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Abstract: This paper presents an improved approach for indicating visually salient regions of an image based upon a known
visual search task. The proposed approach employs a robust model of instantaneous visual attention (i.e., “bottom-up”)
combined with a pixel probability map derived from the automatic detection of a previously-seen object (task-dependent i.e.,
“top-down”). The objects to be recognized are parameterized quickly in advance by a viewpoint-invariant spatial distribution
of Speeded Up Robust Features (SURF) interest-points. The bottom-up and top-down object probability images are fused to
produce a task-dependent saliency map. The proposed approach is validated using observer eye-tracker data collected under
object search-and-count tasking. Proposed approach shows 13% higher overlap with true attention areas under task
compared to bottom-up saliency alone. The new combined saliency map is further used to develop a new intelligent
compression technique which is an extension of Discrete Cosine Transform (DCT) encoding. The proposed approach is

demonstrated on surveillance-style footage throughout.
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1. Introduction

Human vision is an active, dynamic process in which
the viewer seeks out specific visual input as needed to
support ongoing cognitive and behavioral activity [21].
Most vertebrates, including humans, can move their
eyes. They use this ability to sample in detail the most
relevant features of a scene, while spending only
limited processing resources elsewhere. The ability to
predict, given an image or video, where a human might
fixate in a fixed-time free viewing scenario has long
been of interest in the vision community. Besides the
purely scientific goal of understanding this remarkable
behavior of humans, and animals in general, to
consistently fixate on important information, there is
tremendous  engineering application, e.g.,, in
compression and recognition [39]. The standard
approaches [26, 32] are based on biologically
motivated feature selection, followed by center-
surround operations which highlight local gradients,
and finally a combination step leading to a “master
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map”.

2. Related Work

Recently, a few researchers have hypothesized that
fundamental quantities such as “self-information” and
“surprise” are at the heart of saliency/attention [6, 25].
However, ultimately, Bruce [6] computes a function
which is additive in feature maps, with the main
contribution materializing as a method of operating on
a feature map in such a way to get an active, or

saliency, map. Itti and Baldi [25] define “surprise” in
general, but ultimately compute a saliency map in the
classical sense for each of a number of feature
channels, then operate on these maps using another
function aimed at highlighting local variation. By
organizing the topology of these varied approaches, we
can compare them more rigorously: i.e., not just end to
end, but also piecewise, removing some uncertainty
about the origin of observed performance differences.
Moreover, recent work referred in [19] is about the
visual saliency for the particular task and therefore is
task oriented only. In [12], authors present chaotic
interleaving scheme for wireless image transmission
with OFDM. The interleaving scheme is based on the
chaotic baker map. The interleaving process is applied
to the binary image data prior to the modulation step.
Nonetheless, the scheme improves the performance of
the OFDM system, where it generates permuted
sequences with lower correlation between their
samples. However, the process is complex and time
consuming. Sundaram and Chang [40] proposed a two
step process to condense scenes with respect to
chromaticity, lighting and sound. Firstly, visual
complexity of a shot is described and grammar of the
film language is also analysed. However, the technique
is suitable for scenes with text description. Authors
claim good results on skims with compression rates
between 60~80%. Thus, the leading models of visual
saliency may be organized into three stages:

e Stage 1. Extraction: Extract feature vectors at
locations over the image plane.
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o Stage 2. Activation: Form an “activation map” (or
maps) using the feature vectors.

o Stage 3. Normalization/Combination:To summarize,
existing models of bottom-up saliency are reliable
indicators of passive visual attention regions in an
image [16, 26]. However, under task based viewing
there is often a strong shift of attention away from
the passive observation case [10]. This arises from
the imposition of top-down processes by the
observer under task in combination with the bottom
up response [41]. Models have been constructed for
the top-down case, but involve complicated prior
learning of general object classes and their scene
contextualization [13, 30, 33, 41]. Such models have
the advantage of enhanced attention prediction
power even in the absence of a target object being
present in the image, but the complexity of the
learning process and the specific scenarios makes
these models hard to generalize.

In this paper, a task-oriented correction to bottom up
models of visual attention is presented. The underlying
premise of the proposed bottom-up correction is that if
an object of interest is found to be present in the image,
the general contextual information of the scene can be
approximated [17]. The visual system under task-
prioritized viewing is guided by prior experiences of
associating task objects to likely scene location
contexts [1, 3, 4]. Objects generally lie within
semantically sensible parts of an image (e.g.,
pedestrians along pavements) and there is a known
strong horizontal search bias in observers under task,
based on the image context [17]. An illustration of this
effect is presented in Figure 1 in which eye-fixation
points from observers under task are imposed on an
image. Detected objects can therefore be used to
construct a horizontally-biased “object presences”
attention map for combination with the attention maps
from bottom-up/passive viewing models to give more
accurate prediction of eye-fixations under task than the
bottom up models alone.

Figure 1-b shows the threshold Graph Based Visual
Saliency (GBVS) [16] map generated from the Figure
1-a, the eye-fixations are still imposed. In Figure 1, an
image is observed under task with eye-tracker points
superimposed. x denotes all eye fixations of eight
observers performing people count on image. +
indicates the first three eye fixations across all
participants (Figure 1-b) GBVS model of passive
visual attention computed from the image. The
intentional map is threshold to 10 - 50% by area.
Nonetheless, overlap is generally good, but there is still
substantial energy in the map lying away from the core
region while eye-fixations lie outside the threshold
area.
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a) Map generated.

b) Threshold graph based visual
saliency.

Figure 1. Graph Based Visual Saliency map generated from the
upper image.

In this research, Speeded up Robust Features
(SURF) [2] interest-point matching to a reference
image is employed to determine presence of object in a
test image. We further propose an object confirmation
technique based on comparing the distribution between
the reference and test image matched points to
introduce higher confidence to the object recognition
process. This process is not general object recognition,
but would apply to particular object retrieval, such as
finding a particular vehicle in a database from a single
or small number of stored reference images, allowing
for the possibility of scale, viewpoint and illumination
changes.

We present comprehensive statistics detailing the
eye-fixation predictive power of our combined
attention model in comparison to the pure bottom up
models, showing an improvement in overlap. We
further present data on our object detection scheme’s
reliability over different viewpoint. Finally, as an
illustration of what our object-present-task model
could be used for, we demonstrate a DCT-based task-
targeted compression scheme that preserves regions of
high saliency under task at high fidelity and non-task
critical regions at lower fidelity to offer a notable
increase in compression ratio compared to global
application of DCT-based, JPEG-like compression.

3. Object Detection and Confirmation from
Surf Fonts

3.1. SURF Matching and Object Confirmation
Refinement

SURF [2] is a robust feature-detector and descriptor
combination that can be used for point to point
matching between images. Generally, the SURF
algorithm finds locally interesting points over many
scales and stores these points into a set of point
descriptors robust to rotation and scale transformations
as well as skew anisotropic scaling and perspective
effects, covered to some degree by the overall
robustness of the description technique. The descriptor
matching applies well over viewpoint change, scale
and under different lighting conditions (see [2] for
thorough performance measures) as well as being
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naturally  distributed towards visually salient
information under different viewing conditions [18].

Due to the robustness of the matching technique
under appropriate thresholding, the presence of
descriptor matching between a reference image and a
test image generally delivers a high confidence that the
reference image content is present in the test image.
For an example, SURF detection and matching process
is exhibited in Figure 2. Circles in Figure 2 denote
detected SURF points, “+” denotes matched points
between reference and test images (image as shown in
Figure 1). Figure 2-a manually extracted reference
image with SURF points matched to test image. Figure
2-b test image showing SURF points matched to
reference image. Figure 2-c, our object contextual
correction map (unthresholded). In this paper we
manually extract an object of interest from a larger
image and store a squared-off copy of this object as a
reference image along with a mask describing the
object envelope within the reference image. We then
“learn” such a reference image by running the SURF
algorithm over it and storing the descriptors. Interest
points outside the object envelope are excluded along
with their descriptors. Of course, the thresholding for
matching between images can vary and there could be
mismatched point to point correspondences. For this
reason, we propose a refinement in the object
recognition technique based on the overlap between
the matched points in the reference image and the
matched points in the test image transformed
homographically to the plane of the reference image.
This allows greater confidence in the presence of the
object as opposed to a series of unrelated but probably
robust point to point correspondences.

a) Manually extracted reference image with SURF points matched.

b) Test image showing SURF points. c¢) Object contextual correction map.

Figure 2. Surf matching.

Although, there already exist good object
classification and recognition techniques [14, 38, 15]
but the technique proposed here is one of specific

object recognition based on the distribution of interest
points and not general object categorisation. In the
process of object recognition a reference image (of an
object of interest in this case) is “learned” by applying
the SURF algorithm, transforming the matched
interest-points into an invariant frame of reference then
computing a spatial distribution of those points relative
to one another. There is always the possibility of
mismatching occurrence between points at poor
thresholds and at substantially different viewing
angles. We therefore use the corrected spatial
distribution of the matches to parameterise the object.
In brief there are two images, one is the Reference
Image and the other is the Test Image. The matched
points between these images have been calculated and
the correspondence between these points is reliable.
(This is achievable by choosing the appropriate
thresholds at the SURF detection and matching
phases.) It is assumed that the learned object in the
reference image will have the features included in
approximately the same plane. This should similarly
constrain the matched points in the test image to be
similarly planar and only 4 good matches are required.
This is a reasonable assumption since surveillance
objects are usually imaged in the medium to far field.
Matched points are denoted (IMP) where I indicates
image label, R or T for reference or Test, M denotes
that the points are matched and P’ is the plane.
Therefore, (TMT) denotes the Matched Test Points in
the Test Image plane. We first calculate the homograph
matrix between test and reference image planes using
matched points in each image, TMT and RMR. We
then transform the matched points in the test image to
the reference plane, TMR. This is done by using the
homographic relationship standard in computer vision.
We use the algorithm detailed in [20]. The spatial
distribution of the TMR is then computed. This is the
angular and radial displacement to all points from a
Zero point.

DTvig)=(71..n-1,0;...-1) (1)

The distribution of matched test points, TMR, with
each reference point is overlapped and the
displacement § is calculated. Then for each reference
point we apply a Euclidean distance threshold and
count the inliers to §. The best zero location is chosen
based on greatest number of inliers. The object is
judged to present or absent, based on the number of
classified object points within the threshold for the best
fit matches. We choose to set six confirmed object
points as our threshold for object confirmation and this
fix value is evaluated experimentally. In the case
where there are no inliers, it is necessary to choose a
different test point for constructing the distribution and
to repeat the process. The full set of permutations
could be explored but is not necessary if the
confidence in the matching is high: after a few
permutations, the method will find the overlap with the
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points within a given tolerance if the object is present.
We find that the method is robust for assessing the
inliers of an object distribution. Since the object
distribution is only derived from the matched points in
the test image, the technique works in the presence of
partial occlusion where the number of matches may
fall but the distribution is still likely to overlap in the
reference image.

3.2. Object Context Surface

We are trying to model visual attention under task by
modulating the reliable bottom up maps with a
contextual search surface based on object presence.
Once a reference object of interest is detected in an
image, we construct an “object context surface” for
combination with the bottom up map of the raw test
image. The premise behind the construction of this
surface is that objects of similar class are generally
horizontally distributed in an image and that under task
there is consequently a strong horizontal bias in
attention. Of course, there is a compromise in
judgment required here. The horizontal search pattern
is quite strong for scenes with some kind of horizon
and starts to break down as the potential image area for
search increases, e.g., as altitude is increased from eye-
level observation towards aerial photography. The
horizontal constraint is generally true for eye-level
imagery. We choose to construct our surface using the
following steps:

1. We find the centre height of the detected object
from the matched SURF points in the test image.

2. We take the horizontal line through the centre point
as our axis of object context.

3. We take two boundaries to define the core context
of the image, one 1/6™ of the image height above
and the other 1/6™ of the image height below the
centre line. We saturate the map within this area. (In
the case that the detected object is larger than the
1/6™ height either side of the centre, the size of the
object is chosen instead of the 1/6" image height.)

4. Outside the core context, the map is tailed-off in the
vertical direction according to the formula:

distance (x,y)=(y—Cny)/2 2)

where, (x,y) is the current point in the map of the same
dimensions as the image (excluding the core context)
and cny is the closest point y dimension to the
saturated mask. This equation weights the distance
values so that there is a tail-off from the core context in
the vertical direction. See Figure 2 for an object
presence surface example.

3.3. Combination of Bottom up and Object-
Presence Contextual Surfaces

Now we have models for the bottom up case and for
the target present case. We wish to fuse these data
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maps together in a way that will preserve the core
information. The bottom up map contains important
contextual information likely to attract attention under
passive observation. The top down map is based on the
detection of a known object and is based on prior
knowledge of search bias in observers in general
naturalistic imagery. The combination depends
strongly upon the degree of belief of the value of each
component. In our case, by inspection on our data sets
(see later-Validation), we set the surf detection and
matching thresholds appropriately so that we have
strong belief in the presence of our object based on
SURF matching alone. In the case of further “object
confirmation” by distribution as outlined above there is
similarly a high belief in the plausibility of the top-
down surface.

The human visual system deals with task by reading
the bottom up information in a scene but imposing
contextual constraint on the search. Therefore we seek
to combine the surfaces in such a way that the object
map dominates, but allows for strong bottom up areas
to remain possible attention zones. Due to each being
derived from different bases it is common to apply a
power to the maps prior to combination in the general
form of equations 1 and 2.

C (B(x,y) * 0(x,y))y 3)

where, C is the combined map, BU is the GBVS
saliency map [39], O is the “object” surface, either
from SURF points or from object-classified points. The
indices (x, y) are the pixel locations and are included to
show that the above 1is elemental, not matrix
multiplication. We choose y=0.05 in this paper
experimentally.

Figure 3. Thresholded combined bottom up GBVS map and object
context correction.

This has the effect of flattening the object
distribution somewhat. We also rescale the values
before combination of the two different maps to reflect
their degree of belief. We trust the bottom up map in
the passive case, but it is less reliable in the task case.
We therefore set the pixel values of the bottom up map
between [0.32-0.95] and the values of the object map
between [0.93-0.95] while retaining a large floating
point value for each pixel, allowing for smoothness.
These values are chosen out of many possible values to
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produce maps that combine to offer domination of the
attentional surface by the object context component
with the possibility of diversional attention to the
bottom up map. An example of the thresholded
combined map is shown in Figure 3 against eye-tracker
data. Eye fixation data overlaid from all participants.
All fixations denoted by “x”, first three only by “+”.
Note the shift in energy towards the known target area
compared to the pure bottom up case in Figure 1. Note
the overlap improvement compared to GBVS alone
illustrated in Figure 3.

4. Validation of the Combined Surface
under Task

Since here the aim is to build an improved attention
map, the map is tested here against human observer
eye-fixations, taken under tasking, to assess the
valuable correction of the proposed object-surface to
the bottom-up only case.

The eye-tracker data and image set from Torralba et
al. [41] has been used to validate the model. The test
image data set for this paper comprises 72 images and
108 search scenarios (3%36 tasks) performed by 8
observers, “count the people” on the first 36 images
and “count the cups” and “count the paintings” on the
other 36. Objects appropriate to the search-and-count
task performed by the observers are manually extracted
as reference images from the test images for all 108
search scenarios e.g., if task is to count the number of
paintings, a painting would be extracted from the
image, if present. Overall there are 61 object present
cases and 61 appropriate objects for task are extracted
out of the 108 tasks.

These objects are stored as reference images in a
head-on, 0 object recognition test process. (A
discussion of matching and object detection under
different angular viewpoint follows.) Each reference
image (i.e., 1 extracted “object” per task) is tested
using one-pass surf descriptor matching against the
descriptors from a one pass surf application to the
other 108 search task images. Our surf matching
thresholds are such that there is practically no
mismatching between the reference and test images.
The largest number of mismatches per image (i.e.,
matches from the wrong image) is 1 and statistically
very rare event. 30 out of 61 objects are recognized
using our object confirmation (This is > 6 matched surf
points lying within overlap tolerance) and 47 examples
has reliable SURF matching to at least three points in
the test image. The reason for these low values can be
attributed partially to our conservatively high matching
threshold and partially to the object size in the image -
often the area of the object pixels is very low( 1% of
image area of 800x600) and this does not allow for
robust descriptor representation in quantity.

For each search scenario, three saliency maps are
created: First, bottom up saliency; second, SURF

combined map only from matched points; third, object
combined map from object points. The construction
mechanism for second and third saliency maps are
identical, but there is a subtle change of the object
centre line since not all matched points are classified as
object points. Essentially the statistics from second and
third saliency maps are identical within reasonable
error, so below only cases first and second saliency
maps are presented. Whereas, third saliency map is
actually a refined subset of second saliency map
allowing for higher confidence.

All 72 images have applied a bottom up map.

SURF-only object maps are constructed when there are
at least three matched points between the reference and
test images (47/61 cases). Object surfaces are further
constructed when there are more than 6 points
classified as object points (30/61). Where the object is
detected, the bottom up and top-down object
contextual maps are combined as described above.
The attentional maps of each class are thresholded to
different image areas representing the more salient half
of the image. X=10, 20, 30, 40 and 50% of image area
are chosen since these levels clearly represent the
“more salient” half of the image to different degrees, as
illustrated in Figures 1 and 4. The Figure 4 exhibits an
overlap with the attentional maps at different threshold
levels for all eye-points, gathered over 8 experimental
participants under task. Left: eye-data vs. bottom-up
only (72 images, 8 participants, 108 tasks). Right: eye-
data vs. combined bottom-up and SURF-point object
context attentional maps. (47 incidents of # SURF
Matches > 3, 8 participants, 47 tasks). The bar indices
1 to 5 correspond to the 10 to 50% surface area
coverage of the masks, as illustrated in Figures 1 and 3.
The main axis is the percentage of interest points over
the whole image set that lie within the saliency maps at
the different threshold levels. The bars indicate average
overlap at each threshold. Errors: standard deviation is
plotted in red. There is a ten percent (or so) higher eye-
fixation overlap when object context can be combined
with the pure bottom up case.

For each search scenario, the eye tracker points
lying within and without each threshold level of each
mask are counted. We choose to use all eight
participants and to process all of the eye points. This
gives the exhaustive search case. The overlap is
considerably higher if only the first three fixations are
considered, but such fixations may contain elements of
centre bias and so the statistics are not presented here.
The comprehensive statistics for the overlap of the eye
fixations under task are shown in Figure 4. On the left,
the overlap of under-task eye fixations of all §
observers over all 108 tasks vs. the 72 bottom up maps
is shown. On the right, the overlap of the eye-fixations
of all 8 observers in the 47 tasks where an object
surface from atleast three SURF matches could be
constructed. There is a substantial overlap
improvement using our object-present surface, with
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there being approximately a 10% higher attentional
overlap relative to the bottom up models alone.
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Figure 4. Overlapping with the attentional maps at different
threshold levels.

4.1. Validation of SURF and Object
Confirmation Over Angular Viewpoint
Change

We performed a test on the matching performance and
object classification over different viewpoint angles.
Six sets of viewpoint shift images were collected, each
based around a different object in the scene Viewing
angle varied from head on 0° to 30° in steps of 5°.
From each image in the set, an object region was
manually extracted as a reference image. This object
was between 10 and 20% of image area. The relative
angles between reference plane and the other images in
the set were known and the matching performance of
both the SURF points alone and the Object
Recognition refinement were tested over the different
viewpoints. It was found that the object confirmation
breaks down between 15 and 2 of offset from the
reference, while the SURF matching alone generally
started to collapse beyond 20°.

5. DCT Compression using Combined
Saliency Maps

We have demonstrated a technique that can
successfully modulate attention maps from the bottom
up model alone to adjust for task based viewing that
relies on simple object recognition. If we know the
zone of an image that is of interest to an analyst, we
can apply a selective compression targeted towards
those areas of the image that are task critical. This
could potentially save a lot of bandwidth. Many
compression schemes are applied globally. This
requires using some rule of thumb to maintain all
potential information within an image, which means
that the compression is not as strong as it could be, or
it involves pushing the global compression further at
the risk of destroying key information in an image.
Here we propose a simple method of how our
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attention-enhanced map could be used to apply an
intelligent compression to an image.

The JPEG algorithm is designed for good visual
quality in photo-real images and so is appropriate in
our examples. JPEG relies on quantization of the
Discrete Cosine Transform applied to 8 by 8 pixel
blocks of an image. This reduces the relatively
unimportant high frequency components in each block,
allowing for efficient Huffman or arithmetic coding.
The quantization is performed using a quantization
matrix derived from psycho visual tests and this matrix
can be weighted to provide the required degree of
compression in the block. The reverse process decodes
the image [11, 43]. The heavier this quantization, the
larger the compression ratio achieved, however this is
tempered by the fact that over-quantization will
produce blocking artifacts that significantly reduce
image quantity and can damage real information within
the image. In regular JPEG, the quantization is fixed
across the whole image. In our case, however, we have
a reliable method of selecting regions of contextual
search interest under task. Our previous analysis leads
us to “expect” 85% of eye fixations to lie within the
top 50% of images by object contextual saliency.
Therefore, half of the image for high and half for low
compression are thresholded. However, this low
information will not be lost altogether and will be
available for contextual guidance.

We use a greyscale copy of the image and choose
two quality factors to impose a high or low quality on
the image region. The quality factor (Q) of 50 uses an
unweighted matrix which is the original matrix derive
from psycho visual experiments to give acceptable
compression. The quantization matrix we use is that
specified in Annex K of the JPEG standard for the
luminance component of images [2], appropriate for
greyscale. We choose a low value of Q=3 for the
outlying regions and weight the quantization matrix
according to the following relationship:
(50/Q)*Qmatrix. We choose this exaggerated example
of compression to illustrate the technique.

In practice, higher values of the non-core regions
would be chosen which would be more visually
pleasing and would not necessarily take up very much
more storage. We ran the binary DCT technique over a
set of 50 greyscale test images with object matches
from reference images from differing angles. For
comparison, we also applied a global DCT
compression to the test images at Q=50. We found the
average compression ratio (length (quantized,
linearised DCT image string): length (Huffman-
encoded string)) for the Binary- Task-DCT-Huffman is
6+0.2, while for the Global-DCT Huffman the average
is 5.5¢0.5. The final compressed output had a storage
value of 0.1737 bits per pixel for the binary, object-
context compression and 0.1927 bits per pixel for the
global compression. The gain in compression
outweighs the required storage for the reference
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descriptors and is valuable for large datasets. Figure 5
presents a task-oriented compression based on 9
matched and confirmed object points between test and
reference. Figure 5-a our reference image containing
an object of interest. Figure 5-b our test image, at a
different viewing angle to reference. Figure 5-c a
zoom-in of the detected object in the full intelligent
compression (seen in Figure 5-c). Figure 5-d the
thresholded combined attentional map of the bottom up
and object context in the test image. Black regions set
to Q=3, others Q=50 in the attention based
compression. Finally, Figure 5-e exhibits the full
compressed image. Non task-core regions are heavily
averaged while maintaining the background, core
regions are preserved. (See Centre left for a zoom-in of
the detected object.

a) Image containing an object
of interest.

d) The thresholded combined
attentional map.

¢) Zoom-in of the detected object in
the full intelligent compression.

¢) The full compressed image.

Figure 5. An effective illustration of object-context oriented
compression.

6. Performance Comparison in the State of
the Arts

The present study investigates how task instruction
affects eye movement patterns during the viewing of a
scene. The effect of task on eye movement patterns has
been long established by pioneers of research into eye

movement patterns [7, 44]. However, as convincing as
they are, the accounts of these effects are descriptive,
fixation data are depicted as images, and the results
lack quantification. We sought to provide quantitative
analyses, with a specific emphasis on investigating the
nature of fixation durations in addition to their
placement. We found that task effects are observed at
both the scene and object level of analysis. It is also
found that task affects both the placement and fixation
duration patterns during scene viewing. Tasks effect on
eye movements across the whole scene. At the level of
the whole scene, fixations are more distributed in the
memorization condition and are more focused on
search-relevant regions in the search condition, which
directly replicate the findings of [7, 44]. This is not a
surprising finding when we consider the strategies
involve for each task. In the Memorization task,
participants are told that they would be tested on
specific objects within the scene, and so to improve
encoding of the different objects, it makes sense that
they would try to fixate as many different objects as
possible.

This pattern of spreading fixations over many
different objects is also reflected to some extent in the
total scan pattern and to a greater extent in the greater
total number of fixations; that is, there is a numerically
longer scan pattern and a higher count of fixations in
the Memorization than in Visual Search task. In the
visual search task, fixations are more narrowly focused
within the scene, and we can assume that participants
limited their fixations to the areas that most likely
contained the target. This finding is consistent with
other studies showing that context information leads to
more efficient searches [3, 4, 5, 9, 31]. Furthermore,
this effect of context has been implemented in a recent
computational model proposed in [41], which show
that participants’ fixations largely remain within scene
areas that are statistically most likely to contain the
target object. It is found that for both tasks average
fixation durations increase as viewing time increased
(for the first 5 fixations) and then remains stable in the
later viewing period. This finding is consistent with
earlier studies that are reported similar patterns [42].

It is also observed that the fixation durations stop
increasing after only E2s. This steep increase during
the first seconds of viewing is also found in other
studies in which the task demands rely on the quality
of the initial performance (e.g., E3.4s in [42]). One
could conclude based on the fixation duration data that
the initial scanning of the scenes does not differ
between tasks. However, the saccade amplitude
measure across the whole scene seems to point to a
different pattern, which we will turn to now. When we
examine average saccade amplitude, there are no
systematic differences between tasks; however, there
are differences in the saccade amplitude during the
initial viewing of the scene. We find that participants
make longer saccades during initial viewing in visual
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search versus memorization, while later saccades do
not differ across tasks. Again, this difference can be
attributed to the strategies that participants are
implementing as they examine the scene in each task
condition. However, it is not clear whether the
difference in saccade amplitude is due to the
participants staying closer to the centre during the
initial encoding for the memorization task, or whether
they are simply scanning the whole scene more
thoroughly in the visual search task. It is not clear what
a proper baseline for these tasks would be, but in a
preference rating task, Antes (1974) found that the
average saccade amplitudes seem to decrease with
increased viewing time. If we see this as the default (an
initial wide scanning of the scene with the first few
seconds of viewing), then it may be that when a
memorization strategy is implemented the system can
immediately start to examine details without the need
for an initial wide scanning of the scene. This finding
is in direct contrast to other studies that report that the
first few fixations are controlled by stimulus factors
alone [28].

For instance, Mannan et al. [28] measure eye
movements while viewers examine greyscale
photographs for 3s each. The photographs are either
high-pass filtered, low-pass filtered, or unfiltered.
Results show that fixation positions are similar on the
unfiltered and lowpass filtered scenes during the first
1.5s of viewing. However, as noted by Henderson and
Ferreira [23], even if eye movement control is largely
determined by stimulus factors during the initial
scanning of the scene, this does not prevent fixations
from being influenced by task. In the present study, the
immediate implementation of the memorization
strategy is also seen with the elapsed time to the first
saccade and is discussed further below.

The elapsed time to the execution of the first
saccade is much longer for the memorization task than
the visual search task. This elapsed time until the first
fixation (or the initial fixation at scene onset) is
theoretically different from other fixations made on the
scene because it involves identifying the scene being
presented [8, 9], as well as deciding and planning
where to target the next fixation [9].

The additional 48 ms in the Memorization task, in
addition to the shorter initial saccade amplitudes
discussed above, suggest that the effect of task is
immediate. That is, the largest differences between the
tasks are seen within the first few seconds of viewing
with both saccade amplitude and fixation duration
becoming similar in the latter part of the viewing
period. This immediate effect is interesting in light of
other top-down influences, such as the effect of scene
context on the examination of objects within the scene
[22, 35], which seems to only emerge in later viewing.
Top-down effects due to scene semantics seem to take
a while to onset (relative to the whole viewing period),
while top-down effects of task are seen immediately
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and seem to be more pronounced in the first few
seconds of viewing. Task effects eye movements on
objects. To better understand the effect of tasks on the
examination of objects within the scenes, we also look
at fixation patterns on objects. As would be expected
from the effect of task on the distribution of fixations,
we also find that participants tend to examine more
objects in the memorization task condition. However,
theoretically more interesting is the failure to observe
an effect of task on the average fixation duration. The
reason this is interesting or even surprising is that the
lack of an effect of the task goes against the findings in
the reading literature, in which effects of task, context,
word difficulty, and word length are seen at the level
of the average fixation duration [36]. Instead, we find
that task affected gaze duration by modifying the
number of fixations within a gaze on a given object.

The same pattern is also seen across other aggregate
measures of eye movements on the objects viewed in
the scenes. This finding is consistent with the failure to
observe effects of other factors on individual fixation
durations during scene viewing [23, 24]. In general,
participants tend to spend more time fixating objects in
the memorization task than in the visual search task.
However, this is seen in the number of times that the
objects are fixated, not in the average fixation duration.

This finding is consistent with an earlier study by
Loftus [27] that reported memory for scene regions is
not related to the average fixation duration but rather to
the number of fixations made on the region. The
finding that the number of fixations is greater for
memory than the visual search task can be easily
attributed as a system level strategy by which visual
information in the memory task is encoded more
thoroughly. However, because an equivalent effect is
not found at the level of the fixation duration may
indicate a limit in the architecture governing the
decision of when to move the eyes. Rather than
influencing when the eyes move, the effect of the task
on scenes is observed in regards to where the eyes
move. When to move the eyes during scene perception
based on Morrison’s [29] reading model, researchers in
[22, 36] suggest that the decision of when to move the
eyes during scene viewing is based on the processing
of currently fixated visual information to a certain
level. In reading, that level is thought to be lexical
access of the word [37], whereas in scene viewing, it is
proposed to be the recognition of the object at fixation
[22].

In a recent set of studies, Henderson and colleagues
[24] investigate the degree to which the currently
fixated visual information affects fixation durations on
scenes. By masking the stimulus at the end of a
saccade, the availability of the scene information is
delayed. The rationale based on Rayner and Pollatsek
[34] is that if fixation durations depend on the
information currently being encoded and then the
fixation durations should increase in proportion to the
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delay of the stimulus onset. Results show that although
there is a subpopulation of fixations whose durations
are not affected by the delay, for a second population
of fixations there is a substantial link between the
availability of the fixated information and the duration
of the fixations. The authors conclude that fixation
duration in scene viewing is partially controlled by the
immediately available information from the scene.

7. Conclusions and Future Work

This paper has successfully demonstrated an improved
approach of combining a reliable model of bottom up
saliency with an object recognition scheme to construct
a combined bottom-up and object-present (i.e., task)
attentional map for an image. This offers considerable
advantages over previously reported methods.
Specifically we do not require an intensive training
phase and can remain viewpoint invariant. Testing of
the resulting combined map against observer eye-
fixations shows that the combined maps offer
substantial improvement against the bottom-up only
case at predicting the location of human observer eye-
fixations under task, if an object is detected. Finally,
we demonstrate the utility of this information, by
proposing and demonstrating a DCT compression
technique that uses the combined attentional maps to
prioritise task salient information during compression.

Even though the object recognition technique that
we use in this paper is based around the recognition of
a specific object, the approach that is presented by this
paper would still apply in the case of general object
class recognition. This is one obvious future extension
to this project but impact on performance needs to be
considered carefully. The application of compression
algorithms to images based on their task-salient
regions can be extended by investigating alternative
compression schemes.
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