
The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004 135

Word Prediction via a Clustered Optimal Binary

Search Tree
Eyas El-Qawasmeh

Computer Science Department, Jordan University of Science and Technology, Jordan

Abstract: Word prediction methodologies depend heavily on the statistical approach that uses the unigram, bigram, and the
trigram of words. However, the construction of the N-gram model requires a very large size of memory, which is beyond the
capability of many existing computers. Beside this, the approximation reduces the accuracy of word prediction. In this paper,
we suggest to use a cluster of computers to build an Optimal Binary Search Tree (OBST) that will be used for the statistical
approach in word prediction. The OBST will contain extra links so that the bigram and the trigram of the language will be
presented. In addition, we suggest the incorporation of other enhancements to achieve optimal performance of word
prediction. Our experimental results showed that the suggested approach improves the keystroke saving.

Keywords: Bigram, cluster computing, N-gram, unigram, trigram, word frequency, word prediction.

Received April 21, 2003; accepted July 29, 2003

1. Introduction

In general, word predication is the problem of guessing
the next word in a sentence as the sentence is being
entered, and updates this prediction as the word is
typed. Currently “word prediction” implies both “word
completion and word prediction” [13]. Word
completion is defined as offering the user a list of
words after a letter has been typed, while word
prediction is defined as offering the user a list of
probable words after a word has been typed or selected,
based on previous words rather than on the basis of the
letter. Word completion problem is easier to solve
since the knowledge of some letter(s) provides the
predictor a chance to eliminate many of irrelevant
words [4, 13].
 “The task of prediction the most likely word based
on properties of its surrounding context is the
archetypical prediction problem in Natural Language
Processing (NLP). In many NPL tasks, it is necessary
to determine the most likely word, part-of-speech
(POS) tag or any other token, given its history or
context. Examples include part-of-speech tagging,
word-sense disambiguation, speech recognition, accent
restoration, context-sensitive spelling correction, and
identifying discourse markers” [4]. Currently, word
prediction is used in many real life applications such as
augmentative communication devices [12].
 The development of more sophisticated prediction
techniques can provide high degree of keystroke saving
(percentage of keystrokes eliminated by integrating the
prediction method) which may translate to faster
communication rates [14]. In addition, it can improve
the quality (as well as the quantity) of message
production for persons with language impairment,

communication impairments, and those with learning
disabilities [13].
 Currently, there are many approaches, which have
been developed for use in word prediction. These
approaches can be classified into three groups: (1) use
of statistical calculations, which can be either
dynamically adaptable/not adaptable to their user; (2)
use of syntactic information in order to improve the
accuracy of the prediction; (3) use of semantics of the
sentence to help the prediction process [15].
 In this paper the difficulty in expressing the
statistical model without losing any accuracy will be
explained. As an alternative we suggest to build the N-
gram frequency of the statistical model using a cluster
of computers. Thus, an OBST with some extra links
will present the unigram, bigram, and the trigram
collectively. Once the N-gram has been built, we will
use the statistical model so that more accuracy will be
gained. This will be followed by integrating other
techniques to improve the suggested structure.
 The organization of this paper will be as follows.
Section 2 presents the basic concepts of the prediction
methodology. Section 3 is a discussion of the language
model. Section 4 presents the suggested structure for
the statistical model. Section 5 will be the integration
of other enhancements to the suggested structure.
Section 6 explains the results of the experimentations
that were carried out; and finally section 7 draws
conclusions and future work.

2. Basic Concepts
The majority of current word prediction systems
employ statistical analysis for their word prediction.
“The choice of words for placement in the prediction

136 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

list is based upon the probability that they will appear
in the text. The probabilities can be fixed, based on the
language in general, or they can be based on the user’s
own style and altered as the system is used. In the
simplest systems, the probabilities relate only to
isolated words and their likehood of use. In more
complex approaches, the statistics are based upon the
probability of a word appearing given what has gone
before” [15].
 The easiest way of word prediction is to use a fixed
lexicon. In this case, each word in the lexicon will have
a frequency associated with it that relates the word to
how often it is used in the language in general. These
frequencies are based on large textual or written
documents like news papers, and even sometimes from
spoken language.
 Following is a formal definition of the prediction,
which generates a list of words for the user.

Definition: Let A be a finite language that consists of
words X1, X2, X3,.. , Xn . Given any sentence, which
consists of a set of words w1, w2, w3,…. A prediction
applied to this sentence will generate a sequence of
words C = X1 ,̀ X2 ,̀ X3 ,̀ in which Xi ̀is the predicted
value of Xi for every i.

 Two different methods are used to produce the
predictions. The first method sort the whole lexicon
according to the frequency order and offer the user
some few words from the prediction list with the
highest frequencies. If the prediction, which is
required, does not appear on the list straight away then
the user types in the first letter. The list is then reduced
to only those words which have the initial letter just
entered, and again, the top few are offered as
predictions. This process continues until either the
word has been spelt out in its entirety, or it has
appeared on the prediction list, at which point the user
can add it to the sentence in whichever way is made
available to him [15].
 The second method of using a fixed lexicon requires
more detailed corpus data. “Words stored in the
dictionary are tagged with the frequencies with which
they appear after other given words. Consequently,
when a word is entered, the most frequently used word
which follows it can be extracted from the corpus to
produce a predication list. The advantage of this
method over the previously discussed method is that
the prediction list will be much more on the current
status of the sentence and therefore more likely to
contain correct predictions. This makes it a far more
common choice for designers of prediction systems.
The process of selecting a word is the same as for the
previous method, although the list, which is initially
drawn up, is changed each time a new word is entered
rather than being a fixed list as was seen before” [15].

3. Language Model
Language models for word prediction concentrate
exclusively on the probabilities of the words in the
history [2]. In this paper, we suggest to construct an
OBST so that its goal is to find the best sequence of
words that can be used in word prediction. To build the
OBST, a cluster of computers will be used. The cluster
of computers allows handling the big size of different
combinations. We will show that our structure reduces
the word error rate and improves the Keystroke Saving
Rate (KSR) for certain domains of a corpus when it is
used with other prediction approaches.
 Given a sequence of words W=w1 w2….wN, the
probability language model estimate the probability of
a sequence of words W using Bayes rule as the product
of conditional probabilities as follows:
 N
 Pr(W1,N)=? Pr(Wi | W1,i -1) (1)
 i=1

where N represents number of words and it is a random
variable itself. Equation (1) computes the probability
of observing a word wi at position i; modeled as being
restricted to its immediate (i-1) predecessor words
W1,i -1. The result is a Markov chain, called an N-gram
model [18]. N-gram models have been among the most
successful approaches used for language modeling.
These refer to finite state analysis of series of 1, 2, or 3
words sequences, such as "doors", "building doors", or
"like building doors", and are called unigram, bigram,
and trigram.

To compute the probability distribution the
traditional way is to define equivalence classes
amongst the contexts 1,1 −iW which can be done by
limiting the contexts to an N-gram language model [9,
16]. One can also mix in smaller size language models
when there is not enough data to support the large
context by using either interpolated estimation [10] or
a backoff application [11].
 Following is the equation that is usually used for a
class-based trigram model, where the function g maps
each word to its unambiguous class

)))g(Wg(W

|))Pr(g(Wg(W|Pr(W)W|Pr(W

2i1i

iii1i1,i

−−

− =
 (2)

 Using classes has a potential problem such that the
class for adjacent words)|(1 ii wwg − and)(iwg lose
some information about each other. This loss of
information occurs in many algorithms such as Brown
algorithm [2].

Below we give the derivation based on using the
trigram:

∑=
N1,P

N1,N1,N1,)PPr(W)Pr(W (3)

∑∏
=

−−−=
N1,P

N

1i
1i1,1i1,ii1,1i1,|i)PW|)Pr(PPW|Pr(W (4)

Word Prediction via a Clustered Optimal Binary Search Tree 137

 ∑∏
=

−=
N1,P

N

1i
1i1,iii)P|)Pr(PP|Pr(W (5)

 ∑∏
=

−−=
N1,P

N

1i
1i2,iiii)P|)Pr(PP|Pr(W (6)

Note that equation (4) involves some simplifying
assumptions, namely that)|Pr(,11,1 iii PWW −

 can be

approximated by)|Pr(ii PW and that)|Pr(1,11,1 −− iii PWP can

be approximated by)|Pr(1,1 −ii PP .Although those
assumptions simplify the task of estimating the
probability distributions; they reduce the accuracy of
the current model. The above approach when
incorporated in some applications such as speech
recognition does not improve the performance. Srinivas
[17] reported an increase in the perplexity, which is a
measure, over a word-based model on the Wall street
Journal by 24.5%. Another technique for the
construction of n-gram language model is the one that
is developed by Chen and others [3]. However, this
scheme is an instance of Jelinek-Mercer smoothing
approach [3], therefore, we will not go into further
details of it.
 The main limitation of the previous language model
is that the number of states and transitions is
unmanageable. As a result, the use of equivalence
classes and the approximation reduces from the
accuracy of the word prediction. In addition, the use of
a single computer does not offer the capability to build
the trigram. Therefore, we suggest building the trigram
using a cluster of computers. For example, consider a
vocabulary of size V then there will be V3 possible
trigrams, which for 20,000 words translates to 8 trillion
trigrams. This number cannot be handled by a single
computer. However, a cluster of computers can handle
this size. In addition, our structure will not reserve any
space for many trigrams that will not be seen in the
training corpus (have zero probability). In the case the
user does not like the sparness in this model then he
can avoid this by using tagging instead of classes in
language modeling [7].

4. Suggested Structure

The construction of the trigram requires a large amount
of memory. Therefore, a cluster of computers will be
used to build this model. To achieve optimal
performance we suggest using the OBST. This OBST
will contain extra links so that the bigram, and trigram
will be included in this structure.
 In our suggested approach, a cluster of PC’s
connected via Ethernet connection is used to build the
frequencies. The number of the hosts was equal to the
number of the language letters although it is possible
that the number of hosts is less than the letters. The
MPI software was used to implement this

configuration. In the implemented configuration, one
of the computers was the master and the others were
the workers, and the MPI software control the
interchange of the messages depending on the
availability. The master PC starts processing the
corpus, and then it starts sending messages to the hosts.
Each host was responsible for a single letter in the
language. Thus all the words that start with this letter
will go to its designated processor. The host PC will be
responsible for storing the word and keeping track of
the frequencies of all the words that start with that
letter.
 At this point we are able to get the unigram of the
words distributed among several hosts. After that our
program starts building an OBST for each PC. The
master computer has the links to al other hosts and it
has the capability to access all the OBSTs. It should be
noted that our algorithm tries to make the OBST as a
balanced tree as possible meanwhile taking into
consideration that the load is distributed among the
hosts [1]. In case the load is not distributed well, then it
is possible to merge two rare beginning letters of
words into one group.
 Each node in this optimal binary search tree will
have five attributes. They are the word itself, its
frequency, the left and right child pointers, and a
pointer value to a linked list. The linked list represents
the bigram for all the words that start with the word
that is already residing in the OBST. Note that the
selection of a binary search tree implies that the most
frequent word(s) will be close to the root. In addition,
all the words in the left sub-tree are less than or equal
to the root of the sub-tree, and all the nodes on the
right sub-tree are greater than or equal to the sub-tree
root [6]. This data structure has the advantage in that
the search will take O(h) where h is the height of our
binary search tree. As an example, for vocabulary of
60,000 words, the number of visited nodes from the
root to the leaf will take at most 16 comparisons since
the log2 (Number of words) is at most equal to (log2
60000) ≈ 16.

To complete the construction of our OBST, we will
revisit each node and identify the word it represent and
start the creation of the bigram. For example, let us
assume that the root contains the word “the”, Then this
word will be checked all over the corpus and the
appearance of two adjacent words where the first word
is “the” will be tracked. In other words, every two-
word combinations in the language where the first
word is “the” will be counted. Doing this will allow us
to identify all dual words where one of them is exactly
the word which is stored in the node. Upon
determining them we will be able to construct a sorted
linked list based on the frequency. This sorted linked
list varies in size from one node to another. In the
worst case, a word like “the” will have a long linked
list of size approximately equal to the number of nouns
in English, while other nodes might have a short nodes

138 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

that consist of few nodes. The same thing appears in all
languages. For example, a node that represents a value
of “I” might have a small linked list of at most one or
two items. Following is Figure 1, which gives a general
sketch of the tree.

Word
Left
child

Right
child

Frequency Linked
List
pointer

a) Node contents

the
0.12

go
0.05

work
0.45

School 0.12 lake 0.05House 0.15

Today 0.11 Here 0.06

:
:

:
:

:
:

….

….

Unigram Sub-Bigram for words
Starts with “work”

Sub-Trigram
Linked list

b) Structure

:
:

Figure 1. General structure of the optimal binary search tree with
extra links.

 It should be noted that although we report the
frequency in the previous figure, but we can eliminate
it for the purpose of saving memory. In fact, after we
get the frequency for each linked list, we used to sort
and re-structure the linked list for the bigram, and then
for the trigram in order to eliminate the frequency field
of the nodes.
 Following is the exact algorithm. It consists of two
stages. The static stage, which is executed only once
before the user starts using the system and the dynamic
stage where the user can get the predicated word.

a. Static (Creating) Stage

1. Broadcast Step: Scan a corpus. For each sequence
of words wi wi+1 wi+2 send a message to the
processor which takes care of the words that start
with the first letter of word wi. The designated
processor will keep track of the frequencies for the
for the unigram wi, bigram wi wi+1 and trigram wi
wi+1,wi+2.

2. Bigram Combine Step: Build an optimal binary
search tree with five identifiers. The first identifier
is the word. The second is the frequency. Other
identifiers are designed for the left and right child
pointers of the node, and the fifth identifier is a
pointer to a linked list which will be created
following. This linked list represents a sub-bigram
for a single word.

3. Trigram Combine Step: Use the clustered bigram
table to build the linked list for each word. The
linked list will be sorted according to the frequency
with the highest frequency at the front of the linked
list.

b. Dynamic (Run) Stage

1. Read a sentence with a missing word (let the
missing word be denoted by wj).

2. Let C ← φ
3. Find the previous word (wj) and the next word (wj).
4. if (previous (wj) = NULL and next (wj) ≠ NULL)

then
 begin

 for each node wj in our OBST do
Visit the corresponding linked list of the
bigram.
if next (wj) ∈ the linked list of wj
 then
 C← C ∪ wj where wj is the word stored
 in the OBST.
 Apply Further_ Filtering on set C.

 end
 else
 begin
 if (previous (wj)≠ NULL and next (wj)= NULL)
 then

Visit previous (wj) which already exists in
 the OBST. From there visit the
 corresponding linked list attached to it
 and let C← C ∪ wi | where w i ∈ linked
 list of (previous (wj)) and wi is unique.
Apply Further_Filtering on set C.

else
Visit previous (wj). From there visit the
 corresponding linked list attached to
 it and obtain the set Candidates C such
 that C = C ∪ wj-1 | where w j is within the
 sequence wj-1 wj wj+1
Generate C = C ∩ next (wj) | wj within the
 sequence of wj-1 wj wj+1.
Apply Further_Filtering on set C.

end if
end

4. Use suggested improvement in the following section
 to reduce size of set C.
5. Present the list as a suggested list for the user.

We run the implementation of our suggested data
structure on a cluster of 26 machines using MPI
software for a specific domain from corpus. Our
observations showed that it will be a useful structure in
many specialized domains like using word prediction
in phrases from different religious holy books.

5. The Integration of Other Enhancement

to the Suggested Structure

The goal of this research was not to replace the process
by which prediction is chosen, but to augment it by
reducing the domain of search used by existing
methods. Thus, the use of our structure combined with

Word Prediction via a Clustered Optimal Binary Search Tree 139

other enhancement methods will improve the overall
word prediction.
 As can be seen from our algorithm, it calls a
procedure named “Further-Filtering”. The
Further_Filtering procedure has numerous techniques
to enhance N-gram word prediction using recency,
syntactic analysis, syntax-based N-gram, and domain-
specific N-gram models. Other enhancements can be
considered such as dividing the 1st order frequency
table into sub-tables, for example, one will be used for
verbs, and the other will be used for nouns and so on.
These enhancements can be defined inside this
procedure. However, because they are out of the scope
of this paper, we did not describe them. As an
alternative, we used another word predictor
(Soothsayer) behind our program at some points of the
experimentation results.

6. Experimentation Results
The keystroke saving was the main test used for our
structure. This test investigates the savings, which a
prediction system can offer the user. It is given as one
minus the ratio of key strokes actually made to the
number of letters in the text. The higher this figure is,
the more savings are available to the user, and
consequently, the better the system is.
 To test the performance, a piece of medical text was
selected. We run four cases for word prediction using
the same text. The first case (Figure 2, part a) uses our
structure combined with another word prediction
program. The second case (Figure 2, part b) uses our
structure, without any other word prediction program.
The third case (Figure 2, part c) one is the word
prediction “soothsayers” alone. The final case (Figure
2, part d) uses no prediction at all, instead creating a
prediction list which contains the entire lexicon. The
keystroke saving throughout each sentence was
recorded and shown in the figures. On each graph, the
main plot indicates the keystroke saving for each
sentence, plotted word by word. This plot is reset to
zero at the beginning of each sentence. In order to
clarify the effect of sentence boundaries, vertical
dashed lines mark them. The final information added to
these groups is a plot of the cumulative keystroke
saving over the entire text. This gives a useful
indication of the overall performance of our structure.
 The overall keystroke saving can be seen in Figure
3. Results of this figure showed that if we use our
structure combined with other word prediction
techniques, then an increase in saving of keystroke is
approximately 20%.

7. Conclusion
Word prediction can be used in many applications. For
example, it can be used to disambiguate sequences
from ambiguous keypads, correct spelling errors, and

provide an OBST with some extra links to be used and
built using a cluster of computers. This can be used for
certain domain-specific topics such as medical topics.
It provides more accuracy, and a keystroke saving of
around 20% when combined with other approaches.

Combined OBST, and Word Prediction

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Word

K
ey

st
ro

ke
 S

av
in

g
(%

)

a) OBST combined with word prediction program.

 OBST with extra links only

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Word

K
ey

st
ro

ke
 S

av
in

g
(%

)

b) OBST with extra links.

 Word Prediction only

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Word

K
ey

st
ro

ke
 S

av
in

g
(%

)

c) Ready word prediction program only.

All Lexion

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Word

K
ey

st
ro

ke
 S

av
in

g
(%

)

d) Retrieval of whole lexicon.

K e y s t r o k e s a v i n g b y w o r d

C u m u l a t i v e k e y s t r o k e s a v i n g

S e n t e n c e b o u n d a r i e s

Figure 2. Keystroke saving for a medical article using various
prediction algorithms.

140 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

0.0

20.0

40.0

60.0

80.0

100.0

0 50 100 150 200 250 300 350 400 450

Word

K
ey

st
ro

ke
 s

av
in

g
(%

)

Full Prediction

OBST, No Word Pred

Word Prediction Program, NO OBST

No Prediction Processing

Figure 3. Cumulative keystroke savings for the medical article
using various prediction methods.

The suggested structure creates a large data structure

of several millions of items. The effect of this problem
decreased with the increase in the speed of processors,
the increase in storage capacity, and advancements in
cluster computing algorithms and machines.

References
[1] Al-Furaih I., Aluru S., Goil S., and Ranka S.,

“Parallel Construction of Multidimensional
Binary Search Trees,” IEEE Trans. on Parallel
and Distributed Systems , vol. 11, no. 2, pp. 136-
148, February 2000.

[2] Brown P., Pietra V., DeSouza P., Lai J., and
Mercer R., “Class-Based N-Gram Models of
Natural Language,” Computational Linguistics,
vol. 18, no. 4, pp. 467-479, 1992.

[3] Chen S. and Goodman J., “An Empirical Study of
Smoothing Techniques for Language Modeling,”
in Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, CA,
USA, pp. 310-318, June 1996.

[4] Even-Zohar Y. and Roth D., “A Classification
Approach to Word Prediction,” in Proceedings of
The 1st North American Conference on
Computational Linguistics (NAACL' 2000), pp.
124-131, 2000.

[5] Garay-Vitoria N. and Gonzalez-Abascal J.,
“Intelligent Word-Prediction to Enhance Text
Input Rate (A Syntactic Analysis-Based Word-
Prediction Aid for People with Severe Motor and
Speech Disability),” in Proceedings of
International Conference on Intelligent User
Interfaces, January 6-9, Orlando, FL, USA, pp.
241-244, 1997.

[6] Gonnet G., Baeza-Yates R., and Snider T., “New
Indices for Text: Pat Trees and Pat Arrays,” in
Frankes W. and Baeza-Yates R. (Eds),
Information Retrieval: Data Structures and
Algorithms, Prentice Hall, New Jersey, pp. 66-82,
1993.

[7] Heeman P., “POS Tagging versus Classes in
Language Modeling,” in Proceedings of the Sixth
Workshop on Very Large Corpora, Montreal, pp.
179-187, August 1998.

[8] Hunnicutt S., “Using Syntactic and Semantic
Information in a Word Prediction Aid,” in
Proceedings of Europe Conference Speech
Commun., Paris, France, vol. 1, pp. 191-193,
September 1989.

[9] Jelinek F., “Self-Organized Language Modeling
for Speech Recognition,” Technical Report, IBM
T. J. Watson Research Center, Continuous
Speech Recognition Group, 1985.

[10] Jelinek F. and Mercer R. “Interpolated
Estimation of Markov Source Parameters from
Sparse Data,” in Proceedings of Workshop on
Pattern Recognition in Practice, Amsterdam,
The Netherlands, North-Holland, pp. 381-397,
1980.

[11] Katz S., “Estimation of Probabilities from Spares
Data for the Language Model Component of a
Speech Recognizer,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. 35, no. 3, pp.
400-401, 1987.

[12] Koester H. and Levine S., “Modeling the Speed
of Text Entry With a Word Prediction Interface,”
IEEE Trans. on Rehabilitation Engineering, vol.
2, no. 3, pp. 177-187, September 1994.

[13] Lesher G, Moulton B., and Higginbotham D.,
“Effects of N-gram Order and Training Text Size
on Word Predition,” in Proceedings of
(RESNA’99) Annual Conference, Arlington, VA,
pp. 52-54, 1999.

[14] Lesher G., Moulton B., and Higginbotham D.,
“Techniques for Augmenting Scanning
Communication,” Augmentative and Alternative
Communication, vol. 14, no. 2, pp. 81-101, 1998.

[15] Matthew E., “Syntactic Pre-Processing in Single-
Word Prediction for Disabled People,” PhD
Thesis, University of Bristol, England, June
1996.

[16] Pereira F., Singer Y., and Tishby N., “Beyond
Word N-Grams,” in Proceedings of the Third
Workshop on Very Large Corpora, Columbus,
Ohio, Massachusetts Institute of Technology,
Association for Computational Linguistics, pp.
95-106, 1995.

[17] Srinivas B., “Complexity of Lexical Descriptions
and its Relevance to Partial Parsing,” PhD
Thesis, University of Pennsylvania, IRCS Report
97-10, 1997.

[18] Wessel F., Ortmanns S., and Ney H.,
“Implementation of Word Based Statistical
Language Models,” in Proceedings of SQEL
Workshop on Multi-Lingual Information
Retrieval Dialogs, Pilsen, Czech Republic, pp.
55-59, April 1997.

Word Prediction via a Clustered Optimal Binary Search Tree 141

Eyas El-Qawasmeh received his
BSc degree in computer science in
1985 from Yarmouk University,
Jordan. He then joined the Yarmouk
University as teaching assistant in
the Computer Science Department.
In 1992, he joined the George

Washington University, Washington DC, USA where
he obtained his MSc and PhD degrees in software and
systems in 1994 and 1997, respectively. In 2001, he
joined George Washington University as visiting
researcher. Currently, he is an assistant professor in the
Department of the Computer Science and Information
Systems at Jordan University of Science and
Technology, Jordan. His areas of interest include
multimedia databases, information retrieval, and
object-oriented. He is a member of the ACM and IEEE.

