
The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013 245

Submesh Allocation in 2D-Mesh Multicomputers:

Partitioning at the Longest Dimension of Requests

Sulieman Bani-Ahmad

Department of Information Technology, Al-Balqa Applied University, Jordan

Abstract: Two adaptive non-contiguous allocation strategies for 2D-mesh multicomputers are proposed in this paper. The

first is first-fit-based and the second is best-fit-based. That is; for a given request, the proposed first-fit-based approach tries to

find a free submesh using the well-known first-fit strategy, if it fails, the request at hand is partitioned into two sub-requests

that are independently allocated using the first-fit approach. Partitioning is gradually performed at the longest dimension of

the parallel request. This partitioning mechanism aims at 1). lifting the condition of contiguity, and 2). at the same time

maintaining good level of contiguity. Gradual partitioning of requests produce two sub-requests one of which is relatively big

and as close as possible to the square-shape and, thus; reducing communication latency caused by non-contiguity. Using

extensive simulations, we evaluated the proposed strategies and compared them with previous contiguous and non-contiguous

strategies. Simulation outcomes clearly show the proposed allocation schemes produce the best Average Response Time

(ART), the Average System Utilization (ASU) and also produce relatively low communication overhead.

Keywords: Multicomputer, 2D mesh, contiguous allocation, non-contiguous allocation, request partitioning.

Received July 28, 2010; accepted March 1, 2011; published online March 1, 2012

1. Introduction

In parallel systems, processors are connected through

interconnection network; one of the most widely used

architectures is the 2D and 3D mesh-connected

architectures. This is because mesh architecture is

simple, regular and scalable [2, 6]. Several recent

commercial and experimental parallel computers have

been built based these architectures such as the IBM

BlueGene/L and the Intel Paragon [2, 3, 19].

Processor allocation in 2D-Mesh multicomputer is a

major issue as it significantly affects the performance

of any parallel system [2]. Processor allocation is

concerned with the way for allocation submesh to a job

request. Many processor allocation strategies in

literature try to allocate a submesh, i.e., a contiguous

set of processing units, of the same size and shape of

request [1, 2, 3, 4, 9, 10, 13, 24, 25]. This, however,

may produce low level of system utilization and cause

either internal or external fragmentation or both [8,

15]. Internal fragmentation occurs when the number of

processors allocated to a job is more than that it

requested [4, 21]. External fragmentation, on the other

hand, occurs when enough number of idle processors is

available in the system but cannot be assigned to the

scheduled job because of the requirement of contiguity

[8]. Several studies have attempted to reduce or solve

external fragmentation [3, 6, 8, 15, 20, 21, 22], one of

the proposed solutions is to use non-contiguous

allocation.

In non-contiguous allocation the contiguity

condition is relaxed [8]; therefore, a job can execute on

multiple disjoint smaller sub-meshes rather than

always waiting until a single sub-mesh of the requested

size and shape is available [6, 8, 15, 22]. Studies show

that non-contiguous allocation of requests may solve

the drawbacks of contiguous allocation; non-

contiguous allocation strategies produce relatively high

system utilization and eliminate fragmentation.

However, since communication between processors

running the same job can be indirect due to non-

contiguity [21], communication latency is usually high.

However, the introduction of wormhole routing [12]

has lead researchers to consider noncontiguous

allocation on multicomputers with a long

communication distances, such as the 2D mesh [6, 8,

15]. One of main advantages of wormhole routing over

earlier communication schemes, e.g., store-and-

forward, is that message latency is less dependent on

the distance traversed by the message from source to

destination [8, 12]. Thus, non-contiguous allocation

has recently received attention of researchers.

Partitioning allocation requests in existing non-

contiguous allocation schemes can be performed in

multiple ways. For example, allocation requests are

subdivided into two equal partitions in [8]. The sub-

partitions are recursively subdivided into further

smaller sub-requests if allocation fails for any of them.

In the study of [15], a promising strategy Multiple

Buddy System (MBS) expresses the allocation request

as a base-4 number, and bases allocation on this

expression.

In this paper, two adaptive noncontiguous allocation

strategies for 2D-mesh multicomputers are proposed

246 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

and evaluated through simulation. The first is a first-

fit-based approach that tries to find a contiguous set of

processing units of the same shape and size to the

request at hand using the well-known first-fit approach.

If it fails, the request at hand is divided into two sub-

requests after removing one from the longest

dimension of the request. That is, for a given request of

size αxβ and assuming β>α, the two partition-sizes are

αx(β-1) and αx1 after removing one from the longest

dimension of the request. The two new sub-requests

are then allocated using the first-fit approach again.

This procedure continues recursively until the request

is fulfilled. This approach is referred to a PALD-FF for

PArtitioning at the Longest Dimension with First-Fit

(FF).

The second approach is also PALD-based.

However, the Best Fit (BF) allocation strategy is used

to allocate requests and sub-requests. The used

partitioning mechanism aims at:

1. Lifting the condition of contiguity.

2. At the same time maintaining good level of

contiguity. Removing one from the longest

dimension of a request is expected to produce two

sub-requests one of which is relatively big and as

close as possible to be square-shaped and, thus;

reducing communication latency caused by non-

contiguity.

Using extensive simulations, we evaluated the

proposed strategies and compared them with previous

promising strategies. Simulation outcomes clearly

show the proposed PALD-based schemes produces the

best Average Response Time (ART), the Average

System Utilization (ASU) and produce relatively low

communication overhead. The performance of PALD-

FF and PALD-BF is compared against the performance

of the MBS non-contiguous allocation strategy. This

strategy is selected as it has been shown to perform

well in [15]. Furthermore, proposed approaches are

also compared against the contiguous FF and BF

strategies as this has been used in several previous

related studies [8, 9, 15]. The proposed approaches are

tested under two job scheduling strategies, namely;

First-Come-First-Served (FCFS) and Shortest-Service-

Demand-First (SSD). In FCFS, the allocation request

that arrived first is scheduled for allocation first. In

SSD, the job with the shortest service demand is

scheduled first [11]. The FCFS scheduling strategy is

chosen as it is fair and it is widely used in other similar

studies [2, 6, 8, 9, 20], while the SSD scheduling

strategy is used to avoid performance loss due to

blocking [11].

2. Related Work

In this section, we provide an overview of some

existing contiguous and non-contiguous allocation

strategies.

2.1. Contiguous Allocation Strategies

The FF strategy is a contiguous allocation strategy.

This scheme start search at the lowest leftmost node in

mesh, and put a virtual grid that’s equal size request,

and then shifts by one column to the right until first

large enough free submesh is found [17]. The BF is

also a contiguous allocation strategy. This scheme is

the same as first fit scheme, but it reserves a submesh

after consider all large enough free submeshes and

chooses the closest requests, i.e., the submesh with

minimal leftovers is selected [17]. We use both

strategies to search for free submeshes for the

partitioned requests as should be shortly illustrated

more.

2.2. Non-Contiguous Allocation Strategies

The introduction of wormhole routing [12] has made

communication latency less sensitive to the distance

traversed by messages between communicating entities

[8]. This has made allocating a job to non-contiguous

processors reasonable, in terms of performance, in

networks characterized by a relatively long-diameter,

such the 2D mesh. Non-contiguous alleviates the

contiguity and thus allowing jobs to be executed

without waiting for sufficient and contiguous set of

idle processing nodes [6, 8, 15].

In the paging allocation strategy, for instance [19],

the entire 2D mesh is virtually sub-divided into pages

or sub-meshes of equal sides’ length of 2
i
 where i is a

positive integer number that represents the index

parameter of the paging approach. The pages are

indexed according to several indexing schemes,

namely; row-major, shuffled row-major, snake-like, or

shuffled snake-like indexing.

• Example: Paging-page size=1, snake-line order.

This type divide mesh into pages with size 2*2

(2^1*2^1), and the search manner for free pages is

snake line order as shown in Figure 1.

Figure 1. Paging with page size=1, snake line order search.

• Example: Paging-Page size=1, row-major order.

This type divide mesh into pages with size 2*2

(2^1*2^1), and the search manner for free pages is

row-major order as shown in Figure 2.

Figure 2. Paging with paging size=1, row-major order search.

Submesh Allocation in 2D-Mesh Multicomputers: Partitioning at the Longest … 247

In the MBS strategy, the mesh of the system at hand

is divided into non-overlapping square sub-meshes

with side lengths that are powers of 2. The number of

processors, p, requested by a scheduled job is

factorized into a base-4 block. If a required block is

unavailable, MBS recursively searches for a larger

block and repeatedly breaks it down into four buddies

until it produces blocks of the desired size. If that fails,

the requested block is further broken into four sub-

requests until the job is allocated [15].

In the Adaptive Non-Contiguous Allocation

(ANCA) strategy work differently. ANCA first

attempts to allocate the job at hand contiguously. If the

allocation attempt fails, it partitions the request into

two equi-sized sub-requests. These sub-frames are then

allocated to available locations, if possible; otherwise,

each of these sub-requests is recursively further

partitioned into two equi-sized sub-requests, and then

ANCA tries to map these sub-requests to available

locations [8].

Maintaining a good level of contiguity can prove

useful in non-contiguous allocation. In Paging, there is

some degree of contiguity because of the indexing

schemes used. Contiguity can also be increased by

increasing the index parameter. However, this may

produce internal processor fragmentation for large

index sizes [15]. In MBS, contiguous allocation is

explicitly sought only for requests with sizes of the

form 2
2n
, where n is a positive integer.

An issue with the ANCA strategy is that it can

disperse the allocated sub-meshes more than it is

necessary through over partitioning. Over-partitioning

may cause skipping over the possibility of identifying

and thus allocating larger free sub-meshes for a large

part of the request at hand which has been shown to

maintain a higher level of contiguity [7]. Thus the

communication overhead can be reduced by adaptively

and gradually partitioning allocation requests into as

large as possible contiguous sub-meshes.

3. The Proposed Allocation Strategy

The target system is a W×L two-dimensional mesh,

where W and L are the width and the length of the

mesh, respectively. Every processor is denoted by a

pair of coordinates, namely; x and y, where 0≤x<W and

0≤y<L [6]. Each processor is connected by

bidirectional communication links to its neighbor

processors. The following definitions have been

adopted from [6, 7].

• Definition 1: A sub-mesh S(w,l) of width w and

length l, where 0≤w<W and 0≤ l<L is specified by

the coordinates (x, y) and (x′, y′), where (x, y) is the

lower left corner of submesh S and (x′, y′) is its

upper right corner, i.e., x′=x+w and y’=y+l. The

lower left corner node is called the base node of S

and the upper right corner node is the end node.

• Definition 2: The size of submesh S(w,l) is w×l.

• Definition 3: An allocated submesh is one whose

processing units are all allocated to a job. A free

submesh is one whose processors are all idle.

In this paper, two adaptive noncontiguous allocation

strategies for 2D-mesh multicomputers are proposed

and evaluated through simulation. The first is a first-

fit-based approach that is shown in Algorithm 1. This

approach tries to find a contiguous set of processing

units of the same shape and size to the request at hand

using the well-known first-fit approach (step 10 of

Algorithm 1). If it fails, the request at hand is divided

into two sub-requests after removing one from the

longest dimension of the request (steps 14 to 17 of

Algorithm 1). That is, for a given request of size αxβ

and assuming β>α, the two partition-sizes are αx(β-1)

and αx1 after removing one from the longest

dimension of the request. The two new sub-requests

are then allocated using the first-fit approach again

steps 18 and 19 of Algorithm 1. This procedure

continues recursively until the request is fulfilled. This

approach is referred to a PALD-FF for PArtitioning at

the Longest Dimension with FF.

Algorithm 1. Pseudo code for the PALD-FF allocation

strategy:

1. Procedure PALD-FF(a, b):

2. Begin Procedure

3. JobSize=a×b

4. If (number of free processors < JobSize) return failure

5. List AllocatedPIDs={}; // the list of PIDs allocate to the

job

6. Return PALD-FFAllocate(a, b, AllocatedPIDs);

7. End Procedure

8. Procedure PALD-FFAllocate (a, b, AllocatedPIDs)

9. Begin Procedure

10. S(x, y)=FIND_FF (S(a, b);

11. If (S(x, y)!=null)

12. Add the PIDs of S to the list AllocatedPIDs;

13. Else {

14. If(a>=b)

15. α1= a-1; β1=b; α2=1; β2=b;

16. Else

17. α1=a; β1=b-1; α2=a; β2=1;

18. PALD-FFAllocate (α1, β1, AllocatedPIDs);

19. PALD-FFAllocate (α2, β2, AllocatedPIDs); }

20. End Procedure

The second approach is also PALD-based and is

sketched in Algorithm 2. However, the BF allocation

strategy is used to allocate requests and sub-requests

(step 10 of Algorithm 2). The above described

partitioning mechanism aims at:

1. Lifting the condition of contiguity.

2. At the same time maintaining good level of

contiguity. Removing one from the longest

dimension of a request is expected to produce two

sub-requests one of which is relatively big and as

close as possible to be square-shaped and, thus;

248 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

reducing communication latency caused by non-

contiguity.

Algorithm 2. Pseudo code for the PALD-BF allocation

strategy:

1. Procedure PALD-BF(a, b):

2. Begin Procedure

3. JobSize=a×b

4. If (number of free processors<JobSize) return failure

5. List AllocatedPIDs={};//the list of PIDs allocate to the

job

6. Return PALD-BFAllocate(a, b, AllocatedPIDs);

7. End Procedure

8. Procedure PALD-BFAllocate (a, b, AllocatedPIDs)

9. Begin Procedure

10. S(x, y)=FIND_BF (S(a, b);

11. If (S(x, y)!=null)

12. Add the PIDs of S to the list AllocatedPIDs;

13. Else {

14. If(a>=b)

15. α1=a-1; β1=b; α2=1; β2=b;

16. Else

17. α1=a; β1=b-1; α2=a; β2=1;

18. PALD-BFAllocate (α1, β1, AllocatedPIDs);

19. PALD-BFAllocate (α2, β2, AllocatedPIDs);}

20. End Procedure

4. Experimental Setup

The current study is simulation-based with the

ProcSimity simulator is to be used. The simulated

multicomputer system consists of 256 multicomputers

connected through a 2-dimensional mesh network of

dimensions W and L W=L=16. The routing mechanism

to be used is the wormhole routing [14, 17] with packet

size of 8units and a buffer of size 1unit and a routing

delay of 3units. The router uses XY routing to direct

messages from their source to destination. Message

sizes are considered to be of length 8units. Job size

conforms the exponential distribution with mean width

and length being W/2 (or L/2). The execution time of

jobs conforms the uniform distribution.

To maintain good levels of accuracy, each

simulation experiments is repeated 10times with a total

of 1000 jobs are to be simulated in each time. The

readings are 95% accurate with a maximum percentage

error of 5%. The following scheduling mechanisms are

considered in our experiments:

• First-Come-First-Serve (FCFS): In first come first

serve the first job request arrived to the ready queue

is served first, this mechanisms is most popular, and

the simplest to implements.

• Shortest Service Demand first (SSD): In the job with

shortest service demand is scheduled first [23].

• The Service Demand (SD): Of a job is defined as the

Estimated service Time (ET) multiplied by the

number of processors (JS) need.

4.1. Simulation Output

• Average Response Time (ART): The response time

is the time from the submission of request until the

first real response produced for jobs.

• Average System Utilization (ASU): The average of

keeping the processors within a system as busy as

possible, this value between 0 and 1.

• Average Packet Blocking Time (APBT): The

average amount of time the head of the message is

blocked at each station while routing the message

over the path from source to destination.

• Average Packet Latency (APL): The average of the

time that all packets within job will be sent between

processors from source processor to distention

processor.

5. Experimental Results and Observations

In this section, the results from simulations that have

been carried out to evaluate the performance of the

proposed algorithm are presented and compared

against those of MBS, BF and FF. The proposed

allocation algorithm is implemented and later

integrated with the ProcSimity simulation tool [18, 23].

Each simulation run consists of 1000 completed jobs.

Simulation results are averaged over enough

independent runs so that the confidence level is 95%

and the relative errors do not exceed 5%.

Next we present our experimental results and

observations. Parallel jobs usually communicate with

each other using one-to-all or all-to-all communication

patterns [12, 15, 22]. We did our experiments using

both patterns. However, we focused more on the all-to-

all communication pattern as it produces message

collision than the one-to-all communication pattern [3,

4, 22]. Further, the all-to-all communication pattern is

known to be a weak point for non-contiguous

allocation algorithms [22]. The independent variable in

the simulation is the system load. The notation

<allocation strategy>(<scheduling strategy>) is used to

represent the strategies in the performance figures, as

in [7]. For example, PALD-FF(FCFS) refers to the

PALD-FF processor allocation strategy under the

scheduling strategy FCFS.

5.1. Mean Response Time Criteria

In Figures 3 to 5, the mean job response time of jobs is

plotted against the system load for the one-to-all and

all-to-all communication patterns under the FCFS and

SSD scheduling mechanisms. The figures reveal that

PALD-based allocation strategies produce less

response times and, thus, perform better than all other

strategies. This is more clear under the SSD scheduling

mechanism. PALD-FF is substantially superior to the

FF and PALD-BF is also superior to BF. For all-to-all

communication pattern both tested PALD-based

Submesh Allocation in 2D-Mesh Multicomputers: Partitioning at the Longest … 249

allocation strategies outperformed contiguous

allocation strategies.

 M

ea
n
 J
o
b
 R
es
p
o
n
se
 T
im

e

System Load

Figure 3. Mean response time in FF and PALD-FF strategies under

the FCFS and the SSD scheduling mechanisms and one-to-all

communication pattern.

 M

ea
n
 J
o
b
 R
es
p
o
n
se
 T
im

e

System Load

Figure 4. Mean response time in FF and PALD-FF strategies under

the FCFS and the SSD scheduling mechanisms and all-to-all

communication pattern.

M
ea
n
 J
o
b
 R
es
p
o
n
se
 T
im

e

System Load

Figure 5. Mean response time in BF and PALD-BF strategies under

the FCFS and the SSD scheduling mechanisms and one-to-all

communication pattern.

Figure 6 shows the four allocation strategies

compared together in terms of response time.

Considering the same system settings Figure 6 shows

that PALD-based approaches outperform non-PALD-

based ones.

 M

ea
n
 J
o
b
 R
es
p
o
n
se
 T
im

e

Allocation Algorithms

Figure 6. Mean response time in MBS, FF, BF, PALD-FF and

PALD-BF strategies under both scheduling mechanisms, both

communication patterns.

5.2. Percent System Utilization Criteria

Figures 7 to 11 depict the mean system utilization of

the tested allocation strategies, namely; FF, BF,

PALD-FF, PALD-BF and MBS, for the two

communication patterns considered and under the

FCFS and SSD scheduling mechanisms. Figures 7 and

8 depict the percent system utilization in FF and

PALD-FF allocation strategies under the FCFS and the

SSD scheduling mechanisms and one-to-all and all-to-

all communication patterns. Similarly, Figures 6 and 7

depict the percent system utilization in BF and PALD-

BF allocation strategies under the FCFS and the SSD

scheduling mechanisms and both communication

patterns.

Figures 7 to 11 reveal that the PALD-based

strategies produce higher system utilization. This is

more clear under the SSD scheduling mechanism.

PALD-FF and PALD-BF showed around 70% higher

system utilization than the FF and BF approaches at

the points where the system is heavily loaded,

respectively. This observation applied for both

communication patterns. This observation can be

explained as follows, contiguous allocation produces

high external fragmentation, which means that

allocation is less likely to succeed. Consequently,

system utilization becomes low. The proposed

approaches have the ability to eliminate both internal

and external processor fragmentation, and thus,

produce higher system utilization.

 P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

System Load

Figure 7. System utilization in FF and PALD-FF strategies under

the FCFS and the SSD scheduling mechanisms and one-to-all

communication pattern.

 P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

System Load

Figure 8. System utilization in FF and PALD-FF strategies under

the FCFS and the SSD scheduling mechanisms and all-to-all

communication pattern.

250 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

 P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

System Load

Figure 9. System utilization in BF and PALD-BF strategies under

the FCFS and the SSD scheduling mechanisms and one-to-all

communication pattern.

P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

System Load

Figure 10. System utilization in MBS and PALD-BF strategies

under the FCFS and the SSD scheduling mechanisms and all-to-all

communication pattern.

P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

Allocation Algorithms

Figure 11. System utilization in MBS, FF, BF, PALD-FF and

PALD-BF strategies under both scheduling mechanisms, both

communication patterns.

5.3. Communication Overhead

We have measured other performance criteria for the

non-contiguous allocation strategies. These are the

Mean Packet Latency (MPL) and the Mean Packet

Blocking Time (MPBT). Figure 12 shows that the

MPL for the tested allocation strategies for all-to-all

communication pattern and under the two considered

scheduling mechanisms. It can be seen that PALD-FF

and PALD-BF strategies have lower MPL values than

MBS strategy under the two scheduling strategies

FCFS and SSD for the all-to-all communication

pattern. This conclusion is compatible with the values

of the mean turnaround time shown above.

To summarize, the above performance results

demonstrate that PALD-FF and PALD-BF strategies

are superior to all other strategies considered in this

paper; including the case when contention is heavy (the

communication pattern is all-to-all). Figure 13 shows

that the MPBT for the tested allocation strategies under

the two considered scheduling mechanisms is less than

that of MBS strategy.

M
ea
n
 P
ac
k
et
 L
at
en
cy

Allocation Algorithms

Figure 12. Mean packet latency in MBS, PALD-FF and PALD-BF

allocation strategies under the FCFS and the SSD scheduling

mechanisms, all-to-all communication patterns.

 M

ea
n
 P
ac
k
et
 B
lo
ck
in
g
 T
im

e

Allocation Algorithms

Figure 13. Mean packet blocking time in MBS, PALD-FF and

PALD-BF allocation strategies under the FCFS and the SSD

scheduling mechanisms, all-to-all communication patterns.

One concern in PALD-based allocation strategies is

that requests may get over-partitioned. This results in

allocating dispersed multicomputers to parallel jobs.

To test that, we repeated our experiments and allowed

for giving a control over the Maximum number of

Blocks allowed to any allocated Job (MBPJ). Figure 14

illustrates the observed relationship between MBPJ

(the x-axis) and the average system utilization (the y-

axis). At an MBPJ value of 10, we found that the

system utilization reaches a maximum saturation value

of around 0.92. Thus, placing this limit helps in:

1. Preventing over-partitioning.

2. Keeping the allocation time complexity of PALD

allocation strategies to be the same as that of the

contiguous allocation strategy used (the FF or BF).

P
er
ce
n
t
S
y
st
em

 U
ti
li
za
ti
o
n

Allocation Algorithms

Figure 14. System utilization vs partitioning limit for PALD-BF

allocation strategy under the FCFS scheduling mechanism, all-to-

all communication patterns.

Submesh Allocation in 2D-Mesh Multicomputers: Partitioning at the Longest … 251

6. Conclusions and Future Work

Two adaptive noncontiguous allocation strategies are

proposed in this paper. The first is first-fit-based and

the second is best-fit-based. That is; for a given

request, the proposed first-fit-based approach tries to

find a free submesh using the well-known first-fit

strategy, if it fails, the request at hand is partitioned

into two sub-requests that are allocated using the first-

fit approach. Partitioning is performed at the longest

dimension of the request (removing one from the

longest dimension of the request at hand). The two new

sub-requests are then allocated using the first-fit or the

best-fit approaches. This procedure continues

recursively until the request is fulfilled. The second

approach is also based on PALD of requests but a best-

fit approach is used to allocate requests and sub-

requests. The partitioning mechanism aims at:

1. Lifting the condition of contiguity.

2. At the same time maintaining good level of

contiguity.

Removing one from the longest dimension of a request

is expected to produce two sub-requests one of which

is relatively big and as close as possible to the square-

shape and, thus; reducing communication latency

caused by non-contiguity. Using extensive simulations,

we evaluated the proposed strategies and compared

them with previous contiguous and non-contiguous

strategies. Simulation outcomes clearly show the

proposed PALD-based schemes produce the best

average response time, the average system utilization

and produce relatively low communication overhead.

Two possible extensions to this work are:

1. To evaluate the proposed PALD-based allocation

strategies in other common multicomputer

architectures, such as 3D and torus mesh

multicomputers.

2. To evaluate the proposed strategies based on real

workload traces from different parallel machines

that are available.

References

[1] Ababneh I. and Davis J., “Program-Based Static

Allocation Policies for Highly Parallel

Computers,” in Proceedings of the 14
th
 IEEE

Annual International Phoenix Conference on

Computers and Communications, USA, pp. 61-

68, 1995.

[2] Ababneh I., “An Efficient Free-List Submesh

Allocation Scheme for Two-Dimensional Mesh-

Connected Multicomputers,” Journal of Systems

and Software, vol. 79, no. 8, pp. 1168-1179,

2006.

[3] Ababneh I. and Bani-Mohammad S., “A New

Window-Based Job Scheduling Scheme for 2D

Mesh Multicomputers,” Simulation Modelling

Practice and Theory, vol. 19, no. 1, pp. 482-493,

2011.

[4] Ababneh I., Mardini W., Alawneh H., Hamed

M., and Bani-Mohammad S., “Effects of

Allocation Request Shape Changes on

Performance in 2D Mesh-Connected

Multicomputers,” in Proceedings of the 10
th

IEEE International Conference on Computer and

Information Technology, Bradford, pp. 123-130,

2010.

[5] Bani-Mohammad S., Ababneh I., and Hamdan

M., “Comparative Performance Evaluation of

Non-Contiguous Allocation Algorithms in 2D

Mesh-Connected Multicomputers,” in

Proceedings of the 10
th
 IEEE International

Conference on Computer and Information

Technology, Bradford, pp. 2933-2939, 2010.

[6] Bani-Mohammad S., Ould-Khaoua M., Ababneh

I., and Machenzie L., “Non-Contiguous

Processor Allocation Strategy for 2D Mesh

Connected Multicomputers Based on Sub-

Meshes Available for Allocation,” in

Proceedings of the 12
th
 IEEE International

Conference on Parallel and Distributed Systems,

vol. 2, pp. 41-48, USA, 2006.

[7] Bani-Mohammad S., Ould-Khaoua M., Ababneh

I., and Machenzie L., “A Fast and Efficient

Processor Allocation Strategy which Combines a

Contiguous and Non-Contiguous Processor

Allocation Algorithms,” Technical Report,

Department of Computing Science, University of

Glasgow, UK, 2007.

[8] Chang C. and Mohapatra P., “Performance

Improvement of Allocation Schemes for Mesh-

Connected Computers,” Journal of Parallel and

Distributed Computing, vol. 52, no. 1, pp. 40-68,

1998.

[9] Chiu G. and Chen S., “An Efficient Submesh

Allocation Scheme for Two-Dimensional Meshes

with Little Overhead,” IEEE Transactions on

Parallel and Distributed Systems, vol. 10, no. 5,

pp. 471-486, 1999.

[10] Chuang P. and Tzeng N., “Allocating Precise

Submeshes in Mesh Connected Systems,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 5, no. 2, pp. 211-217, 1994.

[11] Krueger P., Lai T., and Radiya V., “Job

Scheduling is More Important than Processor

Allocation for Hypercube Computers,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 5, no. 5, pp. 488-497, 1994.

[12] Kumar V., Grama A., Gupta A., and Karypis G.,

Introduction To Parallel Computing, The

Benjamin/Cummings Publishing Company,

California, 2003.

[13] Li K. and Cheng K., “A Two-Dimensional

Buddy System for Dynamic Resource Allocation

in a Partitionable Mesh Connected System,”

252 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

Journal of Parallel and Distributed Computing,

vol. 12, no. 1, pp. 79-83, 1991.

[14] Lin X., Mckinly P., and Esfahanina A.,

“Adaptive Multicast Wormhole Routing in 2D-

Mesh Multicomputers,” in Proceedings of the 5
th

International PARLE Conference on Parallel

Architectures and Languages Europe, UK, pp.

228-241, 1993.

[15] Lo V., Windisch K., Liu W., and Nitzberg B.,

“Non-Contiguous Processor Allocation

Algorithms for Mesh-Connected

Multicomputers,” IEEE Transactions on Parallel

and Distributed Systems, vol. 8, no. 7, pp. 712-

726, 1997.

[16] Mao W., Chen J., and Watson W., “Efficient

Subtorus Processor Allocation in a Multi-

Dimensional Torus,” in Proceedings of the 8
th

International Conference on High-Performance

Computing in Asia-Pacific Region, USA, pp. 53-

60, 2005.

[17] Ni L. and McKinley P., “A Survey of Wormhole

Routing Techniques in Direct Networks,”

Computer, vol. 26, no. 2, pp. 62-76, 1993.

[18] ProcSimity, ProcSimity V4.3 User’s Manual,

University of Oregon, USA, 1997.

[19] Raed A. and Maher K., “An Efficient Parallel

Gauss-Seidel Algorithm for the Solution of Load

Flow Problems,” The International Arab Journal

of Information Technology, vol. 4, no. 2, pp. 170-

174, 2007.

[20] Seo K., “Fragmentation-Efficient Node

Allocation Algorithm in 2D Mesh-Connected

Systems,” in Proceedings of the 8
th
 International

Symposium on Parallel Architecture, Algorithms

and Networks, USA, pp. 318-323, 2005.

[21] Srinivasan T., Seshadri J., Chandrasekhar A., and

Jonathan J., “A Minimal Fragmentation

Algorithm for Task Allocation in Mesh-

Connected Multicomputers,” in Proceedings of

IEEE International Conference on Advances in

Intelligent Systems-Theory and Applications,

Luxembourg, pp. 1-8, 2004.

[22] Suzaki K., Tanuma H., Hirano S., Ichisugi Y.,

Connelly C., and Tsukamoto M., “Multi-Tasking

Method on Parallel Computers Which Combines

a Contiguous and Non-Contiguous Processor

Partitioning Algorithm,” in Proceedings of the 3
rd

International Workshop on Applied Parallel

Computing, Industrial Computation and

Optimization, UK, pp. 641-650, 1996.

[23] Windisch K., Miller J., and Lo V., “ProcSimity:

An Experimental Tool for Processor Allocation

and Scheduling in Highly Parallel Systems,” in

Proceedings of the 5
th
 Symposium on the

Frontiers of Massively Parallel Computation,

USA, pp. 414-421, 1995.

[24] Yoo B. and Das C., “A Fast and Efficient

Processor Allocation Scheme for Mesh-

Connected Multicomputers,” IEEE Transactions

on Parallel and Distributed Systems, vol. 51, no.

1, pp. 46-60, 2002.

[25] Zhu Y., “Efficient Processor Allocation

Strategies for Mesh-Connected Parallel

Computers,” Journal of Parallel and Distributed

Computing, vol. 16, no. 4, pp. 328-337, 1992.

Sulieman Bani-Ahmad received his

BSc degree in electrical engineering/

computer engineering from the

Department of Electrical

Engineering, Jordan University of

Science and technology in 1999. He

received an MSc in computer

science from the school of Information Technology at

Al-albayt University in Jordan, in 2001. He received

his PhD degree in computing and information systems

from the Department of Electrical Engineering and

Computer Science at Case Western Reserve

University, Cleveland-Ohio, USA, in 2008. He is

presently a professor at Al-Balqa Applied University,

Jordan. His research interests include web-computing

and online literature digital libraries. More specifically,

he is interested in social network analysis of literature

citation graphs, domain-specific citation-behavior in

literature citation networks, and research development

models of literature. He has also, works in the area of

e-learning and technology-based teaching. Finally, he

works in the area of parallel computing. More

specifically, he worked on the topics of processor

allocation and job scheduling.

