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Texture Image Segmentation using a New
Descriptor and Mathematical Morphology
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Abstract: In this paper we present a new texture descriptor based on the shape operator defined in differential geometry. Then
we describe the texture feature analysis process based on the spectral histogram. After that we describe a new algorithm for
texture segmentation using this descriptor, statistics based on the spectral histogram, and mathematical morphology. Many
results are presented to illustrate the effectiveness of our approach.
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1. Introduction

Texture image segmentation is a fundamental problem
in computer vision with a wide variety of applications.
The texture can be regarded as a similarity grouping in
an image. The local sub-pattern properties give rise to
the perceived lightness, uniformity, density, roughness,
regularity, linearity, frequency, phase, directionality,
coarseness, randomness, fineness, smoothness,
granulation, etc. Because texture is regarded as a rich
of source of visual information, it is difficult to define
the properties that can be used effectively to
characterize all textures and to find a set of properties
that can be used to distinguish textures found in a
given image. And it is also difficult to determine the
texture region boundary accurately because the texture
is a region property rather than a point property.

The common approaches to solve the textured
image segmentation problem can be classified to be
either supervised or unsupervised algorithm based on
whether the number of textures contained in the image
is known in advance or not. The typical methods are
region growing, estimation theory based on maximum
likelihood, split-and-merge, bayesian classification,
probabilistic relaxation, clustering, the mumford-shah
model, etc.

In this paper, we choose the spectral histograms as
the texture feature and adopt an effective computing
method to evaluate the similarity between histograms.
Spectral histogram consists of histograms of response
images of chosen filters. It can capture local spatial
patterns through filtering and global patterns through
histograms and constraints among different filters
compared with the above texture analysis methods.
Based on the determined texture features, we can
obtain the initial segmentation result. Skeleton
extracting algorithm based on  mathematical
morphology is applied to determine the texture region

boundary accurately. The outline of our paper is as
follows: In section 2, we introduce the intrinsic texture
descriptor. Then in section 3, we describe the texture
feature analysis process based on the spectral
histogram. In section 4, skeleton extracting algorithm
applied to obtain the accurate texture region boundary.
Experimental results are shown and discussed in
section 5. Finally, section 6 gives the conclusion.

2. New Texture Descriptor
2.1.Previous Work

In this work, we are particularly interested in the
Beltrami representation introduced by [11]. Sochen et
al. [11], proposed a new efficient representation of
images by considering images as a riemannian
manifold embedded in a higher dimensional space. For
instance, a standard 2 dimensional gray value image
LIR°—IR" can be viewed as a surface Y with local
coordinates (x,y) embedded in /R’ by a smooth

mapping:
X:(6) X =x.X, =0, X, =I(x,))) D

This manifold-based representation of images offers
two main advantages. Firstly, it allows to use efficient
tools borrowed from differential geometry to perform
different image processing tasks such as denoising or
segmentation as we will do in this paper. The second
main advantage is the ability to work with arbitrary N
dimensional images.

Sagiv et al. [9] used the Beltrami framework to
represent the texture image as a 2-D dimensional
manifold embedded in a space of N+2 dimensions,
where N is the number of Gabor responses. They used
the first fundamental form [7], also called metric
tensor, of the texture manifold to define an intrinsic
edge detector like in [10]. The idea of using the metric
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tensor to intrinsically define the edges between
different homogeneous texture regions is efficient in
the context of differential geometry. Indeed, the first
fundamental form describes the distortion or rate of
change of the manifold and so can detect boundary
between different parts of the manifold corresponding
to different homogeneous textures. More precisely
Caselles et al. [3], used the geodesic active contour
model to drive the evolving contour toward the
boundaries between two different texture regions by
considering the edge detector function or stopping
function as the inverse of the determinant of the metric
tensor. This can be explained in the following way. If
we consider the definition of the first fundamental

form:
oX oX
=l <—,—>
=<2 2)

where u,v=x,y in the (x, y)-basis, we have in the case
of gray scale images, X=(x,y,I) and g,.=1+1 ’, gow=1l,

and g,,=1+1 yz which det(g,.,)=(1+] VI°). The previous

function exactly corresponds to the edge detector
function used in the standard model [3]. Thus, Caselles
et al. used the metric tensor of texture images to define
an efficient edge detector for textural images.
Nevertheless, as we said earlier, the edge detector
function is not robust enough to segment a wide range
of images and a region-based term, coming from the
vectorial Chan-Vese model [4], was coupled with their
intrinsic edge detector function to perform the
segmentation of complex textures. This coupling is
necessary because edge-based active contours are too
sensitive to noise, bad contrast and initial position.
Hence, one of the goals of this paper is to define a
region descriptor/feature, instead of a boundary
descriptor, for textural regions. Like [9], we also wish
to develop an intrinsic descriptor based on the
geometrical shape of the manifold representing the
texture region. We thus propose to use the shape
operator and more specifically the eigenvalues of the
shape operator to describe the geometry of the textures
of interest. The shape operator is a linear operator
which calculates the bending of a surface in different
directions [5].

The eigenvalues of the shape operator correspond to
the extremal of bending of the surface, they are called
principal curvatures and they are known to represent
the geometry of the considered smooth manifold.
Indeed, in the simple case of a curve in the space, the

curvature K of this curve is the inverse of the radius p
of the best fitting circle to the curve, i.e., K=1/p. It is
then intuitive to say that the curvature describes the

local shape of the curve and by extension the principal
curvatures describe the manifold.

2.2.Our Proposed Descriptor

In this work, we choose to represent the texture
manifold by the simplest Beltrami representation, i.e.,
X=(x,y,1). Since texture images are seen as a 2-D
manifold, two principal curvatures can be computed in
this representation, namely (K;,K »).

Let us introduce the mathematical definition of the
shape operator that we call S. The shape operator
measures the shape of the manifold in a given region
by estimating how the normal Ny to the surface )|
changes from point to point.

We refer to [5, 7] for definitions and the following
property:

Let ) be a regular surface, and let N5 be a surface
normal to ) defined in a neighborhood of a point
p € 2. For a tangent vector ¥, to ) at p the shape

operator is defined as:

S(¥,)=-D, Ny €)

where D, Ny is the derivative of the surface normal
r

Ny in direction V),. The eigenvalues of the shape S of a
regular surface ) at p € 2 are precisely the principal
curvatures of ) at p.

The corresponding unit eigenvectors are unit
principal vectors, and vice versa. In our situation [7],
the principal curvatures K;, K , of the 2-D manifold are
the roots of the following equation:

K'z—b#vg”vl(+£:0 4
g
where g is the inverse metric (the inverse of the
matrix of metric tensor) of g,, g b are the
determinant of g,,, and b, is the second fundamental
form defined by:

o°X
b=« 2 2] )

where u,v=x,y in the (x, y)-basis, and the Einstein
summation convention is used, which means that
elements with identical subscripts and superscripts are
summed over.

Let I be the original gray level image, /. and /, the
partial derivatives. The mapping X is equal
to(x,y)—(x,y,1(x,y)) and the first fundamental form is

thus given by:
1+12 11,
B = 11, 1+ ©)

The normal to the manifold is given by
1 2 2 1 o
N, =—(-1,—1 1), Z=/1+1>+1> which yields us to
z Z ( x ¥y ) x ¥

the calculus of the second fundamental form
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1 Ixx ].W

b,, :E[ I IV ] using previous property, the values of

the principal curvatures are given by:

K, =(—ﬁi\/ﬁ2—4(xy)/2a @)

B 2\2 1

where a—(1+lx) =11, 7:?(1)0([)}’_[3}’)
1

and _ﬂ:E(Ixx(l+If)+I)D,(1+If)—1xylxly).

The first principal curvature KJ(KIZCZ) corresponds
to the maximal change of the normal to the surface and
K, corresponds to the minimum change. In order to use
the information provided by the two principal
curvatures, we consider to work with the norm:

Kt=\/K12+K22 ()

where x,:Q, — R" defines the texture descriptor

that we will use to segment regions with different
texture patterns and €, corresponds to the image
domain.

Figure 1. Real image and its texture described by our descriptor.

Figure 1 shows the result of our texture feature
descriptor, where the tiger is more discernable from the
background. In fact, almost all the background has
been set to a constant value.

3. Texture Analysis
3.1. Spectral Histogram Representation

In an image /, given a window W and a chosen bank of
filter {F", n=1, 2,..., N}, we compute a sub band image
W' through a linear convolution for each filter ", that
is: W"(P)=F"+W(P)=Y. F"(i)W(P-ii), Where by a
circular boundary condition is used for convenience,

and where P, and ii specify pixel locations.
For W', we define its histogram, a bin of which is
given by:

anu(zl’zl):ﬁz\iew J‘ZI 5(Z_Wn(ﬁ))dz (9)
W 22
where z,, and z, specify the range of the bin, &) is the

Dirac delta function, |w| is the size of the given image
window (also called the integration scale). With

respect to the chosen filters, we define the spectral
histogram as:

H, =(H,,H;,..H)) (10)

The spectral histogram of an image window or an
image is essentially a vector consisting of marginal
distributions of filter responses.

3.2. Similarity between Spectral Histograms

Because the spectral histogram is a probability
distribution, a similarity measure between two

histograms H ! and H 2 can be defined as:

: 1 ee(me-me)
Py (HW‘,HWZ)—WZZW

n=l z

| & 11

:W;ZZ(H,;,H;,Z)

where y2-statistic is a first-order approximation of the
Kullback-Leibler divergence and used widely to
compare histograms. The spectral histogram integrates
responses from different filters and provides a
naturally normalized feature statistic to compare image
windows or images of different sizes. That is, they do
not need to be aligned. By implicitly integrating
geometrical and photometric structures of textures, the
spectral histogram provides a sufficient model for
characterizing perceptual appearance of textures.

In [12] Xiamen compute the spectral histogram
centered at a pixel location. We adopt a method
different from [12] when computing the similarity
between histograms for each pixel in an image.

I

D L

Here P is a pixel in an image. The solid is an image I. The dotted
are four corner windows with the size 3x3 corresponding to P,
where A represents top-left one, B represents top-right one, C
represents bottom-right ones and D represents bottom-left one.

Figure 2. Windows for similarity computation.

As shown in Figure 2, Pisa pixel in an image,

there are four windows corresponding to P Top-left
window is represented by A, B represents top right
window, C represents bottom-right window, and D
represents bottom-left window.

Let:
by = 23(Hy, - Hy, ) (12)

by = (11, 03
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The similarity between spectral histograms for the
pixel P is determined by the formula:

s = b,ix + b,iy (14)

3.3. Implementation Issues

Because a spectral histogram is defined with respect to
a bank of filters, the first implementation issue is what
filters should be selected so that various textures can
be considered effectively.

In addition to our descriptor we adopt four types of
filters suggested from the studies of visual perception
and the empirical studies of independent components
of natural images [1, 8]:

1. The intensity filter, which is the J() function and
captures the intensity value at a given pixel.
2. Difference filters. We use four of them:

D,=[0-11], D,=[0-11], Dyy=[-12-1], D,,=[-12-1]  (15)

3. Laplacian of Gaussian filters:

LoG(x,y|T):(x2+y2—T2)exp(—x;y ) (16)

2

where T =\/§5 determines the scale of the filter
and O is the variance of the Gaussian function.
4. Gabor filters:

1
27"

Gabor(x, y|T, 6) =exp(-—; (4(xsind + ycos)’* + (xcosd +ysinf)*)

(17)

exp(-i 2—; (xcos@+ysinb))

where T 1s a scale.

These filters provide efficient ways of extracting
spatial structures at different orientations and
frequencies and empirically have shown to be effective
for different kinds of textures. In our implementation,
the range of image data firstly is unified to the range
[0, 1], and the number of bins is specified as a
parameter for each filter, thus the filter responses range
is also divided into the given number of bins evenly.
So the measurement between marginal distributions
can be done on the same basis.

4. Boundary Localization

The initial segmentation can be done by binary
operation for the feature image. Then we employ the
skeleton extraction based on medial axis transform to
locate the boundary of texture region accurately. For
medial axis transform, we apply morphologic
operations. Distance transform can then be defined in
terms of erosions and openings. The morphological
skeleton S of an image / can be calculated using the
following:

scr)={J" s.(1) (18)

with:
5;(1)=({0kB)—(({ ©kB)°B) (19)

where B is a structuring element, (/ © kB) means k>0

successive erosions of / by B, [oB means the
opening of / by B, K is the number of the last iterative
step before / erodes to an empty set.

5. Results
. 2 5
S=——,—
In the above experiment, for LoG filter, NoREE for

Gabor filter, 7=6, 6=30",90",150"; the bins of the

histogram is set 11. We present some results on real
and synthetic images (Brodatz textures):

2 e
on result based on
the skelecton extraction.

Figure 3. Distinguish the three regions from the background.

a) A 122x109 original image.

b) Segmentation result based on
the skelecton extraction.

Figure 4. Natural images.

In Figure 3, our algorithm has managed to
distinguish the three regions from the background,
because it is based on probability density which is
different for the three regions. In Figure 4, as natural
images, we have chosen the segmentation of a zebra
and a leopard picture which presents textured features,
the segmentation results are satisfactory.

6. Conclusions

We have presented a texture segmentation algorithm
which uses a new descriptor, spectral histogram and
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skeleton extracting. The segmentation results are
visually satisfactory. The advantage of using the
skeleton extracting to solve the textured image
segmentation is no need of given seed pixels or
knowing the number of regions.
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