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Abstract: Word prediction methodologies depend heavily on the statistical approach that uses the unigram, bigram, and the 
trigram of words. However, the construction of the N-gram model requires a very large size of memory, which is beyond the 
capability of many existing computers. Beside this, the approximation reduces the accuracy of word prediction. In this paper, 
we suggest to use a cluster of computers to build an Optimal Binary Search Tree (OBST) that will be used for the statistical 
approach in word prediction. The OBST will contain extra links so that the bigram and the trigram of the language will be 
presented. In addition, we suggest the incorporation of other enhancements to achieve optimal performance of word 
prediction. Our experimental results showed that the suggested approach improves the keystroke saving.  
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1. Introduction 

In general, word predication is the problem of guessing 
the next word in a sentence as the sentence is being 
entered, and updates this prediction as the word is 
typed. Currently “word prediction” implies both “word 
completion and word prediction” [13]. Word 
completion is defined as offering the user a list of 
words after a letter has been typed, while word 
prediction is defined as offering the user a list of 
probable words after a word has been typed or selected, 
based on previous words rather than on the basis of the 
letter. Word completion problem is easier to solve 
since the knowledge of some letter(s) provides the 
predictor a chance to eliminate many of irrelevant 
words [4, 13]. 
 “The task of prediction the most likely word based 
on properties of its surrounding context is the 
archetypical prediction problem in Natural Language 
Processing (NLP). In many NPL tasks, it is necessary 
to determine the most likely word, part-of-speech 
(POS) tag or any other token, given its history or 
context. Examples include part-of-speech tagging, 
word-sense disambiguation, speech recognition, accent 
restoration, context-sensitive spelling correction, and 
identifying discourse markers” [4]. Currently, word 
prediction is used in many real life applications such as 
augmentative communication devices [12].  
 The development of more sophisticated prediction 
techniques can provide high degree of keystroke saving 
(percentage of keystrokes eliminated by integrating the 
prediction method) which may translate to faster 
communication rates [14]. In addition, it can improve 
the quality (as well as the quantity) of message 
production for persons with language impairment, 

communication impairments, and those with learning 
disabilities [13]. 
 Currently, there are many approaches, which have 
been developed for use in word prediction. These 
approaches can be classified into three groups: (1) use 
of statistical calculations, which can be either 
dynamically adaptable/not adaptable to their user; (2) 
use of syntactic information in order to improve the 
accuracy of the prediction; (3) use of semantics of the 
sentence to help the prediction process [15]. 
 In this paper the difficulty in expressing the 
statistical model without losing any accuracy will be 
explained. As an alternative we suggest to build the N-
gram frequency of the statistical model using a cluster 
of computers. Thus, an OBST with some extra links 
will present the unigram, bigram, and the trigram 
collectively. Once the N-gram has been built, we will 
use the statistical model so that more accuracy will be 
gained. This will be followed by integrating other 
techniques to improve the suggested structure. 
 The organization of this paper will be as follows. 
Section 2 presents the basic concepts of the prediction 
methodology. Section 3 is a discussion of the language 
model. Section 4 presents the suggested structure for 
the statistical model. Section 5 will be the integration 
of other enhancements to the suggested structure. 
Section 6 explains the results of the experimentations 
that were carried out; and finally section 7 draws 
conclusions and future work. 
 
2. Basic Concepts 
The majority of current word prediction systems 
employ statistical analysis for their word prediction. 
“The choice of words for placement in the prediction 
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list is based upon the probability that they will appear 
in the text. The probabilities can be fixed, based on the 
language in general, or they can be based on the user’s 
own style and altered as the system is used. In the 
simplest systems, the probabilities relate only to 
isolated words and their likehood of use. In more 
complex approaches, the statistics are based upon the 
probability of a word appearing given what has gone 
before” [15].  
 The easiest way of word prediction is to use a fixed 
lexicon. In this case, each word in the lexicon will have 
a frequency associated with it that relates the word to 
how often it is used in the language in general. These 
frequencies are based on large textual or written 
documents like news papers, and even sometimes from 
spoken language.  
 Following is a formal definition of the prediction, 
which generates a list of words for the user. 

Definition: Let A be a finite language that consists of 
words X1, X2, X3,.. , Xn .  Given any sentence, which 
consists of a set of words w1, w2, w3,…. A prediction 
applied to this sentence will generate a sequence of 
words C = X1 ,̀ X2 ,̀ X3 ,̀  in which Xi  ̀is the predicted 
value of Xi for every i.  

 Two different methods are used to produce the 
predictions. The first method sort the whole lexicon 
according to the frequency order and offer the user 
some few words from the prediction list with the 
highest frequencies. If the prediction, which is 
required, does not appear on the list straight away then 
the user types in the first letter. The list is then reduced 
to only those words which have the initial letter just 
entered, and again, the top few are offered as 
predictions. This process continues until either the 
word has been spelt out in its entirety, or it has 
appeared on the prediction list, at which point the user 
can add it to the sentence in whichever way is made 
available to him [15]. 
 The second method of using a fixed lexicon requires 
more detailed corpus data. “Words stored in the 
dictionary are tagged with the frequencies with which 
they appear after other given words. Consequently, 
when a word is entered, the most frequently used word 
which follows it can be extracted from the corpus to 
produce a predication list. The advantage of this 
method over the previously discussed method is that 
the prediction list will be much more on the current 
status of the sentence and therefore more likely to 
contain correct predictions. This makes it a far more 
common choice for designers of prediction systems. 
The process of selecting a word is the same as for the 
previous method, although the list, which is initially 
drawn up, is changed each time a new word is entered 
rather than being a fixed list as was seen before” [15].  
 

3. Language Model 
Language models for word prediction concentrate 
exclusively on the probabilities of the words in the 
history [2]. In this paper, we suggest to construct an 
OBST so that its goal is to find the best sequence of 
words that can be used in word prediction. To build the 
OBST, a cluster of computers will be used. The cluster 
of computers allows handling the big size of different 
combinations. We will show that our structure reduces 
the word error rate and improves the Keystroke Saving 
Rate (KSR) for certain domains of a corpus when it is 
used with other prediction approaches. 
 Given a sequence of words W=w1 w2….wN, the 
probability language model estimate the probability of 
a sequence of words W using Bayes rule as the product 
of conditional probabilities as follows: 
                      N 
                 Pr(W1,N)=?  Pr(Wi | W1,i -1)                        (1) 
                              i=1 
 

where N represents number of words and it is a random 
variable itself. Equation (1) computes the probability 
of observing a word wi at position i; modeled as being 
restricted  to  its  immediate (i-1) predecessor words 
W1,i -1. The result is a Markov chain, called an N-gram 
model [18]. N-gram models have been among the most 
successful approaches used for language modeling. 
These refer to finite state analysis of series of 1, 2, or 3 
words sequences, such as "doors", "building doors", or 
"like building doors", and are called unigram, bigram, 
and trigram.  

To compute the probability distribution the 
traditional way is to define equivalence classes 
amongst the contexts 1,1 −iW  which can be done by 
limiting the contexts to an N-gram language model [9, 
16]. One can also mix in smaller size language models 
when there is not enough data to support the large 
context by using either interpolated estimation [10] or 
a backoff application [11].  
 Following is the equation that is usually used for a 
class-based trigram model, where the function g maps 
each word to its unambiguous class 

)))g(Wg(W                          

|))Pr(g(Wg(W|Pr(W)W|Pr(W

2i1i

iii1i1,i

−−

− =
 (2) 

 Using classes has a potential problem such that the 
class for adjacent words )|( 1 ii wwg −  and )( iwg lose 
some information about each other. This loss of 
information occurs in many algorithms such as Brown 
algorithm [2].  

Below we give the derivation based on using the 
trigram: 
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Note that equation (4) involves some simplifying 
assumptions, namely that )|Pr( ,11,1 iii PWW −

 can be 

approximated by )|Pr( ii PW  and that )|Pr( 1,11,1 −− iii PWP  can 

be approximated by )|Pr( 1,1 −ii PP .Although those 
assumptions simplify the task of estimating the 
probability distributions; they reduce the accuracy of 
the current model. The above approach when 
incorporated in some applications such as speech 
recognition does not improve the performance. Srinivas 
[17] reported an increase in the perplexity, which is a 
measure, over a word-based model on the Wall street 
Journal by 24.5%. Another technique for the 
construction of n-gram language model is the one that 
is developed by Chen and others [3]. However, this 
scheme is an instance of Jelinek-Mercer smoothing 
approach [3], therefore, we will not go into further 
details of it. 
 The main limitation of the previous language model 
is that the number of states and transitions is 
unmanageable. As a result, the use of equivalence 
classes and the approximation reduces from the 
accuracy of the word prediction.  In addition, the use of 
a single computer does not offer the capability to build 
the trigram. Therefore, we suggest building the trigram 
using a cluster of computers. For example, consider a 
vocabulary of size V then there will be V3 possible 
trigrams, which for 20,000 words translates to 8 trillion 
trigrams. This number cannot be handled by a single 
computer. However, a cluster of computers can handle 
this size. In addition, our structure will not reserve any 
space for many trigrams that will not be seen in the 
training corpus (have zero probability). In the case the 
user does not like the sparness in this model then he 
can avoid this by using tagging instead of classes in 
language modeling [7].  
 
4. Suggested Structure 

The construction of the trigram requires a large amount 
of memory. Therefore, a cluster of computers will be 
used to build this model. To achieve optimal 
performance we suggest using the OBST.  This OBST 
will contain extra links so that the bigram, and trigram 
will be included in this structure. 
 In our suggested approach, a cluster of PC’s 
connected via Ethernet connection is used to build the 
frequencies. The number of the hosts was equal to the 
number of the language letters although it is possible 
that the number of hosts is less than the letters. The 
MPI software was used to implement this 

configuration. In the implemented configuration, one 
of the computers was the master and the others were 
the workers, and the MPI software control the 
interchange of the messages depending on the 
availability. The master PC starts processing the 
corpus, and then it starts sending messages to the hosts. 
Each host was responsible for a single letter in the 
language. Thus all the words that start with this letter 
will go to its designated processor. The host PC will be 
responsible for storing the word and keeping track of 
the frequencies of all the words that start with that 
letter.  
 At this point we are able to get the unigram of the 
words distributed among several hosts. After that our 
program starts building an OBST for each PC. The 
master computer has the links to al other hosts and it 
has the capability to access all the OBSTs. It should be 
noted that our algorithm tries to make the OBST as a 
balanced tree as possible meanwhile taking into 
consideration that the load is distributed among the 
hosts [1]. In case the load is not distributed well, then it 
is possible to merge two rare beginning letters of 
words into one group. 
 Each node in this optimal binary search tree will 
have five attributes. They are the word itself, its 
frequency, the left and right child pointers, and a 
pointer value to a linked list. The linked list represents 
the bigram for all the words that start with the word 
that is already residing in the OBST. Note that the 
selection of a binary search tree implies that the most 
frequent word(s) will be close to the root. In addition, 
all the words in the left sub-tree are less than or equal 
to the root of the sub-tree, and all the nodes on the 
right sub-tree are greater than or equal to the sub-tree 
root [6]. This data structure has the advantage in that 
the search will take O(h) where h is the height of our 
binary search tree. As an example, for vocabulary of 
60,000 words, the number of visited nodes from the 
root to the leaf will take at most 16 comparisons since 
the log2 (Number of words) is at most equal to ( log2 
60000)  ≈ 16. 

To complete the construction of our OBST, we will 
revisit each node and identify the word it represent and 
start the creation of the bigram. For example, let us 
assume that the root contains the word “the”, Then this 
word will be checked all over the corpus and the 
appearance of two adjacent words where the first word 
is “the” will be tracked. In other words, every two-
word combinations in the language where the first 
word is “the” will be counted. Doing this will allow us 
to identify all dual words where one of them is exactly 
the word which is stored in the node. Upon 
determining them we will be able to construct a sorted 
linked list based on the frequency. This sorted linked 
list varies in size from one node to another. In the 
worst case, a word like “the” will have a long linked 
list of size approximately equal to the number of nouns 
in English, while other nodes might have a short nodes 
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that consist of few nodes. The same thing appears in all 
languages. For example, a node that represents a value 
of “I” might have a small linked list of at most one or 
two items. Following is Figure 1, which gives a general 
sketch of the tree. 
 

Word
Left 
child

Right 
child

Frequency Linked 
List 
pointer

a) Node contents

the
0.12

go
0.05

work
0.45

School 0.12 lake 0.05House 0.15

Today 0.11 Here 0.06

:
:

:
:

:
:

….

….

Unigram Sub-Bigram for words
Starts with “work”

Sub-Trigram
Linked list

b) Structure

:
:

 
Figure 1. General structure of the optimal binary search tree with 
extra links. 
 
 It should be noted that although we report the 
frequency in the previous figure, but we can eliminate 
it for the purpose of saving memory. In fact, after we 
get the frequency for each linked list, we used to sort 
and re-structure the linked list for the bigram, and then 
for the trigram in order to eliminate the frequency field 
of the nodes. 
 Following is the exact algorithm. It consists of two 
stages. The static stage, which is executed only once 
before the user starts using the system and the dynamic 
stage where the user can get the predicated word. 
 
a. Static (Creating) Stage 

1. Broadcast Step: Scan a corpus. For each sequence 
of words wi wi+1 wi+2 send a message to the 
processor which takes care of the words that start 
with the first letter of word wi. The designated 
processor will keep track of the frequencies for  the 
for the unigram wi,  bigram wi wi+1 and trigram wi 
wi+1,wi+2. 

2. Bigram Combine Step: Build an optimal binary 
search tree with five identifiers. The first identifier 
is the word. The second is the frequency. Other 
identifiers are designed for the left and right child 
pointers of the node, and the fifth identifier is a 
pointer to a linked list which will be created 
following. This linked list represents a sub-bigram 
for a single word. 

3. Trigram Combine Step: Use the clustered bigram 
table to build the linked list for each word. The 
linked list will be sorted according to the frequency 
with the highest frequency at the front of the linked 
list. 

b. Dynamic (Run) Stage 

1. Read a sentence with a missing word (let the 
missing word be denoted by wj).  

2. Let C ← φ  
3. Find the previous word (wj) and the next word (wj).  
4. if  (previous (wj) = NULL and next (wj)  ≠ NULL ) 

then 
      begin 

 for each node wj in our OBST do  
Visit the corresponding linked list of the 
bigram. 
if next (wj) ∈ the linked list of wj      
 then 
     C← C ∪ wj where wj is the word stored     
     in the OBST. 
    Apply Further_ Filtering on set C. 

   end 
 else 
   begin 
       if (previous (wj)≠  NULL and next (wj)= NULL )    
       then 

Visit previous (wj) which already exists in     
  the OBST. From there visit the  
  corresponding linked list attached to it      
  and let    C← C ∪ wi  | where w i ∈ linked     
  list of (previous (wj)) and wi is unique. 
Apply Further_Filtering on set C. 

else 
Visit previous (wj). From there visit the      
   corresponding linked list attached to  
  it and obtain the set Candidates C such     
   that C = C ∪ wj-1 |  where w j is within the  
   sequence wj-1 wj wj+1 
Generate C = C ∩ next (wj) | wj within the   
   sequence of wj-1 wj wj+1. 
Apply Further_Filtering on set C. 

end if 
end 

4. Use suggested improvement in the following section   
    to reduce size of set C. 
5. Present the list as a suggested list for the user.  

We run the implementation of our suggested data 
structure on a cluster of 26 machines using MPI 
software for a specific domain from corpus. Our 
observations showed that it will be a useful structure in 
many specialized domains like using word prediction 
in phrases from different religious holy books. 
 
5. The Integration of Other Enhancement 

to the Suggested Structure 

The goal of this research was not to replace the process 
by which prediction is chosen, but to augment it by 
reducing the domain of search used by existing 
methods. Thus, the use of our structure combined with 
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other enhancement methods will improve the overall 
word prediction. 
 As can be seen from our algorithm, it calls a 
procedure named “Further-Filtering”. The 
Further_Filtering procedure has numerous techniques 
to enhance N-gram word prediction using recency, 
syntactic analysis, syntax-based N-gram, and domain-
specific N-gram models. Other enhancements can be 
considered such as dividing the 1st order frequency 
table into sub-tables, for example, one will be used for 
verbs, and the other will be used for nouns and so on. 
These enhancements can be defined inside this 
procedure. However, because they are out of the scope 
of this paper, we did not describe them. As an 
alternative, we used another word predictor 
(Soothsayer) behind our program at some points of the 
experimentation results. 
 
6. Experimentation Results 
The keystroke saving was the main test used for our 
structure. This test investigates the savings, which a 
prediction system can offer the user. It is given as one 
minus the ratio of key strokes actually made to the 
number of letters in the text. The higher this figure is, 
the more savings are available to the user, and 
consequently, the better the system is. 
 To test the performance, a piece of medical text was 
selected. We run four cases for word prediction using 
the same text. The first case (Figure 2, part a ) uses our 
structure combined with another word prediction 
program. The second case (Figure 2, part b) uses our 
structure, without any other word prediction program. 
The third case (Figure 2, part c) one is the word 
prediction “soothsayers” alone. The final case (Figure 
2, part d) uses no prediction at all, instead creating a 
prediction list which contains the entire lexicon. The 
keystroke saving throughout each sentence was 
recorded and shown in the figures. On each graph, the 
main plot indicates the keystroke saving for each 
sentence, plotted word by word. This plot is reset to 
zero at the beginning of each sentence. In order to 
clarify the effect of sentence boundaries, vertical 
dashed lines mark them. The final information added to 
these groups is a plot of the cumulative keystroke 
saving over the entire text. This gives a useful 
indication of the overall performance of our structure. 
 The overall keystroke saving can be seen in Figure 
3. Results of this figure showed that if we use our 
structure combined with other word prediction 
techniques, then an increase in saving of keystroke is 
approximately 20%. 
 
7. Conclusion 
Word prediction can be used in many applications. For 
example, it can be used to disambiguate sequences 
from ambiguous keypads, correct spelling errors, and 

provide an OBST with some extra links to be used and 
built using a cluster of computers. This can be used for 
certain domain-specific topics such as medical topics. 
It provides more accuracy, and a keystroke saving of 
around 20% when combined with other approaches.  
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b) OBST with extra links. 
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c)  Ready word prediction program only. 
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d) Retrieval of whole lexicon. 
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Figure 2. Keystroke saving for a medical article using various 
prediction algorithms. 
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Figure 3. Cumulative keystroke savings for the medical article 
using various prediction methods. 

 
The suggested structure creates a large data structure 

of several millions of items. The effect of this problem 
decreased with the increase in the speed of processors, 
the increase in storage capacity, and advancements in 
cluster computing algorithms and machines.  
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