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Abstract: This paper presents a proficiently developed resampling algorithm for particle filtering. In any filtering algorithm 

adopting the perception of particles, especially in visual tracking, resampling is an essential process that determines the 

algorithm’s performance and accuracy in the implementation step. It is usually a linear function of the weight of the particles, 

which determines the number of particles copied. If we use many particles to prevent sample impoverishment, however, the 

system becomes computationally too expensive. For better real-time performance with high accuracy, we introduce a Steep 

Sequential Importance Resampling (S-SIR) algorithm that can require fewer highly weighted particles by introducing a 

nonlinear function into the resampling method. Using our proposed algorithm, we have obtained very remarkable results for 

visual tracking with only a few particles instead of many. Dynamic parameter setting boosts the steepness of resampling and 

reduces computational time without degrading performance. Since resampling is not dependent on any particular application, 

the S-SIR analysis is appropriate for any type of particle filtering algorithm that adopts a resampling procedure. We show that 

the S-SIR algorithm can improve the performance of a complex visual tracking algorithm using only a few particles compared 

with a traditional SIR-based particle filter. 
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1. Introduction 

Particle filtering is a Sequential Monte Carlo (SMC) 

method that has demonstrated strong potential for 

signal- and image-processing applications. It performs 

three opera-tions sequentially: generating new particles 

sampling step, computing particle weights importance 

step and resampling [13]. More specifically, a particle 

filter is a combination of two elements: Sequential 

Importance Sampling (SIS) [4, 13] and resampling. 

This combination of SIS and resampling is called 

Sequential Importance Resampling (SIR). In the SIS 

algorithm, after multiple iterations, only very few 

particles have non-zero importance weights. This 

phenomenon is often described as weight degeneracy 

or sample impoverishment. An intuitive solution is to 

multiply the particles with high normalized importance 

weights and discard those with low normalized 

importance weights, which can be done in the 

resampling step. In practice, however, current 

resampling algorithms cannot really prevent weight 

degeneracy; they only reduce the calculation time by 

discarding particles associated with insignificant 

weights. In the proposed Steep Sequential Importance 

Resampling (S-SIR) algorithm, we change the 

conventional resampling principle of SIR by using a 

nonlinear function that attenuates particles and uses 

fewer more effective and higher-weighted particles. 

The steepness parameter in S-SIR can control the 

number of the best particles on the basis of weight. 

Resampling usually but not necessarily occurs 

between two importance sampling steps. It can be 

performed at every step or only if it is regarded as 

necessary. In our proposed S-SIR algorithm, the 

resampling schedule has been chosen deterministically 

instead of dynamically. In a deterministic framework, 

resampling is done at every k time steps (usually k=1). 

In a dynamic schedule, a sequence of thresholds 

(varying time constant) is established and the variance 

of the importance weight is monitored; resampling is 

done only when the variance is over the threshold. The 

strength of the resampling step in the SIS algorithm 

has been verified by many researchers, as described in 

[11], but since it also causes additional variation, 

additional adjustments are needed.  

Furthermore, the performance of a tracking system 

depends greatly on the target object representation and 

the similarity measurement between the target and the 

reference object, which is called the measurement 

model or the observation model. Most of the proposed 

tracking algorithms are application dependent [2, 5, 

17]. Many rely on a single cue, for example, color, 

which can be chosen according to the application 

context. Color-based tracking has some advantages, 

but there can be disadvantages to having an object in a 

flat color. An efficient color-based target 

representation can be made using multiple regions of 

the color histogram by multiple integral images [14], 

which is a Multi-Part Histogram (MPH) method; it is 

very helpful for dealing with occlusions. In this paper, 
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our S-SIR-based object tracking method is driven by 

an MPH-based measurement technique. The most 

heavily weighted particles are located in the central 

region of the target by a weighting function, because 

the other areas of the target are not as important as the 

center. The Bhattacharyya coefficient [1] is used as a 

metric to calculate the similarity of the MPH. 

The rest of paper is organized as follows. Section 2 

describes work related to our current study. Section 3 

presents a brief overview of particle filters and 

resampling algorithms. Section 4 introduces the 

proposed S-SIR algorithm. The implementation 

algorithm is discussed in section 5 with proposed 

human body descriptor used for tracking with an MPH. 

The results of experiments using two real-time videos 

with severe occlusions are discussed in section 6; an 

evaluation and comparison study are also presented. 

Concluding remarks are given in section 7. 

 

2. Motivation and Related Work  

2.1. Motivation 

A SIR-based particle filter tracks multiple hypotheses 

simultanously; each hypothesis is represented by a 

sample, called a particle, from a weighted set of 

hypothesis samples (particles). At time t, this set 

consists of n object states 1,..., n

t tx x  and their associated 

weights 1,..., n

t tw w . The particle set is a discrerte 

approximation of the posterior distribution of the real 

object state given the observations up to time t: 

p(xt|y0:t). At the next step, the particles are resampled 

according to their weights. This is done to decrease the 

number of low-weighted particles and increase the 

number of particles with high weights. Another reason 

is that the estimated state is the weighted average of all 

particles; hence, this function directly affects the 

estimates. For SIR to be successful, a large number of 

samples particles N is needed for two reasons: 

1. To obtain a good approximation of p(xt|y0:t). 

2. To be capable of recovering from object loss and to 

find multiple instances if more than one object is 

visible. However, the size N is directly related to the 

computational cost and should be kept as low as 

possible. This is the key fact motivating us to use 

the dynamic steepness parameter in resampling. We 

have seen how the steepness effect of resampling 

improves the tracking performance even with a very 

small N particles.  

 

2.2. Related Studies 

To enhance the efficiency of particle filtering for small 

N, many improvements have been suggested. For 

example, hierarchical methods [3] using a coarse-to-

fine approach are used to find the real modes of objects 

without getting stuck in local optima. Other methods 

involve sophisticated resampling and/or prediction 

[12]. However, little research has focused on 

improving the resampling function for excellent 

performance with few particles. By using our proposed 

steepness parameter in resampling, we can 

dynamically control the particle number as desired.  

Several approaches have been used to improve the 

resampling strategy in visual tracking. Systematic 

resampling with an adaptive template for visual 

tracking has been proposed [16]. Systematic 

resampling had already been established in [13], and 

the newer method is still a linear-type function. A 

sampling strategy aimed at reducing computational 

complexity in the particle filtering framework has also 

been proposed [15]. This strategy combines particle 

filtering with a transition prior and an unscented 

Kalman filter. Our approach differs in that it is a 

nonlinear type; it is ideally suited to real-time, highly 

accurate visual tracking. In this article, we incorporate 

a nonlinear function into this resampling algorithm so 

it chooses only a few of the best particles with high 

weight by reducing the search area. All high-weight 

particles are concentrated appropriately on the tracked 

object, reducing the possibility of tracking failure and 

enhancing performance significantly. 

 

3. Particle Filter Overview 

In particle filtering, we want to compute the filtered 

estimates of x t that is, p(xt|yt), based on the set of all 

available measurements up to time t . In Bayesian 

estimation, p(xt|yt) is computed recursively, that is, in 

terms of the posterior density at the previous time step, 

p(xt-1|yt-1). A particle filter algorithm uses a set of 

weighted samples drawn from the posterior distribution 

to approximate integrals as discrete sums given a set of  

N random samples i i
1:t-1 1:t-1 i=1,2,...,N{x ,w } , where 

i
1:t-1w are the respective weights and y1:t-1 are the 

available measurements up to time t . According to the 

SIS strategy, the posterior distribution can be 

computed as: 

N
i i

t t t t
i=1

1:tp( x | y ) w ( x x )δ≈ −∑              

where (.)δ  is the Dirac delta function. It is usually 

impossible to sample from the posterior distribution 

directly. This matter can be resolved by drawing 

samples from a proposal distribution )|( 1:11:1 −− tt yxq . 

Choosing the proper proposal distribution is an 

important step when using an importance sampling 

algorithm. The most popular choice of proposal 

distribution is the prior distribution because of its ease 

of calculation. The proposal distribution can be 

expressed as:  

p( x | x )=q( x | x ,y )
t t tt 1 t 1 i=1,2,...,N− −

 

(1)

(2)
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If the prior distribution is selected as the proposal 

distribution, the importance weight calculation can be 

expressed simply as: 

),|(

)|()|(
=

:11:1

1
1
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ww
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The mean state of an object is estimated at each time 

step by:  

ˆ
∑
N i i

t t t
i=1

E[x ]= w x                                                           

4. Nonlinear Resampling Algorithm 

In resampling, particles with large weights are 

replicated, and those with negligible weights are 

removed. Resampling maps the weighted random 

measure )}(~,{ :0:0

i

tk

i

t xwx  onto the equally weighted 

random measure i{ x ,N }0:t  by sampling uniformly 

with replacement from sample space on the basis of the 

probabilities. Many improved particle filters focus on 

resampling, for instance, that in [10], in which the 

authors proposed using a partially deterministic 

reallocation scheme instead of resampling to overcome 

the extra variation arising in resampling. 

We modify the SIR-based particle filter by changing 

the resampling function to a nonlinear function. In 

real-time visual tracking, the SIR filter works well, but 

effective sorting of higher-weight particles in every 

iteration is computationally expensive, and tracking 

failure becomes more likely. Our ultimate goal can be 

divided into two parts. First, we want to use fewer of 

the best-weighted particles; second, by reducing the 

number of particles, we want to get the best tracking 

output. Our proposed method reduces calculation time 

and uses the lowest number of the highest-weight 

particles by using a steepness function. The steepness 

parameter can also control the number of the best 

particles used, which is mainly application dependent, 

as desired. The traditional resampling algorithm is a 

linear mapping function that copies or replaces 

particles with high weight. It can be expressed as:  

i
t= w .nΓ                                                                     

Where Γ is the new sorted particles set,w  is the 

relevant weight, and n  is the particle number. We can 

copy the more effective particles by discarding those 

associated with insignificant weights using:  

i
ta* ( exp( b* (w ))) cΞ = +                       

where Ξ  is new assigned weight with non-linear 

mapping, b is an attenuating factor (steep parameter), 

and a and c are arbitrary constants (a, b≠0). The 

number of particles copied for resampling can be 

controlled by the steepness parameter b, as shown in 

Figure 1. Besides, how we can assign suitable value of 

b is discussed in the experiment section. Figure 1 

shows that this nonlinear mapping helps attenuate 

particles by discarding low-weight particles, which is 

better than the linear mapping used in conventional 

resampling. To normalize equation 6, we can write it 

as:  

                              
i
t N

i
t

i =1

W =

w

Ξ

∑

                               (7) 

Finally, equation 5 can be rewritten with the help of 

equation 7 as:  

                                 ).(= nWround i
tΓ                                (8) 

However, this straightforward algorithm creates the 

problem of weight degeneration. Resampling 

algorithms have been applied to overcome this 

problem. 

 
Figure 1. Effect of steepness parameter in resampling based on 

weight. 

 

To clarify our proposed resampling, we can 

compare it to the traditional resampling strategy shown 

in Figure 2, which is discussed in many articles, e.g., in 

[6, 9, 10, 13, 15, 16]. As we see from Figure 1, the 

steepness parameter controls the resampled particles 

nonlinearly, as illustrated in Figure 3. We can boost the 

steepness by increasing b , and the increased steepness 

can accumulate the best weighted particles in a more 

concentrated way. However, increasing b  too much 

may create another problem by losing the basic multi-

modality of the particle filter. Thus, we must be careful 

to choose the best steepness parameter b , which may 

be application dependent. 

 

 

Figure 2.  Basic resampling strategy.  

(3)

(4)

(5)

(6)
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Figure 3. S-SIR based resampling strategy nonlinear. 

This example uses a 10-particle simulation. As we 

increase b, the best weighted particle is copied many 

times by discarding other, lower-weighted particles. 

 

5. Particle Filtering Based Implementation 

Particle filtering estimates the proposal distribution 

using samples from previous posterior distributions. 

This estimation requires approximation, which is 

weighted by the observation model. Robust tracking 

demands a robust observation model. 

 

5.1. Measurement 

5.1.1. Object Feature Descriptor 

In this paper, the tracked human body is considered to 

consist of various rectangle regions. We introduce the 

MPH, which uses an integral-image-based 

representation [14] that characterizes the human body 

using detailed spatial information. The details of MPH 

can be found from our previous paper in [8, 9].  

 

5.1.2. Colour Measurement Model 

To achieve robustness against non-rigidity, rotation, 

and partial occlusion, we focus on the color 

distributions as target models. The details of this 

proposed color model also can be found from our 

previous paper in [8, 9]. We use a multiple-region 

color histogram as one of the observation 

measurements to weight the sample set. The 

observation accuracy depends on the object's features. 

We adopt a Gaussian density for the likelihood 

function of the measured color histogram.  

5.2. The Motion Model 

We model the state location in each frame of a video. 

The state space is represented in the spatial domain as 

X=(x, y). The state space for the first frame is 

initialized manually by selecting the object of interest 

in a video scene using a rectangle. A second-order 

autoregressive dynamic is chosen from the parameters 

used to represent our state space, i.e., (x, y). The 

dynamic is given as Xt+1=Axt+Bxt-1. Matrices A and B 

could be determined from a set of sequences in which 

the correct tracks have been obtained. 

5.3. The Observation and Likelihood Model 

The observation model we have found using the 

measurement model in subsection 5.1, which is used to 

measure the observation likelihood of the samples. 

This is important in object tracking. The filter corrects 

the predicted estimation by using the observed data. 

The overall likelihood calculation based on the MPH is 

given by:  

                      ,

( | ) ( , )

              = ( | )  MPH MPH t t

L y x D p qt t t t

L y x

∝
   

where = [ , ]t tD dist p q is the distance between the 

reference histogram p of the objects to be tracked and 

the histogram qt computed from image in the region 

defined by the state vector xt and yt denotes the 

measurement vector, which is composed of the 

measurement vectors yMPH,t
 

from the MPH-based 

colour cue.  

6. Experiments and Results 

We verify the performance of our algorithm 

experimentally using two different video sequences 

from our own database and another well-known 

database, CAVIAR [7]; we aim to track a pre-selected 

moving person. In the first sequence, circleocc (500 

frames), two people are walking toward each other 

from opposite sides of the frame. They meet, shake 

hands, and circle each other; our subject is completely 

occluded more than three times. The second sequence, 

OneShopOneWait2cor (211 frames), was obtained 

from the CAVIAR [7] database. Another person causes 

a lengthy occlusion of the target.  

Figure 4 compares the tracking performance of our 

proposed resample-based algorithm with that of the 

traditional algorithm using 100 and 10 particles for 

circleocc. For this comparison, we use frames 71, 99, 

109, 181, 296, and 480 in all the tests. Our proposed 

system works well even with only 10 particles, as 

shown in Figure 4-c. The possibility of tracking failure 

when using only 10 particles was drastically reduced. 

The overall performance can be verified by the 

horizontal and vertical red bars shown in each frame, 

which represent the probability densities of the 

estimated state. In Figure 4-b, we can see that the 

probability densities become scattered to find the best 

weighted particle for the next state estimation. This 

works well sometimes but only when using a large 

number of particles. However the possibility of 

tracking failure remains owing to the many real-time 

challenges in visual tracking. In this video, we use 

steepness parameter b=1000. 

(9)
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a) Proposed new resampling: 100 particles. 
 

 
 

       b) Traditional resampling: 100 particles. 
 

 
 

               c) Proposed new resampling: 10 particles. 
 

 
 

               d) Traditional resampling: 10 particles. 
 

Figure 4. Tracking in circleocc with traditional and proposed 

resampling using 100 and 10 particles. Overall performance can be 

verified by the horizontal and vertical red bars shown in each 

frame, which represent the probability densities of the estimated 

state. 

 

 
 

    a) Proposed new re-sampling: 100 particles. 
 

 
 

        b) Traditional SIR based re-sampling: 100 particles. 
 

 
 

               c) Proposed new re-sampling: 10 particles. 
 

 
 

               d) Traditional SIR based re-sampling: 10 particles. 

Figure 5. Tracking in OneShopOneWait2cor with traditional and 

proposed resampling using 100 and 10 particles. Overall 

performance can be verified by the horizontal and vertical red bars 

shown in each frame, which represent the probability densities of 

the estimated state. 

 

Figure 5 compares the performance of our proposed 

resampling method and a traditional SIR-based 

resampling algorithm with 100 and 10 particles for 

OneShopOneWait2cor. In this experiment, we use 

frames 140, 261, 288, 301, and 334 in all tests. As with 

the performance illustrated in Figure 4, this 

OneShopOneWait2cor video sequence also verifies the 

effectiveness of our proposed system. Using 10 

particles, the traditional SIR-based resampling fails to 

track the target, as shown in Figure 5-d, whereas our 

proposed system works very well, as shown in 

Figure5-c. In both cases, we use steepness parameter 

b=500. A more quantitative result is discussed in the 

following sections.  

6.1. The Error Metric  

In the previous section, our proposed system was 

evaluated qualitatively. The Root Mean Squared Error 

(RMSE) method in the state space has also been used 

to evaluate the performance of our algorithm. The 

RMSE can be formulated by:  

))ˆ()ˆ0.5((=)( 22
tttt hhggtRMSE −+−   

where )ˆ,ˆ( tt hg stands for the upper-left corner 

coordinates of the tracking box determined by the 

central position corresponding to the state estimated by 

the particle filter in the frame. The ground truth states 

(gt, ht) correspond to the true positions of the object 

and have been generated by manually creating a 

tracking box surrounding the object in the test videos.  

6.2. The Performance Evaluation  

We evaluate our proposed system with 100 and 10 

particles using different steepness parameters to 

observe the tracking output of the two example videos. 

The RMSE graph for the circleocc video stream with 

different steepness parameters is shown in Figures 6 

and 7. When b=1 and 100, the tracking performance is 

not as good as desired, and it is better when b=500 to 

5000, remaining almost constant in that range. A more 

numerical analysis is given in Table 1. 

 

Figure 6. Performance of proposed resampling for circleocc video 

stream with different steepness parameters (b=1 to 5000) using 100 

particles. 

 

Figure 7. Performance of proposed S-SIR method and conventional 

SIR filter. 

(10)
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Table 1. Performance of proposed resampling and SIR filter for 

circleocc video stream with different steepness parameters using 
100 particles. 

Steep 

Par.b 
1 100 500 1000 2000 5000 Trad. SIR 

Max 

RMSE 
68.43 73.25 22.47 17.73 18.5 20.5 24.95 

Min 

RMSE 
4.43 1.41 2.82 1 0.7 0 0 

Avg. 

RMSE 
34.25 25.3 10.3 7.2 6.8 6.5 8.15 

P 100 99 95 87 75 57 N/A 

 

We also compared our results with those of a 

conventional SIR filter. Our proposed S-SIR 

performed much better than the SIR. For example, 

when b=1000, the maximum RMSE and average error 

are 17.73 and 7.2, respectively. In contrast, for the 

conventional SIR, the maximum RMSE and the 

average error are 24.95 and 8.15, respectively. Also, 

the last row of this Table shows the number of best 

particles used (P) at different steepness parameters b . 

As we increase b, the number of particles used 

decreases. This reduces the calculation time, making 

our system faster. However, if we increase the 

steepness parameter too much, the particle filter may 

lose its multi-modality, which creates another problem. 

We chose the optimum steepness on the basis of the 

tracking environment and the desired result. The graph 

in Figure 7 compares the performance of the proposed 

S-SIR method and a conventional SIR filter. Our 

proposed algorithm works well with only 10 particles, 

whereas the SIR-based particle filter totally fails to 

rack the object. The graph in Figure 8 shows the 

tracking performance with different steepness factors 

with only 10 particles. That in Figure 9 compares the 

performance of the proposed S-SIR and a SIR-based 

particle filter with 10 and 100 particles. Table 2 

summarizes the RMSE at different steepness 

parameters with only 10 particles. The last column of 

this Table also shows the corresponding tracking 

performance of a conventional SIR-based particle 

filter. 
 

 

Figure 8.  Performance of proposed resampling for circleocc video 

stream with different steepness parameters b(b= 1 to 1000) using 

10 particles. 

 

Figure 9.  Performance of proposed S-SIR and SIR with 100 and 10 

particles. 

 

Table 2. Performance of proposed resampling and a SIR filter for 

circleocc video stream with different steepness parameters using 10 

particles. 
 

Steep 

Par. b 
1 100 500 1000 2000 5000 Trad. SIR 

Max 

RMSE 
78.93 23.1 24.7 27.6 29.2 27.7 107.9 

Min 

RMSE 
1.6 0 0 0 0.7 0 0.7 

Avg. 

RMSE 
36.15 8.2 6.87 6.82 7.0 6.78 36.2 

P 10 9 6 4 3 2 N/A 

Table 3. Performance of proposed resampling and SIR filter for 

OneShopOneWait2cor video stream with different steepness 

parameters using 100 particles. 

Steep 

Par. b 
1 100 500 1000 2000 5000 Trad. SIR 

Max 

RMSE 
25.01 24.7 13.15 20.02 23.02 32.4 26.17 

Min 

RMSE 
1.41 4.47 0 0 0 0 0 

Avg. 

RMSE 
13.01 18.2 2.87 3.12 3.95 3.5 4.3 

P 100 99 84 71 56 37 N/A 

 

The RMSE graph for the OneShopOneWait2cor 

video stream at different steepness parameters is 

shown in Figures 10 and 11. Figure 10 shows the 

parformance using 100 particles with different 

steepness parameters, and Figure 11 shows the 

performance using only 10 particles. In both cases, the 

best-tuned steepness parameter is b=500. Tables 3 and 

4 summarize the RMSE at different steepness 

parameters with 100 and 10 particles, respectively. The 

last column of these Tables also shows the 

corresponding tracking performance of a conventional 

SIR-based particle filter. For example, when b=500, 

the maximum RMSE and average error are 13.15 and 

2.87, respectively. In contrast, with a conventional 

SIR, the maximum RMSE and average error are 26.17 

and 4.3, respectively. As noted above, Table 4 

illustrates that, with 10 particles, the SIR-based filter 

totally fails to track the object. For the SIR-based filter 

with 10 particles, the maximum and average error are 

240.5 and 96.9, respectively whereas with our 
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proposed system, they are 11.4 and 3.92, respectively 

(steepness parameter b=500). Note that we must 

carefully tune the steepness parameter, as we do not 

want to lose the multi-modality of the particle filter. 

This may happen if we increase the steepness 

parameter too much (more than 10,000).  

 

Figure 10. Performance of proposed resampling for 

OneShopOneWait2cor video stream with different steepness 

parameters b using 100 particles (b=1 to 5000). 
 

 
 

Figure 11. Performance of proposed resampling for 

OneShopOneWait2cor video stream with different steepness 

parameters b using 10 particles (b=1 to 5000). 

 

Table 4. Performance of proposed resampling and SIR filter for 

OneShopOneWait2cor video stream with different steepness 

parameters using 10 particles. 
 

Steep 

Par. b 
1 100 500 1000 2000 5000 Trad. SIR 

 Max 

RMSE  
24.75 15.52 11.4 15.52 37 36.12 240.5 

 Min 

RMSE  
1.41 1.41 0 0 0 0 2.23 

 Avg. 

RMSE  
8.63 8.63 3.92 4.37 6.58 5.11 96.9 

P 10 7 4 3 2 1 N/A 

 

7. Conclusions 

A new particle filter with S-SIR-based resampling has 

been proposed in this paper. The proposed resampling 

design addresses problems with efficient control of the 

best weighted particles by attenuation. The steepness 

factor can control the number of high-weight particles 

as desired. It also reduces the calculation time during 

tracking, and even a few particles can provide 

satisfactory tracking. This S-SIR algorithm improves 

the object-tracking performance compared to a 

conventional SIR-based filter. The proposed nonlinear 

type of resampling can determine the most important 

particles and attenuate the other particles very 

efficiently. Also, from the experimental results, we can 

conclude that this proposed algorithm minimizes the 

degradation of real-time performance and remarkably 

reduces the computational complexity. With our 

optimally tuned steepness parameter, we can obtain our 

desired tracking performance with few particles, 

whereas a conventional system cannot track at all with 

a small number of particles. 
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