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Abstract: Instance based schema matching is the process of comparing instances from different heterogeneous data sources 

in determining the correspondences of schema attributes. It is a substitutional choice when schema information is not 

available or might be available but worthless to be used for matching purpose. Different strategies have been used  by various 

instance based schema matching approaches for discovering correspondences between schema attributes. These strategies are 

neural network, machine learning, information theoretic discrepancy and rule based. Most of these approaches treated 

instances including instances with numeric values as strings which prevents discovering common patterns or performing 

statistical computation between the numeric instances. As a consequence, this causes unidentified matches especially for 

numeric instances. In this paper, we propose an approach that addresses the above limitation of the previous approaches. 

Since we only fully exploit the instances of the schemas for this task, we rely on strategies that combine the strength of Google 

as a web semantic and regular expression as pattern recognition. The results show that our approach is able to find 1-1 

schema matches with high accuracy in the range of 93%-99% in terms of Precision (P), Recall (R), and F-measure (F). 

Furthermore, the results showed that our proposed approach outperformed the previous approaches although only a sample 

of instances is used instead of considering the whole instances during the process of instance based schema matching as used 

in the previous works.  
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1. Introduction 

One of the vital tasks in database integration is schema 

matching.  At schema match core, discovering the 

correlation between database schemas is a serious 

challenge because of the syntactic and semantic 

heterogeneity [1, 4]. Matching two schemas S and T 

requires deciding if two attributes s of S and t of T 

represent the same real-world concept. While humans 

may be able to easily discover if two attributes match or 

non-match, however it is difficult for machines to 

discover it, especially when these two attributes have 

semantic heterogeneity. For example, s and t can 

represent different concepts but have the same name. 

The opposite is also possible; s and t can represent the 

same concept but have different names. During the 

process of schema matching, schema information 

which includes element name (schema name, attribute 

name), description, data type, constraint, and schema 

structure are normally used in an attempt to achieve 

correct matching between schemas. However, in some 

real world cases it may not be possible to use the 

information of schema structure. There are cases where 

information about the schema structure is not available 

such as in, fraud detection, crime investigation, 

counter-terrorism and homeland security De Carvalho  

et al. [8]. In such scenarios, instances are the only 

option available that can be used for schema matching. 

Detecting instance correspondences could be a 

substitutional choice for schema matching, especially 

if the schema information is not available or might be 

available but worthless to be used for matching 

purpose. For example, it is common for a database 

designer to use abbreviations to represent schema 

attributes [23, 26, 28]. For instance, the attribute name 

CN could be an abbreviation of Customer Name or 

Company Name while SSN is an abbreviation of 

Social Security Number. For such case, only the 

instances can be used for determining the 

correspondences of attributes. Hence, the instances 

can give an accurate characterization of the actual 

contents of schema attributes [24, 26, 31]. 

By analysing the instance based schema matching 

approaches, we observed that neural network, machine 

learning, theoretic information discrepancy and rule 

based have been utilized. The goal of these approaches 

is to discover correspondences between schema 

attributes in which instances including instances with 

numeric values are treated as strings De Carvalho  et 

al. [8]. This prevents discovering common patterns or 

performing statistical computation between the 

numeric instances. As a consequence, this causes 

unidentified matches especially for numeric instances 

and further reduces the quality of match results De 

Carvalho  et al. [8]. 

In this paper, we propose an approach for instance 

based schema matching that aims at finding the 
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correspondences between schema attributes of two 

semantically and syntactically related data. Since we 

only explore the instances, we rely on strategies that 

combine the strength of Google as a web semantic and 

regular expression as pattern recognition to find the 

correspondences of schema attributes. As pointed out 

by [18, 22], there are different types of matching 

algorithms being applied in this area. However, this 

problem is still a research hotspot in order to further 

improve the accuracy of schema matching. Thus, our 

proposed approach is a step forward towards solving 

this problem. 

The rest of this paper is organized as follows. 

Section 2 discusses the related works. Section 3 

presents the proposed approach of instance based 

schema matching. In section 4, the evaluation metrics 

and the results are presented and discussed. Finally, 

section 5 draws the conclusions and points out the 

future work directions. 

2. Related Work 

This section presents a review of the previous 

approaches that have been proposed for the instance 

based schema matching to find correspondences 

between attributes of schemas. Neural network, 

machine learning, information theoretic discrepancy 

and rule based are approaches used for instance based 

schema matching. 

2.1. Neural Network  

The work in [18] classified attributes according to their 

field specifications and data values, and then trained a 

neural network for the recognition of similar attributes. 

This work assumes the similarity of structure and data 

values of attributes in different databases that represent 

the same real-world concept. Specific parsers of 

Database Management System (DBMS) are used to 

extract schema information or data contents from 

databases. Then, domain analysis compares the 

complete contents of each pair of attributes. The 

analysis starts by extracting a set of characteristics that 

describes the instances. The characteristics are divided 

into two types: character and numeric. A classifier is 

then used to discriminate attributes in a single database. 

The classifier output or cluster center then trains a 

neural network in recognizing categories and then 

determines similar attributes between databases. 

However, the back propagation algorithm requires that 

input characteristic has the same discriminators used in 

the training.  They may  not  be  able  to  obtain  the  

same list  of  discriminators  from  two  different  

databases. The average similarity of their work is 93%. 

SEMantic INTegrator (SEMINT) [18] used neural 

network to study and identify correspondences among 

attributes in heterogeneous databases. It uses schema 

and instance information to automatically generate the 

matching rules of attribute. SEMINT also exploits 

multiple criteria that are constraint-based matching 

and content-based matching to find matching. 

SEMINT uses statistic computation for numerical 

field, while for character field, whose values are not 

computable as ASCII code numbers, SEMINT 

computes statistics on number of bytes actually used 

to store data. However, this method needs to be 

improved in terms of performance, especially in case 

of naming-based approach, as it achieved only 80% 

for precision.  

Schema Matching method based on Data 

Distribution (SMDD) [20] introduces a schema 

matching method based on neural network, by 

analyzing the characteristics of data distribution. The 

SMDD algorithm believes that two attributes from 

heterogeneous data sources are similar if their data 

instance distributions are similar. SMDD has five 

steps as follows:  

 Step 1. Involves parsing the instances to extract 

some instances for every attribute from the data 

source S1, analysing their characteristics of data 

distribution, and generating vectors from those 

characteristics.  

 Step 2. Classifies the input vectors generated in step 

1 into M categories using clustering algorithm.  

 Step 3. Uses the output of step 2 as inputs for neural 

network in order to train the data.  

 Step 4. Similarity determination is done in it. 

 Step 5. The highest similar candidate mappings are 

selected.  

The F-measure achieved by SMDD is between 0.25 

and 0.65, while in the best case the F-measure can 

exceed 0.65. 

A novel Content-Based Schema Matching 

Algorithm (CBSMA) [30] adopts neural network 

technique to perform instance-based schema matching 

task which fully explores the use of data content.  This 

work introduces an innovative schema matching 

algorithm based on instances, which has two primary 

steps. The first step is the analysis of data pattern, 

which is done by training a set of neural networks. It 

starts with feature extraction, clustering to get training 

data and classifying data with Back Propagation 

Neural Network. Eleven features to describe the data 

pattern are proposed, the complete list of the features 

is given in [30]. The next step is applying some 

judgment rules to filter the candidate pairs and get the 

correct matching result. CBSMA achieved 96% and 

90% of precision and recall, respectively. 

 

2.2. Machine Learning 

Learning Source Descriptions (LSD) [18] employs 

machine learning techniques that aims to semi 

automatically locates attributes matching. LSD 

requires initial examples of semantic mappings from 

the user, and employs these examples to train each 



An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression                                       757 
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machine learning technique, whose solutions are 

combined and presented to the user. LSD first asks the 

user to provide the semantic mapping for a set of data 

sources, and then uses the mapping together with the 

sources to train a set of learners. Each leaner exploits a 

different type of information either in source schema or 

in their data. However, LSD achieved accuracy in the 

range of 71% - 92%. 

Autoplex [2] is an instance based schema matching 

system. Autoplex used Naive Bayesian based learner to 

exploit characteristics of instances for identifying 

attributes match from a relational source schema to 

global schema. Naive Bayesian used example of 

instances to acquire probabilistic knowledge on the 

examples. The probability of instances occurs in an 

attribute mapped to another attribute, is estimated by 

the proportion of the occurrences of the instance among 

instances from attributes that are mapped to. For each 

attribute of the source schema, both match and 

mismatch probability with respect to every global 

attribute are determined. These probabilities are 

normalized to sum to 1 and the match probability is 

returned as the similarity between the source and global 

attributes. However, evaluation showed that Autoplex 

achieved only 0.81 for both soundness and 

completeness. 

A new approach of instance based schema matching 

is proposed by [11], based on the hypothesis that 

corresponding attributes are relatively equally 

important.  The main components of their three-part 

framework: attribute ranking, attribute classification 

and matching phase. In contrast to traditional 

approaches, which consider all attributes with the same 

importance, they employ machine learning methods in 

prioritizing all schema attributes according to rank and 

class. When matching, they have constructed an 

optimal objective function to determine all equivalent 

attributes. However, the approach is suitable only for 

numeric instances, as the result of precision (P) 

dropped to 66% when string instances are considered. 

2.3. Information Theoretic Discrepancy 

The approach by [21] handles the problem of schema 

matching when the interpretations of schema 

information are incorrect or ambiguous by evaluating 

the instances in schemas, playing as equivalent role as 

schema information. The approach has two-steps of 

domain-independent schema matching technique. In 

this technique shared information between pair-wise 

attributes employing the concept of mutual information 

is measured. Then, a graph is constructed to represent 

the weighted links for each input schema. Here, schema 

matching changes to a weighted graph matching 

problem and a graduated assignment algorithm is used 

to determine the correspondences of vertices between 

graphs. The proposed schema matching approach 

achieved 70% precision on average. 

Two approaches proposed by [14, 15] are similar to 

the approach proposed by [21]. The approach in [15] 

involves computing the mutual information between 

pairs of columns in each schema, and then applying 

this statistical characterization of pairs of columns in 

one schema to propose matching pairs of columns in 

the other schema. The proposed approach has a two-

step technique that can be used even when opaque 

column names and data values are present. First, it 

measures the pair-wise attribute correlations in the 

tables to be matched and then constructs a dependency 

graph utilizing mutual information as shown in 

Equation 1 as a measure of the dependency between 

attributes.  

In the second step, it locates matching node pairs in 

the dependency graphs by running a graph matching 

algorithm. 
 

I(X, Y) = ∑i∑j  ρ (Xi,Yj) log = ρ (Xi, Yj) /  ρ (Xi)  ρ ( Yj) 
 

 I(X,Y) is the mutual information, or the strength of 

the relation of the attributes X and Y. 

 Xi and Yj are discrete values of X and Y, 

respectively. 

 (Xi) and (Yj) are marginal probability when X has 

the value of Xi and Y has the value of Yj. 

 ρ(Xi, Yj) is the joint probability. 
 

The work in [15] is almost similar to their previous 

work in [13] except that it handles the remaining 

challenge from previous work which is the 

computational complexity of the graph-matching 

problem in the second step. As in the previous work of 

[14], this approach also has two steps. The first step 

measures the dependencies between attributes within 

tables using mutual information measure and 

constructs a dependency graph for each table to 

capture the dependencies among attributes. The 

second step involves finding matching node pairs 

across the dependency graphs utilizing graph 

matching algorithm. The P, R, and F achieved by [14, 

15] is in the range of 45% - 93%. 

 

2.4. Rule Based 

Attribute identification is an algorithm proposed by 

[4] which fully explores data instances. It can also 

detect corresponding attributes to be integrated even in 

misleading schema information based on the 

assumption that entity identification can be performed 

successfully before matching. So, the main 

contribution of this study is to determine and offer an 

instance-based attribute identification method for the 

improvement of database integration in cases when 

schema information proves insufficient or unsuitable. 

However, their algorithm achieved 72% of matched 

attributes. 

The work in [3] introduced algorithm that shows 

how the existence of duplicates in a data set would be 
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helpful and if exploited can automatically identify 

matching attributes. One of the rules that could be used 

“two attributes match if they have the same data 

values”. The algorithm of [3] starts by discovering 

duplicates among data sets through comparison of 

instances in the duplicate records and then using them 

to perform schema matching between schemas and 

opaque column names. Soft-TFIDF is a measure used 

to determine the string similarity between the instances 

of the tuples. However, The P, R achieved by [3] are 

75% and 87%, respectively. 

From the previous works that have been reviewed in 

this section, it can be seen that different strategies have 

been applied in instance based schema matching.  

These works focused on one main goal which is to 

achieve high quality match results. The results reported 

by these works are in the range of 45%-96% in terms of 

the P, R, and F. However, most of these approaches 

treated the instances numeric values as strings. This 

prevents discovering common patterns or performing 

statistical computation between the numeric instances.  

As a consequence, this causes unidentified matches 

especially for numeric instances and further reduces the 

quality of match results. Thus, much effort is still 

required to further improve the accuracy of instance 

based schema matching. 

 

3. The Proposed Approach 

In this section we present an instance based schema 

matching approach that determines correspondences 

between schema attributes. In addition, the proposed 

approach rely on strategies that combine the strength of 

Google as a web semantic and regular expression as 

pattern recognition. The proposed approach consists of 

five main phases as illustrated in Figure 1. These 

phases are analysing instances, classifying schema 

attributes, extracting the optimal sample size, 

identifying instance similarity, and identifying the 

match which are further explained in the following 

subsections. 

 

Figure 1. The phases of the proposed approach. 

    

3.1. Analysing Instances 

This phase aims to determine the data type of each 

attribute of both the target and source schemas. This is 

achieved by analysing the characters of an instance 

selected randomly from each attribute of the schemas. 

We classify the data type of an attribute as alphabetic, 

numeric and mix. The alphabetic data type is for 

attributes whose instances consist of only alphabetic 

characters ([A...Z, a…z]). The numeric data type is for 

attributes whose instances consist of only digit 

characters ([0…9]), whereas the mix data type is for 

attributes whose instances consist of combination of 

alphabetic, digit and special characters (e.g.,[-, /,\, ., ]). 

This phase starts by randomly selecting an instance of 

an attribute and counts the number of characters for 

each data type, then checks whether the number is 

equal to the length of the instance or not. If the 

number of characters of a data type is equal to the 

length of the instance (without whitespace), then the 

data type of the instance is identified as alphabetic if 

all the characters are alphabetic or numeric if all the 

characters are numeric. Otherwise, if the number of 

characters of a data type is less than the length of the 

instance, then the data type of the instance is identified 

as mix.  For example, the instance “New York” has 

seven alphabetic characters which is equal to the 

length of the instance (without whitespace), while the 

instance “255 Courtland” has three numeric characters 

and nine alphabetic characters which are not equal to 

the length of the instance which is twelve. Thus, “New 

York” and “255 Courtland” are classified as 

alphabetic and mix data type, respectively. 

3.2. Classifying Schema Attributes 

After we have determined the data type of each 

attribute as discussed in the previous phase, the next 

step is to classify the attributes that share the same 

data type in the same class. The main aim of this 

phase is to reduce the number of possible comparisons 

that needs to be performed during the matching 

process. The maximum number of classes created for 

each schema is based on the number of data types that 

have been determined from the previous phase. Table 

1 shows an example which is used to clarify this phase 

of the proposed approach. The following instances 

“New York”, “Doctorate”, “255 Courtland”, 

“818/762-1221”, and ”49” have been classified into 

three data types which are alphabetic, numeric, and 

mix. Hence, three classes are created based on the 

identified data types. The class of alphabetic data type 

(C_alpha) includes the attributes of the instances 

“New York” and “Doctorate”, the class of mix data 

type (C_mix) includes the attributes of the instances 

“255 Courtland” and “818/762-1221”, and the class of 

numeric data type (C_num) includes the attribute of 

the instance “49”. 
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Table 1. Classifying Schema Attributes based on the Data Type. 

Class of Alphabetic Data Type 

Attribute 1 Attribute 2 

New York Doctorate 

Class of Mix Data Type 

Attribute 1 Attribute 2 

255 Courtland 818/762-221 

Class of Numeric Data Type 

Attribute 1 - 

49 - 

3.3. Extracting the Optimal Sample Size 

This phase aims at extracting a sample of instances for 

each attribute of the classes (C_alpha, C_num, and 

C_mix) based on the optimal sample size which is 

equal to 50% of the actual table size. The optimal 

sample size has been chosen through a set of 

experiments. This is due to the fact that relying on the 

entire instances of an attribute which might involve 

huge data size to determine the similarity between 

attributes will lead to low performance with respect to 

processing time. The experiments of the optimal sample 

size have been designed in such a way that each 

experiment will use different size of samples starting 

from 5% of the actual table size. The size of samples is 

increased either 5% or 10% in the subsequent 

experiments. The experiments are ended when the P, R, 

and F are at least 96% which is at least equal to the best 

results reported in the previous works [30]. 

3.4. Identifying Instance Similarity 

The aim of this phase is to compare the attributes in the 

same class that belong to different schemas, whether 

they are representing the same entity or not. To find 

correspondences between attributes in each class, two 

strategies are adopted. The first strategy utilizes regular 

expression for syntactic similarity and the second 

strategy utilizes Google similarity for semantic 

similarity. 

3.4.1. Regular Expression 

Regular expression (known as regexes) is a way to 

describe text through pattern (format) matching and 

provide an easy way to identify text. Regular 

expression is a language used for parsing and 

manipulating text [12, 17]. Furthermore, regular 

expression is a string containing a combination of 

normal characters and special metacharacters or 

metasequences (*, +, ?). Table 2 shows the most 

common metacharacters and metasequences in regular 

expression [10] that are used in our work.  

 

 

 

 

 

 

 

Table 2. The Common Metacharacters in Regular Expression. 

Metacharacter Name Matches 

d\ Digit Matches a digit 

s\ Whitespace Matches whitespace 

[a-z, A-Z] 
A range of 

letters 

Matches any letter in the 

specified range 

. Dot 
Matches any one 

character 

[…] Character class 
Matches any one 

character listed 

[^…] 
Negated 

character class 

Matches any one 

character not listed 

? Question 
One allowed, but it is 

optional 

* Star 
Any number allowed, but 

all are optional 

+ Plus 
At least one required; 

additional are optional 

| Alternation 
Matches either expression 

it separates 

^ Caret 
Matches the position at 

the start of the line 

$ Dollar 
Matches the position at 

the end of the line 

{X,Y} Specified range X required, max allowed 

 

Regular expression provides several benefits, which 

are [9, 27]: 

 Relatively inexpensive and does not require 

training or learning as in learning-based or neural 

network techniques. 

 Regular expression can provide a quick and concise 

method to capture valuable user knowledge about 

the domain. 

In our approach, regular expression is derived only for 

those attributes with numeric or mix data types. This 

is explained below. 

3.4.1.1. Regular Expression for Numeric Data Type 

This sub-section explains the process of creating 

regular expression for the attributes with numeric data 

type. The attributes with numeric data type are 

attributes whose instances consist of only digit 

characters ([0…9]). In creating a regular expression 

for an attribute, the minimum and maximum values of 

the attribute are required. Thus, three variables have 

been identified, namely: nomin, nomax and 

uppervalue. Initially, nomin and nomax are assigned 

the minimum and maximum values of the attribute, 

respectively. However in the following iterations, the 

value of nomin is changed to the last uppervalue + 1. 

The uppervalue is a value which is greater than the 

value of nomin and less than the value of nomax; and 

is derived based on the following conditions: 

a) When the nomin's length of digits is less than the 

nomax's length of digits, the uppervalue is the 

maximum value based on the nomin’s length of 

digits and not greater than the value of nomax. For 

instance, if the nomin’s length of digits is three 

(e.g., 345) then the uppervalue is 999. If the 

uppervalue is greater than the value of nomax, then 
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the first digit of the uppervalue is changed to the 

first digit of nomin (399 for the above example). 

This is then checked against the value of nomax. If 

the new uppervalue is still greater than the value of 

nomax then the second digit of the uppervalue is 

changed to the second digit of nomin (349 for the 

above example). This process is repeated in which 

the next digit of the uppervalue is changed to the 

next digit of nomin until the condition stated in the 

definition of uppervalue is satisfied. However, if all 

the digits of uppervalue have been changed, i.e., the 

value of uppervalue is now equal to the value of 

nomin, then the value of nomax is assigned to 

uppervalue. This is to reduce the number of 

iterations needed in identifying the uppervalue. 

b) When the nomin's length of digits is equal to the 

nomax's length of digits and the nomin has at least 

one zero digit on the right, the uppervalue is derived 

using the formula shown in Equation 2. The 

Equation 2 derives the closest uppervalue to the 

nomax. 

 

       uppervalue = (nomax - (nomax MOD Sumz * 10 ) - 1)         
 

Where Sumz returns the number of zero digits on the 

right of the nomin. If the Equation 2 returns an 

uppervalue which does not satisfy the condition that we 

have stated earlier, then the step as mentioned in (a) 

above is applied. For instance, when the nomin's length 

of digits is equal to the nomax's length of digits (e.g. 

120 and 123, respectively), the uppervalue is 119 based 

on the Equation 2. The result of uppervalue does not 

satisfied the definition of uppervalue which is greater 

than the value of nomin and less than the value of 

nomax. Then,  the steps as mentioned in condition (a) 

above are applied to derive the value of uppervalue. 

Table 3 illustrates an example of the proposed idea for 

numerical data type. 

 
Table 3. The Mechanism of the RegEx for Numerical Domain. 

Iteration Nomin 
Upper 

value 
RegEx Accumulated RegEx 

1 7 9 [7-9] [7-9] 

2 10 99 [1-9][0-9] [7-9]|[1-9][0-9] 

3 100 119 1[0-1][0-9] [7-9]|[1-9][0-9]|1[0-1][0-9] 

4 120 123 12[0-3] [7-9]|[1-9][0-9]|1[0-1][0-9]|12[0-3] 

3.4.1.2. Regular Expression for Mix Data Type 

The attributes with mix data type consist of instances 

that includes alphabetic, numeric and special 

characters. The general idea is to divide an instance into 

a set of sub-tokens. Each sub-token is a sequential set 

of characters of a particular data type. Then, a regular 

expression is built for each sub-token of the instance. 

Finally, the regular expressions of each sub-token are 

combined as the regular expression of the instance. For 

example, the following instance "255 Courtland" can be 

divided into two sub-tokens which are "255" and 

"Courtland". The first sub-token "255" is considered as 

a sub-token of the numeric data type since it consists 

of a sequential set of numeric characters. While, the 

second sub-token “Courtland” belongs to the 

alphabetic data type as it consists of a sequential set of 

alphabetic characters. Finally, we combine the regular 

expressions of each sub-token that are “\\d+” for the 

sub-token with numeric characters and “([a-zA-Z]+)” 

for the sub-token with the alphabetic characters as the 

final regular expression of the instance “255 

Courtland”. Table 4 illustrates an example of the 

proposed idea for mix data type. 

Table 4. An example of the mix data type 

Instance Regular Expression 

255 Courtland d\+\s[a-z, A-Z]+ 

589/265/954 d\+/d\+/d\+ 

3.4.2. Google Similarity 

The Google similarity uses the World Wide Web as a 

database and Google as a search engine. Google‟s 

similarity of words and phrases from the World Wide 

Web uses Google page counts, as shown in Equation 

3. 
GSD (x, y) = max (log  f (x), log  f (y)) - log  f (x, y)  / 

log M - min (log  f (x), log  f (y)) 
 

Where f (x) is the number of Google hits for the search 

term x, f (y) is the number of Google hits for the 

search term y, f (x, y) is the number of Google hits for 

both terms x and y together, and M is the number of 

web pages indexed by Google. The World Wide Web 

is the largest database on earth and the context 

information entered by millions of independent users 

averages out to provide automatic semantics of useful 

quality [6, 7]. The Google similarity calculates the 

semantic similarity score for the attributes with 

alphabetic data type that comprises instances 

consisting of only alphabetic characters ([A...Z, 

a…z]). For instance, if we want to search for a given 

term in the Google web pages, e.g. “Msc”, we will get 

a number of hits that is 127,000,000. This number 

refers to the number of pages where this term is found. 

For another term, “Phd”, the number of hits for this 

term is 50,600,000. Furthermore, if we search for 

those pages where both terms ” Msc” and “Phd” are 

found, that gives us 36,100,000 hits. Consequently, we 

can use these numbers of hits for the terms “Msc”, 

“Phd” and both terms together in addition to the 

number of pages indexed by Google, which is around 

3,000,000,000 in the Equation 3. The equation 

produces the similarity degree between the two terms 

“Msc” and “Phd” as follows: GSD (Msc, Phd) = 0.31. 

 

3.5. Identifying the Match 

After we have analyzed the instances, classified the 

attributes, extracted the optimal sample size, and 

performed the tasks of syntactic and semantic 

matching, the last phase of our proposed approach 

(3) 
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(4) 

(5) 

(6) 

attempts to find the correct matching between the 

attributes that shared the same data type. For classes of 

numeric and mix, this phase specifies a match by 

matching the regular expression of the instances of the 

source schema derived from the previous phase against 

sample of instances of the target schema. If a match 

occurs, then the instances of the regular expression of 

the source schema is said to correspond to the instances 

of the target schema. Finally, for the class of alphabetic 

we compare the similarity scores of the instances that 

have been derived from the previous phase (utilizing 

Google similarity) with a predefined threshold value. In 

our work the threshold value is set to 60 as used by 

previous work Khan et al. [16]. Similarity scores for 

instances above or equal to the threshold are related; 

otherwise they are not related. 

4. Results and Discussion 

4.1. Data Set 

For the purpose of evaluating our proposed approach 

two real data sets have been used in the experiment 

study, namely: Restaurant [25] and Census
 
[29], both of 

which are available online. In our experiments we 

created two sub-tables by randomly selecting the 

attributes from the original table of both data sets. The 

number of attributes of each sub-table is equal to the 

number of attributes of the original table. However, 

these attributes might occur in different sequence and 

the same attributes might be selected more than once. 

These sub-tables were populated with instances taken 

randomly from the original table of the data sets. The 

number of instances of both sub-tables is different to 

represent real world cases. We pretended that these 

sub-tables were two different tables that needed to have 

their schemas matched as applied in [5, 14, 15]. 

Restaurant is the first real data set to which our 

approach is applied. The data set comprises of lists of 

restaurants in two popular websites that are Zagat and 

Foodor. Restaurant data set has 864 records and five 

attributes, namely: Name, Address, City, Phone 

Number, and Type of Food.  The attribute Name is the 

name of the restaurant that contains instances 

comprising of only letters. The attribute Address refers 

to the address of the restaurant, this field contains mix 

of characters (numeric and alphabetic). The attribute 

City refers to the city of the restaurant. The attribute 

Type of Food refers to the type of food provided by the 

restaurant. Both the attributes Type of Food and City 

contain instances which comprise of only letters. 

Finally, the attribute Phone Number contains numbers 

and some special characters such as „/‟ and „-‟. 

Restaurant data set has been used as it is one of the real 

databases which is available and appropriate to evaluate 

our proposed approach. 

For our second data set, we used Census data set 

which contains 358171 instances, 32561 records and 11 

attributes. Four attributes consist of only numeric 

characters, which are age, fnlwgt, Education-num and 

capital-gain, while the other attributes contain only 

letters, which are workclass, education, relationship, 

race, sex, marital status, and native-country. Census 

data set have been used by several proposed 

approaches [14, 15]. 

For comparison purpose, we compared our proposed 

approach to [14, 15] in terms of P, R, and F. We did 

not compare our proposed approach to the approaches 

that are reported in the related work section, as these 

approaches used different data sets that are not 

accessible through the internet [3, 11, 15, 19, 21, 22, 

30]. Besides, some of these approaches required 

specific rules [3, 21] and user intervention [17, 18, 27] 

to perform the matching process.  

 

4.2. Measurements 

The evaluation metrics considered in this work are P, 

R and F shown in Equations 4, 5 and 6, respectively. It 

is based on the notion of true positive, false positive, 

true negative, and false negative. 

 True Positive (TP): The number of matches detected 

when it is really matches.  

 False Positive(FP): The number of matches detected 

when it is really non-match.  

 True Negative (TN): The number of non-matches 

detected when it is really non-match.  

 False Negative (FN): The number of non-matches 

detected when it is really matches. 
 

Precision = |TP| / |TP| + |FP| 

 

Recall = |TP| / |TP| + |TN| 

 

F-measure = 2 * Precision * Recall / Precision + Recall 

                                                        

For each table, we kept the number of attributes to 11 

and 5 for Census and Restaurant data sets, 

respectively. We repeated each experiment 5 times, 

measured the P, R and F and averaged these results. 

4.3. Result  

Figure 2 presents the results of accuracy in terms of P, 

R and F for the proposed approach of instance based 

schema matching. From the results presented in Figure 

2, the following can be concluded: 1) we achieved 

96% for P, 93% for R and 95% for F for the 

Restaurant data set, while with Census data set we 

achieved 99% for P, 96% for R, and 97% for F. The 

size of samples used is 50% of the actual table size 

which has been identified through experiments; and 2) 

our proposed approach produced high accuracy in 

spite of the approach considered a sample of instances 

instead of considering the whole instances during the 

process of instance based schema matching. 
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Figure  2. Matching results of census and restaurant data sets. 

 

Figure 3 shows the matching results using census 

data set of our proposed approach compared to the 

approaches proposed by [14, 15] in terms of P, R and F. 

From these results, we can conclude that our proposed 

approach achieved better results although only a sample 

of instances is used instead of considering the whole 

instances during the process of instance based schema 

matching as used in the previous works [14, 15]. 

  

Figure 3. Matching results of the census data set. 

5. Conclusions 

In this paper, we proposed an instance based schema 

matching approach to identify 1-1 schema matching. 

Our proposed approach rely on strategies that combine 

the strengths of Google similarity as a web semantic 

and regular expression as pattern recognition. Our 

experimental results show that our proposed approach 

is able to identify 1-1 matches with high accuracy in 

terms of P, R and F although only a sample of instances 

is used instead of considering the whole instances 

during the process of instance based schema matching. 

In the near future, we plan to extend our framework to 

handle complex schema matching (n-m), since 

identifying complex matches is a more challenging 

problem. 

References 

[1] Benslimane S., Malki M., and Bouchiha D., 

“Deriving Conceptual Schema from Domain 

Ontology: A Web Application Reverse 

Engineering Approach,” The International Arab 

Journal of Information Technology, vol. 7, no. 2, 

pp. 167-176, 2010. 

[2] Berlin J. and Motro A., Cooperative Information 

Systems, Springer Link, 2001. 

[3] Bilke A. and Naumann F, “Schema Matching 

using Duplicates,” in Proceeding of the 21
st
 

International Conference on Data Engineering, 

Washington, pp. 69-80, 2005. 

[4] Christen P, Data Matching: Concepts and 

Techniques for Record Linkage, Entity 

Resolution and Duplicate Detection, Springer 

Link, 2012. 

[5] Chua C., Chiang R., and Lim E., “Instance-based 

Attribute Identification in Database Integration,” 

The International Journal on Very Large Data 

Bases, vol. 12, no. 3, pp. 228-243, 2003. 

[6] Cilibrasi R., and Vitanyi P., “The Google 

Similarity Distance,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 19, no. 3, 

pp. 370-383, 2007. 

[7] Cilibrasi R. and Vitanyi P., “Automatic Meaning 

Discovery using Google,” Technical Report, 

2004. 

[8] De Carvalho  M., Laender A., Gonçalves  M., 

and Da-Silva A., “An Evolutionary Approach to 

Complex Schema Matching,” Information 

Systems, vol. 38, no. 3, pp. 302-316, 2013. 

[9] Doan A. and Halevy A., “Semantic Integration 

Research in the Database Community: A Brief 

Survey,” AI Magazine, vol. 26, no. 1, pp. 83-94, 

2005. 

[10] Doan A., Domingos P., and Halevy A., 

“Reconciling Schemas of Disparate Data 

Sources: A Machine-Learning Approach” in 

Proceedings of ACM SIGMOD International 

Conference on Management of Data, New York, 

pp. 509-520, 2001. 

[11] Feng J., Hong X., and Qu Y., “An Instance-

Based Schema Matching Method with Attributes 

Ranking and Classification,” in Proceedings of 

the 6
th
 International Conference on Fuzzy 

Systems and Knowledge Discovery, New Jersey, 

pp. 522-526, 2009. 

[12] Friedl J., Mastering Regular 

Expressions, O'Reilly Media, 2006. 

[13] Goyvaerts J. and Levithan S, Regular 

Expressions Cookbook, O'reilly, 2012. 

[14] Kang J. and Naughton J., “On Schema Matching 

with Opaque Column Names and Data Values,” 

in Proceeding of the ACM SIGMOD 

International Conference on Management of 

Data, New York, pp. 205-216, 2003. 

[15] Kang J. and  Naughton J., “Schema Matching 

using Interattribute Dependencies,” Knowledge 

and Data Engineering IEEE Transactions, vol. 

20, no. 10,  pp. 1393-1407, 2008. 

[16] Khan L., Partyka J., Parveen P., Thuraisingham 

B., and Shekhar S., “Enhanced Geographically-

Typed Semantic Schema Matching,” Journal of 

Web Semantics, vol. 9, no. 1, pp. 52-70, 2011. 



An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression                                       763 

 

[17] Kleene S., Representation of Events in Nerve Nets 

and Finite Automata, Princeton University Press, 

1951. 

[18] Li W. and Clifton C., “SEMINT: A Tool for 

Identifying Attribute Correspondences in 

Heterogeneous Databases using Neural 

Networks,” Data and Knowledge 

Engineering, vol. 33, no. 1, pp. 49-84, 2000. 

[19] Li W. and Clifton C., “Semantic Integration in 

Heterogeneous Databases using Neural 

Networks,” in Proceeding of the 20
th
 

International Conference on Very Large Data 

Bases, San Francisco, pp. 1-12, 1994. 

[20] Li Y., Liu D., and Zhang W., “Schema Matching 

using Neural Network,” in Proceeding of the 

IEEE/WIC/ACM International Conference on 

Web Intelligence, Washington, pp. 743-746, 2005. 

[21] Liang Y., “An Instance-Based Approach for 

Domain-Independent Schema Matching,” in 

Proceeding of the 46
th
 Annual Southeast Regional 

Conference on XX, New York, pp. 268-271, 2008. 

[22] Liu G., Huang S., and Cheng Y., Frontiers in 

Computer Education, Springer, 2012. 

[23] Mehdi O., Ibrahim H., and Affendey L., “Instance 

Based Matching using Regular Expression,” 

Procedia Computer Science, vol. 10, pp. 688-695, 

2012.  

[24] Rahm E. and Bernstein P., “A Survey of 

Approaches to Automatic Schema Matching,” 

The International Journal on Very Large Data 

Bases, vol. 10, no. 4, pp. 334-350, 2001. 

[25] Restaurant Reviews Dataset, http://www 

.cs.cmu.edu/~ mehrbod/RR/., Last Visited 2014. 

[26] Riaz M. and Munir S., An Instance Based 

Approach to Find the Types of Correspondence 

Between the Attributes of Heterogeneous 

Datasets, Isseratration Academic Book 

Publishers, 2012. 

[27] Stubblebine T., Regular Expression Pocket 

Reference: Regular Expressions for Perl, Ruby, 

PHP, Python, C, Java and. NET, Amazon, 2007. 

[28] Tejada S., Knoblock C., and Minton S., “Learning 

Object Identification Rules for Information 

Integration,” Information Systems, vol. 26, no. 8, 

pp. 607-633, 2001. 

[29] UCI Machine Learning Repository, http://archive. 

ics.uci.edu/ml/ datasets.html, Last Visited 2014. 

[30] Yang Y., Chen M., and Gao B., “An Effective 

Content-Based Schema Matching Algorithm,” in 

Proceeding of the  International Seminar on 

Future Information Technology and Management 

Engineering, Washington, pp. 7-11, 2008. 

[31] Zaib  K., “Instance-Based Ontology Matching and 

the Evaluation of Matching Systems,” PhD 

Dissertation, Dusseldorf University. 

 

 

 

Osama Mehdi received his 

Bachelor of Computer Science from 

the University of Babylon, Iraq in 

2009 and M.Sc. by research 

degree in computer science and 

information technology from 

University Putra Malaysia, 

Malaysia in 2014. Currently, he is working as a 

lecturer at Al Mustaqbal College University. His 

research interests include Data Integration, 

Information Retrieval, Semantic Web, Pattern 

Recognition and Large-Scale Data Analysis (Big 

Data). 
 

Hamidah Ibrahim is currently a 

professor at the Faculty of 

Computer Science and Information 

Technology, Universiti Putra 

Malaysia. She obtained her PhD in 

computer science from the 

University of Wales Cardiff, UK in 

1998. Her current research interests include databases 

(distributed, parallel, mobile, bio-medical, XML) 

focusing on issues related to integrity constraints 

checking, cache strategies, integration, access control, 

transaction processing, and query processing and 

optimization; data management in grid and 

knowledge-based systems. (e-mail:  

hamidah.ibrahim@upm.edu.my). 

 

Lilly Affendey received her 

Bachelor of Computer Science 

from the University of 

Agriculture, Malaysia in 1991 

and MSc in Computing from the 

University of Bradford, UK in 

1994.  In 2007 she received her 

PhD in Database Systems from University Putra 

Malaysia.  Her research interests are in 

Multimedia Database, Content-based Video 

Retrieval and Big Data Analytics.  She is 

currently an Associate Professor in University 

Putra Malaysia. 
 

 

 

 

 

 

 

 

 

https://www.google.ae/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets.html%3Fformat%26task%26att%26area%26numAtt%26numIns%26type%26sort%3DnameUp%26view%3Dlist&ei=TxdiU_n3CcO1uASmzIHgBA&usg=AFQjCNH_mjFlsgfIHfAEAmGjy3yhdUtgDQ&bvm=bv.65788261,d.c2E
mailto:hamidah.ibrahim@upm.edu.my

