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Abstract: One of the popular methods for optimizing combinational problems such as portfolio selection problem is swarm-
based methods. In this paper, we have proposed an approach based on Quantum-Behaved Particle Swarm Optimization
(OPSO) for the portfolio selection problem. The Particle Swarm Optimization (PSO) is a well-known population-based swarm
intelligence algorithm. QPSO is also proposed by combining the classical PSO philosophy and quantum mechanics to improve
performance of PSO. Generally, investors, in portfolio selection, simultaneously consider such contradictory objectives as the
rate of return, risk and liquidity. We employed QPSO model to select the best portfolio in 50 supreme tehran stock exchange
companies in order to optimize the objectives of the rate of return, systematic and non-systematic risks, return skewness,
liquidity and sharp ratio. Finally, the obtained results were compared with Markowitz's classic and Genetic Algorithms (GA)
models indicated that although return of the portfolio of QPSO model was less that that in Markowitz’s classic model, the
QOPSO had basically some advantages in decreasing risk in the sense that it completely covers the rate of return and leads to
better results and proposes more versatility portfolios in compared with the other models. Therefore, we could conclude that
as far as selection of the best portfolio is concerned, QPSO model can lead to better results and may help the investors to make
the best portfolio selection.
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1. Introduction various issues in portfolio management. Huang and
Litzenberger [12] researched portfolio selection theory
when a riskless asset and short-selling of riskless asset
are allowed. Konno and Suzuki [16] considered
skewness in portfolio management.

These researches greatly developed Markowitz’s
mean-variance model and made great achievements in
portfolio selection theory. The common assumptions in
their models are that investors have enough historical
data of securities and that the situation of asset markets
in future can be correctly reflected by the asset data in
the past. However, it is hard to always ensure such
assumptions. Sometimes, for example, when new
stocks are listed in the stock market, there is no past
performance information for their securities; and for an
ever-changing real asset market, the second
assumption can hardly be ensured either.

Although, there are different methods to solve
portfolio  selection and other combinatorial
‘ ; optimization problems in financial and other applied
efforts have been made to improve mean-variance  giiences use of Genetic Algorithm (GA) is promising

models. Shgrp [25] greatly simplified the number and approach to solve combinatorial optimization problems
the type of input data. Best [2], Merton [22], and Voros [3]

[32] contributed greatly to the efficient portfolio The GA, introduced by Holland in 1975, is a well-
frontier. Based on the core of Markowitz’s theory of
applying mean and variance to describe return and risk,
mean-variance models were also extended to discuss

Markowitz’s work [17, 18] is considered as the most
influential theory for portfolio selection. Since he
proposed his distinguished work using quantitative
methods, scholars began to research portfolio selection.
Markowitz analyzed portfolios containing large
numbers of securities. He considered returns of
individual securities as random variables. The purpose
of his analysis was to find portfolios that best meet the
objectives of investors. Markowitz presented his
famous mean-variance model through quantifying
portfolio return as mean and calculating variance as
risk. For a given specific return level, an optimal
portfolio can be obtained when the variance of
portfolio is minimized. While, for a given risk level,
which the investor can bear, an optimal portfolio can
be obtained when the expected return of portfolio is
maximized.

Since the introduction of Markowitz’s model, many

known efficient nonlinear search methodology in large
spaces [10]. GA uses a population, which is simply a
set of chromosomes, to search the solution space.
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During each generation, three genetic operators are
applied to the population: selection, crossover and
mutation. Selection operator picks chromosomes in the
population based on their fitness. Each pair of
chromosomes or parents undergo crossover at random
by exchanging their information with each other to
generate new chromosome or offspring. The efficient
set selection within a portfolio may be efficiently
solved by using GA [28, 34, 35]. These GA based
portfolio selection algorithms merely focus on standard
deviation as an appropriate measure for non-systematic
risk. This indicates that investors weigh the
probabilities of negative returns equally against
positive returns [6]. In addition, GA has also been used
to measure portfolio volatility in relation to the stock
market [24] to evidence that the technical trading is
efficient in the Santa Fe artificial stock market [8] and
to explore the relationship between the wealth
dynamics and risk preferences in a multi-asset artificial
stock market [7]. As using genetic algorithm is
common and different articles were covered this
problem, we just show the results of running this
method in order to focus on proposed Quantum
Behaved Particle Swarm Optimization algorithm
(QPSO).

Another popular method for optimizing complex
problems, which is kind of population-based
algorithms, is to apply swarm algorithm because it can
be implemented relatively easily and is applicable to a
very wide range of problems. Swarm algorithm is a
type of artificial algorithm based on the collective
behaviour of decentralized, self-organized systems.
One of the famous swarm based algorithms that is
introduced so far is Particle Swarm Optimization
(PSO). The PSO belongs to the class of direct search
methods used to find an optimal solution to an
objective function (aka fitness function) in a search
space, which is first described in 1995 by Kennedy
and Eberhart [15]. PSO is not a global convergence-
guaranteed optimization algorithm, as van den Bergh
has demonstrated [33]. Therefore, Sun et al. [29, 30]
proposed a global convergence-guaranteed search
technique, QPSO whose performance is superior to the
PSO [11]. The QPSO is proposed by combining the
classical PSO philosophy and quantum mechanics to
improve performance of PSO.

In this paper, risk evaluations concentrate on
estimating the distributions of financial return series.
The main objective is to optimize the portfolio set
based on appropriate threshold selection. Thus, we
introduce a QPSO based portfolio volatility to forecast
a model in order to select the best portfolio set and
dynamically to estimate a suitable peak threshold for
each asset in the portfolio, simultaneously. The
proposed method is highly efficient and effective in
providing near optimal solutions within a few minutes.
The paper is organized as follows: In section 2,
Markowitz models for portfolio selection are briefly

reviewed and after the introduction of some necessary
knowledge about PSO, A QPSO-Portfolio Selecting
algorithm is designed to solve the portfolio selection
problem in section 3 that is covered all aspects of
research methodology. In section 4 results will test
with different ratios and in the end of this part,
numerical results are presented to show the potential
applications of the different models. Conclusion
remarks are finally given in section 5.

2. Definition and Literature
2.1. Portfolio Selection

First, let us remember the well-known Markowitz’s
mean-variance model [17, 18] for portfolio selection
problem. Let N be the number of different assets, u; be
the mean return of asset i, o; be the covariance
between the returns of assets i and j, and finally, 4 [0,
1] be the risk aversion parameter. The decision

variables x; represent the proportion of capital to be

invested in the asset i. using this notation, the standard
Markowitz’s mean-variance model for the portfolio
selection problem would be:

N
minimize |:le2—: xlaljxj:|+(1 ) - .E/lixi:| (D
N
subject  to Z x; =1, 2)
0<x; <l i=1..,N. 3)

The case with A=0 represents maximizing of the
portfolio mean return without considering the variance
and the optimal solution will form only by the asset
with the greatest mean return. The case with A=1
represents minimizing of the total variance associated
to the portfolio regardless of the mean return and the
optimal solution will typically consist of several assets.
Any value of 1 inside the interval (0, 1) represents a
tradeoff between the mean return and the variance,
generating a solution between the two extremes (1=0
and 1).
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Figure 1. Standard efficient frontier corresponding to the smallest
benchmark problem.

Since every solution satisfying all the constraints
(feasible solution) corresponds with one of the possible
portfolios, from now on, we will speak without
distinguishing between the solutions for the above



Using Quantum-Behaved Particle Swarm Optimization for Portfolio Selection Problem 113

problem and portfolios. The portfolio selection
problem is an instance of the family of multi-objective
optimization problems. Therefore, first we have to find
out adopt a definition for the concept of optimal
solution. Here we will use the Pareto optimality
definition [26].

“A feasible solution of the portfolio selection
problem will be an optimal solution (or non-dominated
solution) if there is not any other feasible solution
improving one objective without making worse the
other”.

Usually a multi-objective optimization problem has
different optimal solutions. The objective function
values of all these non-dominated solution form what
the so-called the “efficient frontier”. For the problem
defined in equations 1-3, the efficient frontier is an
increasing curve that gives the best tradeoff between
the mean return and variance (risk). Figure 1 shows an
example of such a curve corresponding to the smallest
benchmark problem described in section 4. This
efficient frontier has been computed taking 2000
different values for the risk aversion parameter A and
solving exactly the corresponding portfolio selection
problems. The objective function values of the
resulting solutions give 2000 points that form the curve
in Figure 1. We call this curve as the standard efficient
frontier in order to distinguish it from the general
efficient frontier, corresponding to the general mean-
variance portfolio selection model which we will be
describes in the coming paragraphs.

With the purpose of generalizing, the standard
Markowitz’s model to include cardinality and
bounding constraints, the model formulation that can
also be found in [4, 13, 26] will be applied. In addition
to the previously defined variables, let K be the desired
number of different assets in the portfolio with no null

investment, & and o, be the lower and upper bounds
respectively for the proportion of capital to be invested
in the asset i, with0<g <8, <1. The additional
decision variables z; are 1 if asset i is included in the

portfolio and 0 otherwise. The general mean-variance
model for the portfolio selection problem is:

488 ’1[ > } “)
L SO X s 1- - iXi
minimize 212 Xj0jix +( ) i:fulxl

N
subject  to 'ZI x; =1, (5)
=
N
Yook (©)
i=1
SlZl le Sé‘lzl, l:],,N, (7)
z. {00}, i=1..,N (8)

This formulation is a mixed quadratic and integer-
programming problem, for which no efficient

algorithms exist. Another difference with the standard
model is that, in the presence of cardinality and
bounding constraints the resulting efficient frontier
(which we are going to call it as general efficient
frontier) can be quite different from the one obtained
with the standard mean-variance model. In particular,
the general efficient frontier may be discontinuous [4,
13].

2.2. A Quantum-Behaved Particle Swarm
Optimization

The PSO algorithm, firstly proposed by Kennedy and
Eberhart [15], is a population-based evolutionary
search technique. It is underlying motivation for the
development of PSO was social behavior of animals
such as bird flocking, fish schooling, and animal
herding and swarm theory. In PSO with M individuals,
a potential solution to a problem is represented as a
particle flying in D dimensional search space, with the
position vector X=(x;i, X;...,x;p) and velocity
V=(i,Vi,...,vip). Each particle records its best
previous position (the position giving the best fitness
value) as pbest=(pbest;, pbest,, ..., pbestp) called
personal best position. At each iteration, each particle
competes with the others in the neighborhood or in the
whole population for the best particle (with best fitness
value among neighborhood or the population) with
best position gbest=(gbest;1, gbesty, ..., gbestp) called
global best position, and then makes stochastic
adjustment according to the following evolution
equations.

v, =wv, +c rand().(pbest, —x,,) + c,.rand,().(gbest—x,;) )
Xig =Xig TV (10)

For i=1,2,...,M; d=1,2,...,D. In equation 9, ¢; and ¢,
are positive constant; rand;() and rand,() are two
random functions generating uniformly distributed
random numbers within [0, 1]. Parameter w is the
inertia weight introduced to accelerate the convergence
speed of the PSO. At each iteration, the value of V;; is
restricted in [-Vmax, Vmax].

PSO is not a global convergence-guaranteed
optimization algorithm, as Van Den Bergh has
demonstrated [33]. Therefore, Sun er al [29, 30]
proposed a global convergence-guaranteed search
technique, algorithm QPSO, whose performance is
superior to the PSO. In the quantum model of a PSO,
the state of a particle is depicted by wave function (X,
t), instead of position and velocity. The dynamic
behaviour of the particle is widely different from that
of the particle in traditional PSO systems in that the
exact values of position and velocity cannot be
determined simultaneously. We can only learn the
probability of the particle’s appearing in position x
from probability density function|(x,) |, the form of
which depends on the potential field the particle lies in.
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The particles move according to the following iterative
equation [28, 29].

xg(t+1)=1g,+ Bl mbest,—x,(t)|In(1/u)} (11)

where
g, = ¢-pbest , +(1-p)gbest ;, (12)

and

M
mbest,; = Zpbestid /M (13)

i=1
mbest (mean best position or mainstream thought
point) is defined as the mean value of all particles’ the
best position, ¢ and u are random number distributed

uniformly on [0,1] respectively and m is the number of
particles. L=p. |mbest,- x;4(t)|. In(1/u) can be viewed as
the strength of creativity or imagination because it
characterizes the knowledge seeking scope of the
particle, and therefore the larger the value L, the more
likely the particle find out new knowledge. The
parameter, £, called contraction-expansion coefficient,
is the only parameter in QPSO algorithm. From the
results of stochastic simulations, QPSO has relatively
better performance by varying the value of f from 1.0
at the beginning of the search to 0.5 at the end of the
search to balance the exploration and exploitation [31].

3. Research Methodology
3.1. The Objectives of Model

As already mentioned, the main objectives of our
model for estimating the best results for the portfolio
selection include.

3.1.1. Maximizing the Portfolio Return

Since investment is carried out for obtaining return and
investors try to invest in a manner so as to be able to
achieve the maximum level of return, accordingly the
purpose of portfolio selection can be defined as:
“Return of investment in stock including any type of
cash within a given period of time along with the
fluctuations of price during the period divided by the
price of securities or assets at the time of buying” [1].
To calculate the rate of return the equation 14 is used:
n

maxZ; = E,I X7 (14)
where, x; is the proportion invested in various assets
when the best trade-off is found and 7; is the expected
rate of the return of assets.

3.1.2. Minimizing the Non-Systematic Risk

Since we have defined risk as the fluctuation of return,
then the more limited the distribution of the return, the
less amount of the risk we would expect. In practice,
we can use “standard deviation of the rate of return”
which shows the characteristics of probability

distribution for measuring the amount of risk [18].
Regarding the fact that variance reveals the distribution
of the data around the mean, minimizing of the
significance of variance, as an objective, to decrease
the fluctuation of a portfolio return can be stated as
equation 15:

. no22 nom
mmZzzig]xi 5; +i§]j2=:]xixj5ij (15)

2 . .
where, 51 and 517 are the variance and covariance of

the excess returns, respectively.

3.1.3. Minimizing the Systematic Level of Risk

Beta as an indicator of sensitivity is a criterion for
measuring the systematic level of risk, which measures
part of the total risk that does not reduce as variety
increases. Beta is a relative criterion of a given share in
relation to the portfolio of the whole stock. The amount
of beta can be calculated using the following equation
[24]. The objective of the minimum systematic level of
risk can also be defined as the equation 16 in order to
minimize this type of risk:

n
min Z :iglxiﬂi (16)
where, f;is the systematic risk of assets.

3.1.4. Maximizing the Stock Return Skewness

Considering the fact that the investor looks for positive
return and tries to select a stock whit a positive
distribution of return, and since the companies under
investigation had positive distribution of return
skewness [16], the following objective was defined for
selecting a portfolio with a positive distribution of
return skewness:

iz, - & st + %i(é ¥2x 5

i—1
+lzlxl-xf-sw) i (17)

3 .
where, S;. is the skewness and, Sj; and Sj; are co-
skewness of the excess returns.

3.1.5. Maximizing the Level of Portfolio Liquidity

The amount of liquidity stock reveals the potentiality
of changing stock into other types of equities such as
money. Since in emergency cases investors tend to sell
their stock easily in order to calculate the risk of
company liquidity, we can use the ratio of the number
of days in which the company's stock was dealt over
the number of the days in which the company was
active in the market. Therefore, the objective of
maximizing portfolio liquidity can be stated as:

n
max Z 5 = iglxiei (18)

where, ¢; is the liquidity of assets.
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3.1.6. Maximizing the Sharp Rate in Portfolio

Sharp (1963) introduced the criterion of additional
return to the risk as an indicator of developing
portfolio equation 19. As already explained, additional
return is the difference between the return without risk
and the return of the stock and the investors' aim to
invest in a way to achieve the maximum of this level
and more return at the expense of risk they accept:

(19)

n
maxZ g = iZ,Jx,-S,-
where, S, is the liquidity of assets.

3.2. The Quantum-Behaved Particle Swarm
Optimization for Solving Portfolio
Selection Problem

In order to solve determine the level of investment in a
portfolio with QPSO, we must determine an encoding
of particle’s position and a fitness function and then we
must introduce an algorithm based on QPSO.

3.2.1. Particle’s Position

A particle’s position encoding is most important factor
in QPSO that is affected on the size of the search
space. The particle’s position of the current problem
has 50 genes. The decimal of each gene indicates a
collection of answers related to the amount of
investment in each company. Figure 2 shows the
particle’s position encoding.

Index : 1 2 50
The amount of investment: | 0.1 | 0.23 | | 0.89

Figure 2. A particle’s position encoding.

3.2.2. Fitness Function

Another important factor is a fitness function. The
complete and appropriate fitness function is showed in
equation 20:

F(x)znl—Zl+Zz—p2+Z37p3+n4—Z4+n5725+n6726 (20)
h, h, hy h, hy h

where Z, n;,(p) and h; are respectively the objective
functions, the fitness amounts (that described in section
4.1) and euclidean normalized index. In this paper, we
must try to minimize fitness function.

3.2.3. The Proposed Algorithm

The following is the procedure of QPSO-Portfolio
Selecting algorithm:

o Step 1: Initialize the population by randomly generate the
position vector X; of each particle and set pbest; = X.

o Step 2: Evaluate the fitness value of each particle by
equation 20, update the personal best position (pbesti)
and obtain the global best position (gbest) across the
population.

o Step 3: Ifthe stop criterion is met, go to step hg5, or else
go to step 4.

o Step 4: Update the position vector of each particle
according to equation 11 and go to step 2.

e Sep 5: Output the gbest as a solution for portfolio
selection problem.

There are two alternatives for stop criterion of the
algorithm. One method is that the algorithm stops
when the objective function value is less than a given
threshold ¢&; the other is that it terminates after
executing a pre-specified number of iterations.

4. Test of Results with Different Ratios
(Running the Model)

As was mentioned, the objective was to select the best
portfolio from among the 50 top companies of the
Tehran Stock Exchange. Table 1 shows these
companies along with the defined variables and the
necessary parameters for applying the model.

As Table 1 shows the first column lists the
companies in question, the second column shows the
decided variables for each company and the third
column is the monthly return for each company, which
was calculated based on the mean of returns in the last
72 months ending in March 2008. To measure non-
systematic risk in the fourth column, we used variance
of return. The fifth column demonstrates systematic
risk (beta sensitivity indicator) and the sixth column
indicates the skewness return of stock within the
investigated ranges (since the objective was to
maximize the skewness of portfolio, in this study, the
50 top companies in the stock which had positive
skewness indicator were investigated). The seventh
column represents the liquidity of each company, and
the last column indicates the sharp rate, demonstrates
the additional return of the stock in relation to non-
systematic risk. To measure the sharp ratio, free-risk
return was considered as 15.5% (as the mean rate of
the commercial securities).

Table 1. Coefficient of the stocks in the model.

Stocks Variable | Rate of Return | Nonsystematic risk | Systematic risk | Skewness of return | Liquidity | Sharp ratio
Iran Khodro X, 3.35 167.7025 2.04 3.872 0.89 0.26
Iran Khodro Diesel X5 4.01 317.5524 2.73 3.872 0.85 0.22
Bank Eghtesade Novin X3 9.83 1323.504 3.18 3.872 0.83 0.27
Behran Oil Xu9 3.48 89.1136 0.47 3.872 0.8 0.37
Pars Oil Xso 2.78 114.49 0.63 3.872 0.77 0.26
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4.1. Limitation Levels and Fitness Amount

Reviewing similar cases and conducting interviews
with stock specialists and practitioners, we concluded
that the maximum level of investment in each stock
was 0.1.

The fitness amounts for the objectives such as
maximizing the portfolio return (n;), minimizing the
non-systematic risk (p,), maximizing the stock return
skewness (n,), maximizing the level of portfolio
liquidity (n5) and maximizing the Sharp rate (7s) in
portfolio were measured as 10.371, 11.875, 0.875,
0.227 and 0.99, respectively through solving the single
objective programming problems.

Since the normal beta in a market is 1 and the stocks
whose beta is more than 1 are risky stocks and that the
distribution of the return of such stocks is enormous;
also, considering that those stocks whose beta is less
than 1 are safe stocks and the distribution of their
return is limited, accordingly we considered 1 as the
fitness amount of systematic risk objective (p;).

4.2. The Model’s Response

All algorithms are coded in JBuilder and runs have
been done on a Centrino 1.5GHz computer with
512MB memory. Also, the initial populations of all
algorithms consist of random individuals. And each
experiment (for each algorithm) was repeated 30 times
with different random seeds. All algorithms run on
equivalent conditions. Specific parameter settings of
all algorithms are described in Table 2.

Table 2. Design parameters of GA and QPSO.

QPSO Termination criterion(Max iteration) 150
Size of the population 100
Termination criterion(Max iteration) 150
Size of the population 150

GA Probability of crossover 0.8
Probability of mutation 0.001
Scale for mutations 0.1

The result of the application of QPSO is shown in
Table 4. The presented results show the proportion of
the stock which should be invested in the share of each
company. For instance, 7.6 in the 10 the raw and the
last column indicate that to minimize the fitness
function The investor should invest 7.6% of his capital
in the X4 variable (Behran oil company). In this
section to measure the quality of the selected portfolio
by QPSO, the return of the selected portfolio is
compared to Markowitz Model and Genetic Algorithm.
To compare the results we use the return of the
portfolio within the 72 months time period ending in
March 2008. Figure 3 shows the accumulated return of
different portfolios within the time range in question.
Figure 3 clarifies that the Markowitz portfolio gives a
better return in comparison with multi-objectives
model which has worked based on the genetic
algorithm and QPSO.

Table 3. Optimal portfolio solutions.

Variable Result Variable Result Variable | Result
X1 0.06 X18 0 X35 2.90
X 0.07 X19 0.01 X36 5.60
X3 1.12 X20 5.47 X37 0.12
X4 0.36 X21 5.23 X38 0
X5 0.19 X22 0.03 X39 595
X6 0.24 X23 0.02 X40 0.02
X7 0.27 X24 0.46 X41 8.04
X3 0.01 X25 7.39 X42 4.02
X9 1.13 X26 0.14 X43 0.01
X10 0.18 X27 4 Xa4 1.52
X11 0.17 X728 0.03 X45 0.26
X12 0.13 X29 3.85 X46 4.95
X13 2.81 X30 0.02 Xa7 0.49
X14 0.06 X31 0.17 X48 0.32
X15 1.79 X32 7.66 Xa9 7.6
X16 49 X33 275 X50 6.83
X17 0.33 X34 0.10
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Figure 3. Ex-post performance of portfolios (return of portfolio).

Regarding the fact that investors counter with risk,
mere reliance on return in the evaluation of
performance is not a good criterion, although every
investor prefer higher return, they also prefer not to
risk. Therefore, to have a fair evaluation of portfolio
performance we should determine whether the return is
a function of risk? Hence, to relatively evaluate
performance of the portfolios we should use methods
of modified evaluation which take into account the
amount of risk involved. Also, to check the variations
of the portfolios we should use correlation coefficient
and the number of the selected stocks. Table 3
illustrates the indicators for performance evaluation of
the portfolios.

Table 4 shows that none of the models is superior to
the other as far as all of the indicators are concerned.
However, the multi-purpose model which has been
solved by the use of QPSO has given highly Number
of stocks in the portfolio (40) with less amount of non-
systematic risk. Despite the fact that, the model solved
by QPSO results in less return compared to Markowitz
model, considering Trynor indicator it can be
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understood that the decrease in return has been coupled
with less risk. Also, the modified indicators based on
the risk confirm the superiority of the portfolios
resulted from QPSO in comparison with two other
models.

Table 4. Ex-Post performance of portfolios (competitions of
models).

Markowitz GA QPSO
Model Model | Model | Model
Average Rate of Return 8.18 5.38 5.83

Standard Deviation of the Rate

of Return (Nonsystematic Risk) 399.24 123.01 8125

Jensen Coefficient (Free risk

Return) 6.11 3.66 3.97
Treynor Ratio 3.6 3.81 3.26
Sharpe Ratio 0.34 0.37 0.5

Coefficient of Determination 0.18 0.19 0.47
Number of Stocks in the

Portfolio ? 37 40

Number of Months with 26 20 12

Negative Portfolio Return

Figure 4 shows the fitness value curve of the
problem solved by the QPSO and GA after 400
iterations. The minimum fitness value of QPSO
method is 3.47E-06 whereas the minimum fitness
value of GA method is 3.67E-05. Figure 4 shows
QPSO obtained better solution in shorter time.

Activation Function

0.0015

value

0.001

0.0005

Activation function(fitness

Figure 4. Activation function (fitness value) curve.

5. Conclusions and Discussions

Considering that the QPSO and GA models are non-
linear and can be easily applied for numerous variables
and can be upgraded effortlessly in case of adding a
new variable (company) they can be claimed that these
two models are more suitable model for selecting stock
portfolio in comparison with Markowitz model. But
finally in selecting between two artificial models
regarding to indexes the fitness value, number of
iterations, average rate of return, number of stocks in
the portfolio and standard deviation of the rate of
return, it could be concluded that the best model is
QPSO in portfolio selection problem solving.

In this study, the objectives of the model were
considered as explicit, nonetheless, in similar studies
one can use fuzzy multi-purpose models in order to
select a portfolio. Using this model one can take into
account different dimensions of the reality of the issue,
and in turn achieve more actual responses. Regarding
the fact that the return of the stock is probable in
nature, we suggest future researches apply probable
multi-objectives in selecting stock portfolio.
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