
18                                                                  The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013 

A Framework of Summarizing XML 

Documents with Schemas 

Teng Lv
1
 and Ping Yan

2 

1
Teaching and Research Section of Computer, Army Officer Academy, China 

2
School of Science, Anhui Agricultural University, China 

Abstract: eXtensible Markup Language (XML) has become one of the de facto standards of data exchange and representation 

in many applications. An XML document is usually too complex and large to understand and use for a human being. A 

summarized XML document of the original document is useful in such cases. Three standards are given to evaluate the final 

summarized XML document: document size, information content, and information importance. A framework of summarizing an 

XML document based both on the document itself and the schema is given, which applies schema to summarize XML 

documents because there are many important semantic and structural information implied by the schema. In our framework, 

redundant data are first removed by abnormal functional dependencies and schema structure. Then tags and values of the 

XML document are summarized based on the document itself and schema. Our framework is a semi-automatic approach which 

can help users to summarize an XML document in the sense that some parameters must be specified by the users. Experiments 

show that the framework can make the summarized XML document has a good balance of document size, information content, 

and information importance comparing with the original one.  

Keywords: XML, document summarization, schema, key, functional dependency. 

Received June 14, 2010; accepted March 1, 2011 
 

 

1. Introduction 

eXtensible Markup Language (XML) [15] has become 

one of the de facto standards of data representation 

over World Wide Web and elsewhere. More and more 

data are stored in XML format. To understand these 

XML documents with complex structure and abundant 

data, a human being must spend much time to read 

such documents. In some cases, it is impracticable, 

even not impossible, for a human being to read the 

whole XML document when the document is very 

large and complex. So it is necessary to present a 

human being with a summarized form of the original 

complex and large XML document. Such a 

summarized XML document is also useful in other 

applications: querying XML documents, comparing 

two XML documents, displaying or storing XML 

documents in a mobile or embedded device which has 

limited CPU processing ability, display screen and 

storage spaces, etc. Although, such a summarized 

XML document is very useful, it is difficult to generate 

a good summarized XML document. Although a 

human being has good ability of summarizing and 

analyzing, a computer is not good at doing such things. 

So the challenge of summarizing XML documents is 

how to generate such a summarized XML document by 

computers. 

A summarized XML document should grasp the 

core information of the original document so that a 

human being can have a basic understanding of         

the original document. Of course, such a summarized 

XML document should have less size than the original 

document considering the storage space and 

complexity. A good summarized XML document can 

be evaluated by the following 3 standards: 

1. Document Size: The first goal of summarizing 

XML document is to obtain an XML document with 

an acceptable size comparing with the original one 

according to specific applications. In general, an 

XML document of smaller size is more readable 

than a larger one for a human being. Suppose the 

sizes of the original and the summarized XML 

document are Soriginal bytes and Ssummarized bytes, 

respectively, so the summarized ratio of a 

summarized XML document respect to the original 

one is RS=Ssummarized/Soriginal. 

2. Information Content: A perfect summarized XML 

document should contain the entire information 

content of the original one, i.e., it is equivalent to 

the original one in the aspect of information content. 

But in reality, it is impossible for a summarized 

XML document with less size to contain the entire 

information content of the original document which 

has no redundant information. Suppose the number 

of tag values of the original XML document without 

redundant information and the summarized XML 

document are Coriginal and Csummarized, respectively, so 

the information content ratio of a summarized XML 

document respect to the original one is 

RC=Csummarized/Coriginal. For original XML document 

with redundant information, we can remove the 



A Framework of Summarizing XML Documents with Schemas                                                                                                                19  

redundant information by methods proposed in 

section 2. It is obviously to see that an original 

XML document D1 with redundant information is 

equivalent to an XML document D2 with respect to 

information content if D2 is obtained by removing 

the redundant information of D1. Although it is 

difficult to generate a perfect summarized XML 

document, a good summarized XML document 

should contain more information in given size than 

a bad one. 

3. Information Importance: As a summarized XML 

document can not contain the entire information 

content of the original one in most cases, it is 

necessary and practicable to contain the most 

important information of the original one. For how 

to determine which information is important to an 

XML document, we will give some guidelines in 

sections 3 and 4. Dalamagas T and alt .., [5] gives a 

measure of quality of XML schema document.  

1.1. Related Works  

Text summarization [1, 8] focused on free-flowing 

texts in text datasets, which is not always applicable to 

XML summarization as the structure information and 

semantic information are often important to XML. 

XML schema summarization [17] is one related topic 

which summarizes XML schemas rather than XML 

documents. XML structure summarization [3] is 

another related topic which summarizes XML 

structures rather than XML documents. Compression 

technique [9, 11] is another related topic to reduce the 

document size without considering the readability to 

human beings. Other works focused on constructing 

XML summarization for XML efficient query 

estimation: StatiX [7] explores schema transformation 

and schema validation to obtain statistics for query 

selectivity estimation in XML documents. Treesketch 

synopses [13] can produce fast, accurate approximate 

answers for XML documents. Bloom histogram [16] is 

a framework for XML path selectivity estimation in a 

dynamic environment. Xseed [18] is a method to 

estimate cardinality of Xpath queries. Mayorga V. and 

Polyzotis N., [12] proposed a method to summarize 

XML data streams other than XML documents. A 

semi-automatic method to summarize XML collections 

is proposed in [6], which applies a template to specify 

the user requirement and matching rules to extract the 

summarized XML collections.  

To the best of our knowledge, the most related work 

is [14] which proposed a method of XML document 

summarization based on document itself alone. As we 

know that a schema defines the structure and semantic 

of an XML document which implies many important 

information of an XML document. From the former 

observation, we propose a method of summarizing an 

XML document based on both document itself and the 

schema. Such method can make the summarized XML 

document have a good balance of document size, 

information content and information importance. More 

specifically, our approach have the advantages over 

[14] in the following aspects:  

1. Some data redundancies introduce by abnormal 

functional dependencies and nested structures are 

first removed in the summarizing process which can 

make the XML document concise and meaningful 

section 2.  

2. It can reserve key information of the XML 

document section 3.1 

3. It can deal with the difficult situation when a tag 

occurs many times but with little importance in an 

XML document section 3.2 

4. It can deal with another difficult situation when 

same tag occurs many times under the same parent 

tag in an XML document section 4.1 

1.2. Contributions 

In this paper, we give a framework of summarizing an 

XML document based on the document itself and the 

schema of the document. We apply schemas to 

summarize XML documents because there are many 

important semantic and structural information implied 

by the schemas including functional dependencies, 

keys, and structure information. Our framework can 

help users to summarize an XML document in the 

sense that some parameters must be specified by the 

users according to the different requirement such as 

intended summarized document size, intended 

information content, intended information importance, 

and specific XML documents. The framework is 

worked as follows:  

1. First, abnormal functional dependencies and nested 

structure of schema are used to remove redundant 

data of the XML document. After this preprocess, 

the XML document contain no redundant data 

caused by abnormal functional dependencies and 

structure.  

2. Second, we summarize tags in an XML document. 

Keys (with values) of the document are preserved in 

the summarized document as keys are important to 

understand and query the document in most cases. 

Other tags are determined by their occurrences in 

the context of document or a set of documents with 

same schema.  

3. Finally, we summarize tag values in the XML 

document. For a same tag with multiple values, only 

the first tag value is reserved in the summarized 

XML document. For long tag values, we truncate 

them to a fixed length according to specific 

applications.                                     

Preliminary experiments show that the summarized 

XML document has a good balance of the above 

three standards (i.e., document size, information 

content, and information importance) comparing 



20                                                         The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013 

 

with the original document. Another advantage is 

that such method is more useful as the summarized 

XML document can contain some important 

information such as keys and functional 

dependencies.  

1.3. Organization 

The rest of the paper is organized as following: section 

2 illustrate the first two steps to summarize an XML 

document by removing data redundancies according to 

functional dependencies and structure. Sections 3 and 4 

are the third and fourth steps to summarize an XML 

document by summarizing tags and values in the XML 

document. The entire framework of summarizing an 

XML document is given in section 5 which applies the 

above 4 steps. Experiments and discussions are also 

given in the section. We conclude the paper and give 

the future work in section 6. 

2. Removing XML Data Redundancies by 

Schema 

In real XML documents, there are many data 

redundancies as the causal design of XML schemas 

and documents. We focus on two kinds of XML data 

redundancies: data redundancies caused by functional 

dependencies and data redundancies caused by 

structure. 

2.1. Removing XML Data Redundancies by 

Functional Dependencies 

The first kind of XML data redundancies is caused by 

abnormal XML functional dependencies proposed in 

our previous work [10]. We do not give the formal 

definitions of functional dependencies and normal 

forms here considering the space. Detailed descriptions 

can be referred to [10]. In this paper, we focus on the 

third normal form of XML document considering the 

simplicity and applicability in real applications. Higher 

normal forms may be too complex to understand and 

apply in real XML documents. The details of removing 

data redundancies in an XML document by functional 

dependencies will be given in section 5.1.  

2.2. Removing XML Data Redundancies by 

Structure 

The second kind of XML data redundancies is caused 

by the nested structure of XML documents. 

Considering the following XML document D4 which 

contains a nesting tag orders: 

<customerorders> 

  <orders> 

     <orders> 

        <order> 

        <orderID>10643</orderID> 

        <customerID>9232</customerID> 

  <order date>2010-03-25</order date> 

          </order> 

          </orders> 

 <order> 

       <order ID>10692</order ID> 

       <customer ID>9349</customer ID> 

       <order date>2009-10-03</order date> 

    </order> 

       <company name>A futterkiste</company name> 

    </orders> 

</customer orders> 

To reduce such redundancies, the tags in sub-tree 

rooted on the nested tag Orders (i.e., the second Orders 

tag here) are moved up as sub-tags of the nesting tag A 

(i.e., the first Orders tag). Of course, the nested tag 

Orders is removed in the moving-up process. The 

above XML document D4 can be transformed to the 

following XML document D5 by above method.  

<customerorders> 

   <orders> 

<order> 

         <orderID>10643</orderID> 

         <customerID>9232</customerID> 

         <orderdate>2010-03-25</orderdate> 

   </order> 

   <order> 

       <orderID>10692</orderID> 

       <customerID>9349</customerID> 

       <orderdate>2009-10-03</orderdate> 

   </order> 

       <companyname>A futterkiste</companyname> 

   </orders> 

</customerorders> 
 

The detailed method to do this will be given in section 

5.2. 

3. Summarizing Tags in An XML 

Document 

After the previous summarizing procedures, an XML 

document has no data redundancies caused by 

abnormal functional dependencies and nested 

structures proposed in sections 2. In this section, we 

will focus on the problem of determining the important 

tags in the original XML document to be included in 

the summarized XML document. 

3.1. Keys of XML Documents 

As keys [2] are important for querying and 

understanding an XML document (an example is given 

in section 5.5), the keys have priority over other tags to 

be contained in the summarized XML document. As 

how to deal with other tags that are not a key or a part 

of a key, i.e., whether or not they are contained in the 

summarized XML document, we will propose the 

method in section 3.2. For example, considering the 

following XML document D6. 

  



A Framework of Summarizing XML Documents with Schemas                                                                                                            21  

 

 

<book> 

     <title>database</title> 

     <author>Peter Lee</author> 

     <price>5USD</price> 

  …  … 

</book> 

Suppose  {title, author} is  a  key    (a book is  uniquely 

determined by the combination of its title and author), 

the summarized XML document must contain the key 

information of a book: title and author. This is also a 

common sense that the book title and its author is the 

priority information when we browse a book.  

3.2. Other Tags 

For a tag which is not a key or a component part of a 

key, we can determine the tag importance by its 

occurrence in the XML document. In general, a tag A 

is more important than another tag B if A’s occurrence 

is higher than that of B. But in some special cases, it is 

not always true. Consider the following XML 

document D7: 

<book> 

    <title>database </title> 

    <author>Peter Lee</author> 

    <comment>This book introduces the basic concepts of…    

</comment> 

    <comment>Normal forms are discussed …</comment> 

    <comment>Query optimization is …</comment> 

    <comment>The author publish …</comment> 

</book> 

If we just consider tag importance in the context of the 

given single XML document D7, tag comment is more 

important than tags title and author, because tag 

comment occurs 4 times while each of tags title and 

author only occurs once in the above XML document 

D7. To deal with this situation, we must expand the 

context to determine the tag importance, i.e., we must 

use a set of XML documents with same schema to 

determine the tag importance other than the single 

XML document itself. Although we extend the context 

of tag importance, our work is still focused on how to 

summarize a single XML document. Suppose we can 

get a statistics from a set of XML documents (e.g., 100 

XML documents) conforming to the same schema as 

Table 1: 
 

        Table 1. A Statistics of tag occurrences and importance. 

 
 

From the statistics of Table 1, tag importance of 

tags book, title, and author is higher than that of tag 

comment according to the occurrences of the 4 tags. 

The detailed method of summarizing tags in XML 

documents is given in section 5.3. 

4. Summarizing the Values of Tags in XML 

Documents 

After the previous summarizing procedures in sections 

2, 3, the summarized XML document contains no 

redundancies proposed in section 2 and only the 

important tags with corresponding values of the 

original document are preserved in the summarized 

XML document. In this section, we will focus on 

summarizing the values of the tags in the XML 

document. 

4.1. Summarizing the Values of Tags in XML 

Documents 

If the tags with same tag name have multiple values 

and all the tags have a same parent tag in the XML 

document, we just include the first tag with its value in 

the summarized document and a mark is left to indicate 

that there is more information about the same tag. If 

the reader is interested in that information, he or she 

can unfold the mark to browse the information when 

necessary. Of course, this will not increase the size of 

summarization, but only increase the process time 

when unfold the mark to browse the hide information. 

The intuitive motivation of this treatment is that the 

information of the first tag and its value is more 

important than subsequent tags with same tag names as 

the first tag and their values under the same parent tag 

in general. For example, the first author is more 

interested than the co-authors of a book for a reader in 

general. If it is not the case in extreme situations, the 

reader can browse the interested information when 

necessary. For example, a book has four authors in an 

XML document D8 as shown in following: 

<book> 

<title>database</title> 

     <author>author1</author> 

     <author>author2</author> 

     <author>author3</author> 

     <author>author4</author> 

</book> 

We just contain the first author information in the 

summarized XML document as following XML 

document D9, where the mark ○,m indicates that there 

is more information about authors of the book:  

<book> 

<title>Database</title> 

 <author>author1</author>○,m 

</book> 

4.2. Treating the Length of Tag Values 

For different tags, tag values may vary greatly in 

length. Some tag values just contain several characters 

“short values” and others may contain thousands of 

characters “long values”. It is obviously that a 

summarized XML document should not contain such

Tags Occurrences of Tags Tag Importance 

Book 100 1 

Title 100 1 

Author 100 1 

Comment 30 2 



22                                                         The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013 

 

 

 long values without any change because it occupies 

too much space comparing to its provided simple 

information. To deal with the long values, it is 

sufficient that a summarized XML document contains 

some fixed length of the characters of the whole long 

values with a mark left to indicate that there is more 

information about the same tag. Considering the 

following XML document D10: 

<book> 

    <author>Peter Lee<authors/> 

    <comment> I found it to be a very useful text-book.The    

concepts are easy to understand and the authors provide 

plenty of examples for better understanding. The book is 

detailed, which means that if you want to go into detail you   

can, e.g., on what normal form is and how to use it, of the    

difference between relational and … </comment> 

</book> 

The length of author value is 9 characters (“Peter 

Lee”), but the length of comment value is thousands of 

characters. We can just choose a fixed length, for 

example 41 characters, to be include in the 

summarized XML document with the mark ○,m 

indicates that there is more information about comment 

of the book. The final summarized XML document D11 

is following: 

<book> 

  <author>Peter Lee<authors/> 

 <comment> I found it to be a very useful text-book.○,m  

</comment> 

</book> 

The problem of the above method is how to decide 

whether a tag value is a long value or not, and if it is a 

long value, how to decide the appropriate length of a 

long value to be contained in a summarized XML 

document. One solution is to analyze the XML schema 

and document to get a statistics about the length of all 

tag values. Then uses can specify a fixed length to 

determine whether a tag value is long or not and 

another fixed length to determine how many characters 

of the long tag value should be contained in the final 

summarized XML document according to the specific 

needs such as intended document size, intended 

document information, etc.,. The detailed method of 

summarizing XML tag values is given in section 5.4. 

5. A Framework of Summarizing XML 

Documents 

Based on the above discussion of sections 2, 3 and 4, 

we give the following framework of summarizing an 

XML document. Summarizing_XML_Document (D, 

S, FD, K, I, L, M):  

• Input: An XML schema S, an XML document D 

conforming to S, a set of keys K and functional 

dependencies FD of D and S, and three constants I, 

L, and M (M≤L), which determines the threshold 

values of tag importance, long tag value, and how 

many characters a long tag value should be 

contained in the summarized XML document, 

respectively. 

• Output: A summarized XML document D4 of D. 

•  Method:  

1. (D1, S1, FD1, K1) = removing_data_ 

redundancies_ FD (D, S, FD, K). 

2. (D2, S2, FD2, K2) = removing_data_ 

redundancies_ structure(D1, S1, FD1, K1). 

3. (D3, S3, FD3, K3)=summarizing_tags(D2, S2, FD2, 

K2, I).  

4. D4 = summarizing_values(D3, S3, L, M). 

The framework applies 4 steps in turn to summarize an 

XML document: Step 1 removes data redundancies by 

functional dependencies; Step 2 removes data 

redundancies by schema structure; Step 3 summarizes 

the tags in the XML document; and Step 4 summarizes 

the tag values in the XML document. We will 

elaborate the details of the 4 steps in the following 

sections 5.1, 5.2, 5.3 and 5.4.  

5.1. Function Removing Data Redundancies FD 

Function removing_data_redundancies_FD is to 

remove data redundancies by Functional Dependencies 

(FDs) of the XML document and the schema, which is 

similar to previous work proposed in [10]. We just give 

the outline of the method here with a brief explanation. 

Rule 1 is to remove data redundancies by moving up 

the sub-tree regarding to Partial Functional 

Dependencies (PFD) [10] and rule 2 is to remove data 

redundancies by creating new elements regarding to 

Transitional Functional Dependencies (TFD) [10]. 

After applying rules 1 and 2, the XML document, the 

schema, the FDs and keys of the XML document and 

schema must be reformed as the structure and tags are 

changed in the process. More details about the 2 rules 

and how to change the forms of the XML document, 

the schema, the set of FDs and keys can be found in 

[10].  

• Function 1: (D1, S1, FD1, K1)=removing_data_ 

redundancies_FD (D, S, FD, K). 

• Input: An XML schema S, an XML document D 

conforming to S, and a set of functional 

dependencies FD and keys K of D and S.  

• Output: An XML schema S1 and an XML document 

D1 conforming to S1, and a set of functional 

dependencies FD1 and keys K1 of D1 and S1.   

• Method:  

1. Apply rule 1 sub-tree moving up transformation. 

2. Apply rule 2 creating a new element 

transformation.  

3. Rewrite D, S, FD, and K as D2, S2, FD2, and K2 

respectively.
NO 



A Framework of Summarizing XML Documents with Schemas                                                                                                            23  

 

 

5.2. Function Removing Data Redundancies 

Structure 

Function removing_data_redundancies_structure is to 

remove data redundancies by XML structures of the 

XML document and schema. The function traverses 

the tree using pre-order traversal to detect tags which 

have an ancestor with the same tag name. It reduces 

the nested tags in the XML document. Other tags in the 

sub-tree rooted on a nested tag are moved up as sub-

tags of the nesting tag which is the ancestor of the 

nested tag.  

• Function 2: (D2, S2, FD2, K2)=Removing_data_ 

redundancies_Structure(D1, S1, FD1, K1). 

• Input: An XML schema S1, an XML document D1 

conforming to S1, and a set of functional 

dependencies FD1and keys K1 of D1 and S1.  

• Output: An XML schema S2, an XML document D2 

conforming to S2, and a set of functional 

dependencies FD2 and keys K2 of D2 and S2.   

• Method:  

1. For each tag n, traverse the path from n to the 

root tag r, if there exists a tag such that 

ancestor(n)=n, then move up the tags of sub-tree 

rooted on n (n itself is not included) as sub-tags 

of ancestor(n). //ancestor(n) is an ancestor tag of 

n. 

2. Rewrite D1, S1, FD1, and K1 as D2, S2, FD2, 

and K2 respectively. //After moving up the sub-

tree, the XML document, the schema, the 

functional dependencies and keys of the XML 

document and schema must be reformed as the 

structure and tags are changed in the process. 

5.3. Function Summarizing_Tags 

Function summarizing_tags is to summarize the tags in 

an XML document. The function traverses the XML 

document and contains three kinds of tags in the 

summarized XML document: 

1. The tags with values when available which are keys 

or a component part of a key. 

2. Tags with values when available whose importance 

are equal to or higher than the specified threshold. 

3. Tags with values when available which are the 

ancestors of the first two kinds of tags. Ancestor 

tags are included in the summarized XML 

documents because we must guarantee that the 

relative tags to be connected each other.  

• Function 3: (D3, S3, FD3,K3)=summarizing_tags(D2, 

S2, FD2, K2, I). 

• Input: An XML schema S2, an XML document D2 

conforming to S2, a set of functional dependencies 

FD2 and keys K2 of D2 and S2, a constant “I” 

indicates that only the tags whose tag importance is  

equal to or greater than “I”  

 

are included in the summarized XML document D3.  

• Output: An XML schema S3, an XML document D3 

conforming to S3, and a set of functional 

dependencies FD3 and keys K3 of D3 and S3.  

• Method: Traverse D3 from leaf node to the root:  

1. For each tag n, it n is a key or a component part 

of a key, then n (with value(n)) and 

ancestor_set(m) (with value(ancestor_set(n)) 

when available) are included in D3. //value(n) is 

the value of tag n, ancestor_set(n) is the set of 

ancestor tags of n.  

2. For other tag m, if Importance (m)≥I, then m 

(with value(m) when available) and 

ancestor_set(m) (with value(ancestor_set(m)) 

when available) are included in D3. 

//Importance(m) is the function to calculate a tag 

importance in the context of XML document or a 

set of XML documents with the same schema.  

3. Rewrite D2, S2, FD2, and K2 as D3, S3, FD3, and 

K3 respectively. //The document structure is 

changed as some tags are not included in the 

summarized document D3. It is necessary to 

rewrite the corresponding items.  

5.4. Function Summarizing_Values 

Function summarizing_values is to summarize the tag 

values (i.e., leaf nodes) of an XML document. For each 

tag value, the function verifies that there is only one 

occurrence of the tag under the same parent tag. If it is 

not so, only the first tag vale is contained in the 

summarized XML document. Then for each long tag 

value (the length of a tag value is longer than a 

specified length), only the specified length of 

characters is contained in the summarized XML 

document.  

• Function 4: D4=summarizing_values(D3, S3, L, M)  

• Input: An XML schema S3, an XML document D3 

conforming to S3, and two constants “L” and “M” 

(M≤L), which determines whether a tag value is 

long or not and how many characters a long tag 

value should be contained in the summarized XML 

document, respectively. 

• Output: A summarized XML document D4 of D3.   

• Method:  

1. For each tag n, if child_set(n)⊇m
+
 and child(m)= 

NULL, then value(first(m, child_set(n))) is 

included in D4. //child_set(n) indicates the set of 

child tags of n, m
+
 means there are one or more m 

tags, NULL means that there is no child tag, i.e., 

m is leaf node, and first(m, child_set(n)) is the 

first m tag of child_set(n). 

2. For each value v=value (n), if length (v)>L, then 

value (n)=M-truncation(v, M). //value of n is a 

long tag value and is truncated to length M. 

 



24                                                         The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013 

 

5.5. Experiments  

A preliminary test is performed to evaluate the 

framework. We choose XML document D1 in [10] and 

DBLP [4] records as tested XML documents. The 

summarized XML documents are evaluated by 100 

evaluators, where 50 evaluators have computer 

research background and another 50 do not have such 

background. Some interesting and useful results are 

given in following:  

1. Data redundancies: Considering an XML 

document D12 with data redundancies as 

following: 

  <courses> 
<course cno=”c10”> 

<title>db</title> 
<takenby> 

<student sno=”s10”> 
<sname>Joe</sname> 
<teacher tno=”t10”> 

<tname>John</tname> 
</teacher> 

</student> 
<student sno=”s20”> 

<sname>Smith</sname> 
<teacher tno=”t10”> 

<tname>John</tname> 
</teacher> 

</student> 
</takenby> 

          </course> 
<course cno=”c20”> 

<title>at</title> 
<takenby> 

<student sno=”s20”> 
<sname>Smith</sname> 
<teacher tno=”t10”> 

<tname>John</tname> 
</teacher> 

</student> 
<student sno=”s30”> 

<sname>Jane</sname> 
<teacher tno=”t10”> 

<tname>John</tname> 
</teacher> 

</student> 
</takenby> 

</course> 
<course cno=”c30”> 

<title>os</title> 
<takenby> 

<student sno=”s10”> 
<sname>Joe</sname> 
<teacher tno=”t20”> 

<tname>Mary</tname> 
</teacher> 

</student> 
<student sno=”s30”> 

<sname>Smith</sname> 
<teacher tno=”t20”> 

<tname>Mary</tname> 
</teacher> 

</student> 
</takenby> 

</course> 
</courses> 

we apply function 1 to get a summarized XML 

document D13 as follwong: 

<courses> 
     <course cno="c10"> 

<title>db</title> 
<takenby> 

<student sno="s10"> 
<sname>Joe</sname> 

</student> 
<student sno="s20"> 

<sname>Smith</sname> 
</student> 

</takenby> 
<teacher tno="t10"></teacher> 

</course> 
<course cno="c20"> 

<title>at</title> 
<takenby> 

<student sno="s20"> 
<sname>Smith</sname> 

</student> 
<student sno="s30"> 

<sname>Jane</sname> 
</student> 

</takenby> 
<teacher tno="t10"></teacher> 

</course> 
<course cno="c30"> 

<title>os</title> 
<takenby> 

<student sno="s10"> 
<sname>Joe</sname> 

</student> 
<student sno="s30"> 

<sname>Jane</sname> 
</student> 

</takenby> 
<teacher tno="t20"></teacher> 

</course> 
<teacherinfo tno="t10"> 

<tname>John</tname> 
</teacherinfo> 
<teacherinfo tno="t20"> 

<tname>Mary</tname> 
</teacherinfo> 

</courses> 

we analyze the summarized XML document according 

to the proposed 3 standards: 

a. Size of the summarized XML document. The size 

of XML document D12 is 893 bytes and the 

summarized XML document D13 is 781 bytes which 

is about 88% of that of D1 (i.e., the summarized 

ration RS=88%). So removing data redundancies 

alone can get a smaller summarized XML document, 

which is just the first step of summarizing an XML 

document in our approach. 

b. Information content of the summarized XML 

document. As this step only removes data 

redundancies in the original XML document, the 

information content of the summarized XML 

document is unchanged comparing with the original 

one. 

c. Information importance of the summarized XML 

document. Another advantage is that removing data 

redundancies can make the summarized XML 

document more readable because the document is 

re-organized in structure according to the implied 

semantic (functional dependency) when data 

redundancies are removed, which can be seen from 

D12 and D13. This point is agreed by all the 100 

evaluators. For removing data redundancies by 

schema structure, it has the similar effects as 



A Framework of Summarizing XML Documents with Schemas                                                                                                            25  

 

removing data redundancies by functional 

dependencies and we do not give the analysis 

anymore.  

2. Multiple Occurring Tags and Long Tag Values: For 

a tag occurring many times in a DBLP record, the 

size of summarized XML file can be very small 

comparing with the original one. For example, 

consider the following DBLP record of all 

publications of an author whose name is “Moira C. 

Norrie” (http://dblp.uni-trier.de/rec/pers/n/Norrie: 

Moira_C=/xk):  

     <dblpperson name="Moira C. Norrie"> 
<dblpkey type ="personrecord"> homepages/n/ 

MoiraCNorrie 
         </dblpkey> 
         <dblpkey>conf/chi/WeibelISN08</dblpkey> 
         <dblpkey>conf/cscw/IgnatPON08</dblpkey> 

… … 
    </dblpperson> 

we analyze the summarized XML document according 

to the proposed 3 standards: 

a. Size of the summarized DBLP record. The size of 

the original DBLP record is 4535 bytes. As tag 

dblpkey occurs multiple times in the record, the 

summarized DBLP record is only 185 bytes which 

is approximately 4% of the original one  (i.e., the 

summarized ration RS=4%). 

b. Information content of the summarized DBLP 

record. The information content ratio of the 

summarized XML document respect to the original 

one is RC=3%. Although only the first dblpkey tag is 

reserved in the summarized record, our approach 

provides a method to expand and browse other 

interested dblpkey information when necessary to 

resolve this problem.  

c. Information importance of the summarized DBLP 

record. 90 (44 with computer research background 

and 46 without computer research background) out 

of 100 evaluators are basically agreed to our 

approach, i.e., only the first dblpkey tag is reserved 

in the summarized record. This means that most of 

the evaluators think that the summarized DBLP 

record contains the most interested and necessary 

information to them. The method of processing long 

tag values is similar to the above method in the 

framework, so it is also acceptable and reasonable.  

3. XML Key. It is important and useful to understand 

the original XML document for a human being 

when key information reserved in the summarized 

XML document. It is one major difference between 

our approach and other related work. Most of the 50 

evaluators with computer research background 

agreed that key information is helpful to understand 

DBLP records. Most of another 50 evaluators 

without computer research background also agreed 

that key information is helpful to them to 

understand DBLP records when we explain the 

meaning of the key to them. For example, consider 

the following DBLP record with key information 

(http://dblp.uni-trier.de/rec/bibtex/conf/er/ 

Norrie08.xml):  

     <dblp> 

<inproceedings key="conf/er/Norrie08" 

mdate="2008-10-20"> 

     0<author>Moira C. Norrie</author>  

<title>PIM Meets Web 2.0.</title>  

<pages>15-25</pages>  

<year>2008</year>  

<booktitle>ER</booktitle>  

<ee>http://dx.doi.org/10.1007/978-3-540-

87877-3_3</ee>  

<crossref>conf/er/2008</crossref>  

                     <url>db/conf/er/er2008.html#Norrie08</url>  

   </inproceedings> 

     </dblp> 

The key value of inproceedings “conf/er/Norrie08” 

indicates that the paper is a “conference” paper 

appearing in “ER 2008” and the author is “Norrie”. Of 

course, if the evaluator is not familiar to related 

computer science or the original DBLP record is 

inconsistency or inaccurate, key information may be 

not much helpful as that in this situation. But this 

exception is resolved by other methods such as 

adjusting or correcting key and key values. It is another 

research topic beyond the current research of the paper.  

5.6. More Discussions of the Framework 

More discussions of the framework are given in the 

following aspects:  

1. A balance of the three proposed standards. From 

above observation, we can see that the framework 

can obtain a good balance of document size, 

information content, and information importance, 

which are the three standards proposed in section 1 

to evaluate a “good” summarized XML document. 

As the three evaluation standards are contradictory 

and inconsistency in most cases, it is impossible to 

get a perfect summarized XML document to satisfy 

all the three standards. So it is also acceptable if we 

can obtain a relative good summarized XML 

document by our method.  

2. Other useful information. The framework can output 

more useful information about the summarized 

XML document D4. This can be obtained by 

outputting some results of function 3 

Summarizing_Tags, which includes: a schema S3, a 

set of functional dependencies FD3 and a set of keys 

K3 of the summarized XML document. The 

information is useful to understand, query, and re 

design the XML document. The above characteristic 

is one of advantages of our approach. 

 

6. Conclusions and Future Work 

This paper proposed a semi-automatic framework to 

help users summarize XML documents, which means 



26                                                         The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013 

 

that some parameters of the method must be specified 

by uses according to different requirements such as 

intended summarized document size, intended 

information content, intended information importance, 

and specific XML documents. The contribution of the 

method is that the summarized XML document can get 

a good balance of document size, information content, 

and information importance of the original document. 

Another contribution is that the summarized XML 

document can help a human being to understand the 

original large and complex document well and present 

a clear and core information of the original one to the 

user. The future work should be done on the following:  

1. Tag importance: Although we propose the method 

to determine tag importance by keys and tag 

occurrences in the context of XML document or a 

set of XML documents with the same schema, there 

are still some cases that the methods proposed here 

can not deal with. For example, if there is only one 

single XML document and tag importance can not 

be determined well in the context of XML 

document, we must turn to the help of human 

beings, semantic ontology, or artificial intelligence. 

That is beyond the current scope of the paper and is 

an interesting work to be done in future.  

2. To generate a summarized XML document from a 

summarized XML schema: If we have already had a 

summarized XML schema, than an interesting work 

is how to generate a summarized XML document 

based on such schema. It is another approach to 

summarizing XML document. The technique used 

in such case maybe different to the method 

proposed here and is a challenge in future work.  

Acknowledgements 

The work is supported by Natural Science Foundation 

of Anhui Province (No.1208085MF110), National 

Natural Science Foundation of China (No. 11201002), 

and Foundation of Introduction of Talents of Anhui 

Agricultural University (No.YJ201012).  

References 

[1] Amini M., Tombros A., Usunier N., and Lalmas 

M., “Learning-Based Summarisation of XML 

Documents,” Information Retrieval, vol. 10, no. 

3, pp. 233-255, 2007. 

[2] Buneman P., Davidson S., Fan W., Hara C., and 

Tan W., “Keys for XML,” Computer Networks, 

vol. 39, no. 5, pp. 473-487, 2002. 

[3] Dalamagas T., Cheng T., Winkel K., and Sellis 

T., “A Methodology for Clustering XML 

Documents by Structure,” Information Systems,   

vol. 31, no. 3, pp. 187-228, 2006. 

[4] DBLP, available at: http://dblp.uni-trier.de/xml, 

last visited 2011. 

[5] Dilek B. and Sanjay M., “Entropy as a Measure 

of Quality of XML Schema Document,” The 

International Arab Journal of Information 

Technology, vol. 8, no. 1, pp. 75-83, 2011. 

[6] Fischer G. and Campista I., “A Template-Based 

Approach to Summarize XML Collections,” in 

Proceedings of Lernen, Wissensentdeckung and 

Adaptivit , Germany, pp. 103-108, 2005. 

[7] Freire J., Haritsa J., Ramanath M., and Simon J., 

“StatiX: Making XML Count,” in Proceedings of 

the International Conference on Management of 

Data, USA, pp. 181-191, 2002. 

[8] Hahn U. and Mani I., “The Challenges of 

Automatic Summarization,” Journal of 

Computer, vol. 33, no. 11, pp. 29-36, 2000. 

[9] League C. and Eng K., “Type-Based 

Compression of XML Data,” in Proceedings of 

Data Compression Conference, USA, pp. 273-

282, 2007.  

[10] Lv T., Gu N., and Yan P., “Normal forms for 

XML Documents,” Information and Software 

Technology, vol. 46, no. 12, pp. 839-846, 2004. 

[11] Maneth S., Mihaylov N., and Sakr S., “XML 

Tree Structure Compression,” in Proceedings of 

the 3
rd

 International Workshop on XML Data 

Management Tools and Techniques, Italy, pp. 

243-247, 2008. 

[12] Mayorga V. and Polyzotis N., “Sketch-Based 

Summarization of Ordered XML Streams,” in 

Proceedings of  IEEE 25
th
 International 

Conference on ICDE, China, pp. 541-552, 2009. 

[13] Polyzotis N., Garofalakis M., and Ioannidis Y., 

“Approximate XML Query Answers.,” in 

Proceedings of SIGMOD International 

Conference on Management of Data, France, pp. 

263-274, 2004. 

[14] Ramanath M. and Kumar K., “A Rank-Rewrite 

Framework for Summarizing XML Documents,” 

in Proceedings of 2
nd

 International Workshop on 

Ranking in Databases, ICDE Workshop, México, 

pp. 540-547, 2008.  

[15] W3C, “Extensible Markup Language,” available 

at: http://www.w3.org/XML/, last visited 2011. 

[16] Wang W., Jiang H., Lu H., and Yu J., “Bloom 

Histogram: Path Selectivity Estimation for XML 

Data with Updates,” in Proceedings of the 30th 

International Conference on Very Large Data 

Bases VLDB, Canada, pp. 240-251, 2004. 

[17] Yu C. and Jagadish H., “Schema 

Summarization,” in Proceedings of the 32
nd

 

International Conference on Very Large Data 

Bases VLDB, Korea, pp. 319-330, 2006. 

[18] Zhang N., Ozsu T., Aboulnaga A., and Ilyas I., 

“Xseed: Accurate and Fast Cardinality 

Estimation for XPath Queries,” in Proceedings of 

the 2
2nd

 International Conference on ICDE, USA, 

pp. 61, 2006. 
 



A Framework of Summarizing XML Documents with Schemas                                                                                                            27  

 

Teng Lv received his PhD degree 

from Fudan University, China. His 

research interests include database 

and XML data management. He is 

the author or coauthor of more than 

50 journal papers or reviewed 

conference papers. He is the 

reviewers or PC members of several journals and 

conferences both at home and abroad.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ping Yan received her PhD degree 

from Fudan University, China. Her 

research interests include partial 

differential equations and their 

applications in neural network and 

epidemic diseases, databases, and 

XML data management.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


