. PALD-BFAllocate (α1, β1, AllocatedPIDs); 

19. PALD-BFAllocate (α2, β2, AllocatedPIDs);} 

20. End Procedure 

 

4. Experimental Setup  

The current study is simulation-based with the 

ProcSimity simulator is to be used. The simulated 

multicomputer system consists of 256 multicomputers 

connected through a 2-dimensional mesh network of 

dimensions W and L W=L=16. The routing mechanism 

to be used is the wormhole routing [14, 17] with packet 

size of 8units and a buffer of size 1unit and a routing 

delay of 3units. The router uses XY routing to direct 

messages from their source to destination. Message 

sizes are considered to be of length 8units. Job size 

conforms the exponential distribution with mean width 

and length being W/2 (or L/2). The execution time of 

jobs conforms the uniform distribution. 

To maintain good levels of accuracy, each 

simulation experiments is repeated 10times with a total 

of 1000 jobs are to be simulated in each time. The 

readings are 95% accurate with a maximum percentage 

error of 5%. The following scheduling mechanisms are 

considered in our experiments: 

• First-Come-First-Serve (FCFS): In first come first 

serve the first job request arrived to the ready queue 

is served first, this mechanisms is most popular, and 

the simplest to implements. 

• Shortest Service Demand first (SSD): In the job with 

shortest service demand is scheduled first [23]. 

• The Service Demand (SD): Of a job is defined as the 

Estimated service Time (ET) multiplied by the 

number of processors (JS) need. 

4.1. Simulation Output 

• Average Response Time (ART): The response time 

is the time from the submission of request until the 

first real response produced for jobs. 

• Average System Utilization (ASU): The average of 

keeping the processors within a system as busy as 

possible, this value between 0 and 1. 

• Average Packet Blocking Time (APBT): The 

average amount of time the head of the message is 

blocked at each station while routing the message 

over the path from source to destination. 

• Average Packet Latency (APL): The average of the 

time that all packets within job will be sent between 

processors from source processor to distention 

processor. 

 

5. Experimental Results and Observations 

In this section, the results from simulations that have 

been carried out to evaluate the performance of the 

proposed algorithm are presented and compared 

against those of MBS, BF and FF. The proposed 

allocation algorithm is implemented and later 

integrated with the ProcSimity simulation tool [18, 23]. 

Each simulation run consists of 1000 completed jobs. 

Simulation results are averaged over enough 

independent runs so that the confidence level is 95% 

and the relative errors do not exceed 5%.  

Next we present our experimental results and 

observations. Parallel jobs usually communicate with 

each other using one-to-all or all-to-all communication 

patterns [12, 15, 22]. We did our experiments using 

both patterns. However, we focused more on the all-to-

all communication pattern as it produces message 

collision than the one-to-all communication pattern [3, 

4, 22]. Further, the all-to-all communication pattern is 

known to be a weak point for non-contiguous 

allocation algorithms [22]. The independent variable in 

the simulation is the system load. The notation 

<allocation strategy>(<scheduling strategy>) is used to 

represent the strategies in the performance figures, as 

in [7]. For example, PALD-FF(FCFS) refers to the 

PALD-FF processor allocation strategy under the 

scheduling strategy FCFS. 

 

5.1. Mean Response Time Criteria 

In Figures 3 to 5, the mean job response time of jobs is 

plotted against the system load for the one-to-all and 

all-to-all communication patterns under the FCFS and 

SSD scheduling mechanisms. The figures reveal that 

PALD-based allocation strategies produce less 

response times and, thus, perform better than all other 

strategies. This is more clear under the SSD scheduling 

mechanism. PALD-FF is substantially superior to the 

FF and PALD-BF is also superior to BF. For all-to-all 

communication pattern both tested PALD-based 
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allocation strategies outperformed contiguous 

allocation strategies.  
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Figure 3. Mean response time in FF and PALD-FF strategies under 

the FCFS and the SSD scheduling mechanisms and one-to-all 

communication pattern. 
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Figure 4. Mean response time in FF and PALD-FF strategies under 

the FCFS and the SSD scheduling mechanisms and all-to-all 

communication pattern. 

 

  
  
  
  
M
ea
n
 J
o
b
 R
es
p
o
n
se
 T
im

e 

 

System Load 
 

Figure 5. Mean response time in BF and PALD-BF strategies under 

the FCFS and the SSD scheduling mechanisms and one-to-all 

communication pattern. 

 

Figure 6 shows the four allocation strategies 

compared together in terms of response time. 

Considering the same system settings Figure 6 shows 

that PALD-based approaches outperform non-PALD-

based ones. 
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Figure 6. Mean response time in MBS, FF, BF, PALD-FF and 

PALD-BF strategies under both scheduling mechanisms, both 

communication patterns. 

5.2. Percent System Utilization Criteria 

Figures 7 to 11 depict the mean system utilization of 

the tested allocation strategies, namely; FF, BF, 

PALD-FF, PALD-BF and MBS, for the two 

communication patterns considered and under the 

FCFS and SSD scheduling mechanisms. Figures 7 and 

8 depict the percent system utilization in FF and 

PALD-FF allocation strategies under the FCFS and the 

SSD scheduling mechanisms and one-to-all and all-to-

all communication patterns. Similarly, Figures 6 and 7 

depict the percent system utilization in BF and PALD-

BF allocation strategies under the FCFS and the SSD 

scheduling mechanisms and both communication 

patterns. 

Figures 7 to 11 reveal that the PALD-based 

strategies produce higher system utilization. This is 

more clear under the SSD scheduling mechanism. 

PALD-FF and PALD-BF showed around 70% higher 

system utilization than the FF and BF approaches at 

the points where the system is heavily loaded, 

respectively. This observation applied for both 

communication patterns. This observation can be 

explained as follows, contiguous allocation produces 

high external fragmentation, which means that 

allocation is less likely to succeed. Consequently, 

system utilization becomes low. The proposed 

approaches have the ability to eliminate both internal 

and external processor fragmentation, and thus, 

produce higher system utilization. 
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Figure 7. System utilization in FF and PALD-FF strategies under 

the FCFS and the SSD scheduling mechanisms and one-to-all 

communication pattern. 
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Figure 8. System utilization in FF and PALD-FF strategies under 

the FCFS and the SSD scheduling mechanisms and all-to-all 

communication pattern. 
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Figure 9. System utilization in BF and PALD-BF strategies under 

the FCFS and the SSD scheduling mechanisms and one-to-all 

communication pattern. 
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Figure 10. System utilization in MBS and PALD-BF strategies 

under the FCFS and the SSD scheduling mechanisms and all-to-all 

communication pattern. 
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Figure 11. System utilization in MBS, FF, BF, PALD-FF and 

PALD-BF strategies under both scheduling mechanisms, both 

communication patterns. 

 

5.3. Communication Overhead 

We have measured other performance criteria for the 

non-contiguous allocation strategies. These are the 

Mean Packet Latency (MPL) and the Mean Packet 

Blocking Time (MPBT). Figure 12 shows that the 

MPL for the tested allocation strategies for all-to-all 

communication pattern and under the two considered 

scheduling mechanisms.  It can be seen that PALD-FF 

and PALD-BF strategies have lower MPL values than 

MBS strategy under the two scheduling strategies 

FCFS and SSD for the all-to-all communication 

pattern. This conclusion is compatible with the values 

of the mean turnaround time shown above.  

To summarize, the above performance results 

demonstrate that PALD-FF and PALD-BF strategies 

are superior to all other strategies considered in this 

paper; including the case when contention is heavy (the 

communication pattern is all-to-all).  Figure 13 shows 

that the MPBT for the tested allocation strategies under 

the two considered scheduling mechanisms is less than 

that of MBS strategy.   
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Figure 12. Mean packet latency in MBS, PALD-FF and PALD-BF 

allocation strategies under the FCFS and the SSD scheduling 

mechanisms, all-to-all communication patterns. 
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Figure 13. Mean packet blocking time in MBS, PALD-FF and 

PALD-BF allocation strategies under the FCFS and the SSD 

scheduling mechanisms, all-to-all communication patterns. 

 

One concern in PALD-based allocation strategies is 

that requests may get over-partitioned. This results in 

allocating dispersed multicomputers to parallel jobs. 

To test that, we repeated our experiments and allowed 

for giving a control over the Maximum number of 

Blocks allowed to any allocated Job (MBPJ). Figure 14 

illustrates the observed relationship between MBPJ 

(the x-axis) and the average system utilization (the y-

axis). At an MBPJ value of 10, we found that the 

system utilization reaches a maximum saturation value 

of around 0.92. Thus, placing this limit helps in: 

1. Preventing over-partitioning. 

2. Keeping the allocation time complexity of PALD 

allocation strategies to be the same as that of the 

contiguous allocation strategy used (the FF or BF). 
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Figure 14. System utilization vs partitioning limit for PALD-BF 

allocation strategy under the FCFS scheduling mechanism, all-to-

all communication patterns. 
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6. Conclusions and Future Work  

Two adaptive noncontiguous allocation strategies are 

proposed in this paper. The first is first-fit-based and 

the second is best-fit-based. That is; for a given 

request, the proposed first-fit-based approach tries to 

find a free submesh using the well-known first-fit 

strategy, if it fails, the request at hand is partitioned 

into two sub-requests that are allocated using the first-

fit approach. Partitioning is performed at the longest 

dimension of the request (removing one from the 

longest dimension of the request at hand). The two new 

sub-requests are then allocated using the first-fit or the 

best-fit approaches. This procedure continues 

recursively until the request is fulfilled. The second 

approach is also based on PALD of requests but a best-

fit approach is used to allocate requests and sub-

requests. The partitioning mechanism aims at: 

1. Lifting the condition of contiguity. 

2. At the same time maintaining good level of 

contiguity.  

Removing one from the longest dimension of a request 

is expected to produce two sub-requests one of which 

is relatively big and as close as possible to the square-

shape and, thus; reducing communication latency 

caused by non-contiguity. Using extensive simulations, 

we evaluated the proposed strategies and compared 

them with previous contiguous and non-contiguous 

strategies.  Simulation outcomes clearly show the 

proposed PALD-based schemes produce the best 

average response time, the average system utilization 

and produce relatively low communication overhead. 

Two possible extensions to this work are: 

1. To evaluate the proposed PALD-based allocation 

strategies in other common multicomputer 

architectures, such as 3D and torus mesh 

multicomputers. 

2. To evaluate the proposed strategies based on real 

workload traces from different parallel machines 

that are available. 
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