
An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression 755

An Approach for Instance Based Schema Matching

with Google Similarity and Regular Expression

Osama Mehdi, Hamidah Ibrahim, and Lilly Affendey

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia

Abstract: Instance based schema matching is the process of comparing instances from different heterogeneous data sources

in determining the correspondences of schema attributes. It is a substitutional choice when schema information is not

available or might be available but worthless to be used for matching purpose. Different strategies have been used by various

instance based schema matching approaches for discovering correspondences between schema attributes. These strategies are

neural network, machine learning, information theoretic discrepancy and rule based. Most of these approaches treated

instances including instances with numeric values as strings which prevents discovering common patterns or performing

statistical computation between the numeric instances. As a consequence, this causes unidentified matches especially for

numeric instances. In this paper, we propose an approach that addresses the above limitation of the previous approaches.

Since we only fully exploit the instances of the schemas for this task, we rely on strategies that combine the strength of Google

as a web semantic and regular expression as pattern recognition. The results show that our approach is able to find 1-1

schema matches with high accuracy in the range of 93%-99% in terms of Precision (P), Recall (R), and F-measure (F).

Furthermore, the results showed that our proposed approach outperformed the previous approaches although only a sample

of instances is used instead of considering the whole instances during the process of instance based schema matching as used

in the previous works.

Keywords: Schema matching, instance based schema matching, Google similarity, regular expression.

Received April 24, 2014; accepted August 31, 2015

1. Introduction

One of the vital tasks in database integration is schema

matching. At schema match core, discovering the

correlation between database schemas is a serious

challenge because of the syntactic and semantic

heterogeneity [1, 4]. Matching two schemas S and T

requires deciding if two attributes s of S and t of T

represent the same real-world concept. While humans

may be able to easily discover if two attributes match or

non-match, however it is difficult for machines to

discover it, especially when these two attributes have

semantic heterogeneity. For example, s and t can

represent different concepts but have the same name.

The opposite is also possible; s and t can represent the

same concept but have different names. During the

process of schema matching, schema information

which includes element name (schema name, attribute

name), description, data type, constraint, and schema

structure are normally used in an attempt to achieve

correct matching between schemas. However, in some

real world cases it may not be possible to use the

information of schema structure. There are cases where

information about the schema structure is not available

such as in, fraud detection, crime investigation,

counter-terrorism and homeland security De Carvalho

et al. [8]. In such scenarios, instances are the only

option available that can be used for schema matching.

Detecting instance correspondences could be a

substitutional choice for schema matching, especially

if the schema information is not available or might be

available but worthless to be used for matching

purpose. For example, it is common for a database

designer to use abbreviations to represent schema

attributes [23, 26, 28]. For instance, the attribute name

CN could be an abbreviation of Customer Name or

Company Name while SSN is an abbreviation of

Social Security Number. For such case, only the

instances can be used for determining the

correspondences of attributes. Hence, the instances

can give an accurate characterization of the actual

contents of schema attributes [24, 26, 31].

By analysing the instance based schema matching

approaches, we observed that neural network, machine

learning, theoretic information discrepancy and rule

based have been utilized. The goal of these approaches

is to discover correspondences between schema

attributes in which instances including instances with

numeric values are treated as strings De Carvalho et

al. [8]. This prevents discovering common patterns or

performing statistical computation between the

numeric instances. As a consequence, this causes

unidentified matches especially for numeric instances

and further reduces the quality of match results De

Carvalho et al. [8].

In this paper, we propose an approach for instance

based schema matching that aims at finding the

756 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

correspondences between schema attributes of two

semantically and syntactically related data. Since we

only explore the instances, we rely on strategies that

combine the strength of Google as a web semantic and

regular expression as pattern recognition to find the

correspondences of schema attributes. As pointed out

by [18, 22], there are different types of matching

algorithms being applied in this area. However, this

problem is still a research hotspot in order to further

improve the accuracy of schema matching. Thus, our

proposed approach is a step forward towards solving

this problem.

The rest of this paper is organized as follows.

Section 2 discusses the related works. Section 3

presents the proposed approach of instance based

schema matching. In section 4, the evaluation metrics

and the results are presented and discussed. Finally,

section 5 draws the conclusions and points out the

future work directions.

2. Related Work

This section presents a review of the previous

approaches that have been proposed for the instance

based schema matching to find correspondences

between attributes of schemas. Neural network,

machine learning, information theoretic discrepancy

and rule based are approaches used for instance based

schema matching.

2.1. Neural Network

The work in [18] classified attributes according to their

field specifications and data values, and then trained a

neural network for the recognition of similar attributes.

This work assumes the similarity of structure and data

values of attributes in different databases that represent

the same real-world concept. Specific parsers of

Database Management System (DBMS) are used to

extract schema information or data contents from

databases. Then, domain analysis compares the

complete contents of each pair of attributes. The

analysis starts by extracting a set of characteristics that

describes the instances. The characteristics are divided

into two types: character and numeric. A classifier is

then used to discriminate attributes in a single database.

The classifier output or cluster center then trains a

neural network in recognizing categories and then

determines similar attributes between databases.

However, the back propagation algorithm requires that

input characteristic has the same discriminators used in

the training. They may not be able to obtain the

same list of discriminators from two different

databases. The average similarity of their work is 93%.

SEMantic INTegrator (SEMINT) [18] used neural

network to study and identify correspondences among

attributes in heterogeneous databases. It uses schema

and instance information to automatically generate the

matching rules of attribute. SEMINT also exploits

multiple criteria that are constraint-based matching

and content-based matching to find matching.

SEMINT uses statistic computation for numerical

field, while for character field, whose values are not

computable as ASCII code numbers, SEMINT

computes statistics on number of bytes actually used

to store data. However, this method needs to be

improved in terms of performance, especially in case

of naming-based approach, as it achieved only 80%

for precision.

Schema Matching method based on Data

Distribution (SMDD) [20] introduces a schema

matching method based on neural network, by

analyzing the characteristics of data distribution. The

SMDD algorithm believes that two attributes from

heterogeneous data sources are similar if their data

instance distributions are similar. SMDD has five

steps as follows:

 Step 1. Involves parsing the instances to extract

some instances for every attribute from the data

source S1, analysing their characteristics of data

distribution, and generating vectors from those

characteristics.

 Step 2. Classifies the input vectors generated in step

1 into M categories using clustering algorithm.

 Step 3. Uses the output of step 2 as inputs for neural

network in order to train the data.

 Step 4. Similarity determination is done in it.

 Step 5. The highest similar candidate mappings are

selected.

The F-measure achieved by SMDD is between 0.25

and 0.65, while in the best case the F-measure can

exceed 0.65.

A novel Content-Based Schema Matching

Algorithm (CBSMA) [30] adopts neural network

technique to perform instance-based schema matching

task which fully explores the use of data content. This

work introduces an innovative schema matching

algorithm based on instances, which has two primary

steps. The first step is the analysis of data pattern,

which is done by training a set of neural networks. It

starts with feature extraction, clustering to get training

data and classifying data with Back Propagation

Neural Network. Eleven features to describe the data

pattern are proposed, the complete list of the features

is given in [30]. The next step is applying some

judgment rules to filter the candidate pairs and get the

correct matching result. CBSMA achieved 96% and

90% of precision and recall, respectively.

2.2. Machine Learning

Learning Source Descriptions (LSD) [18] employs

machine learning techniques that aims to semi

automatically locates attributes matching. LSD

requires initial examples of semantic mappings from

the user, and employs these examples to train each

An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression 757

(1)

machine learning technique, whose solutions are

combined and presented to the user. LSD first asks the

user to provide the semantic mapping for a set of data

sources, and then uses the mapping together with the

sources to train a set of learners. Each leaner exploits a

different type of information either in source schema or

in their data. However, LSD achieved accuracy in the

range of 71% - 92%.

Autoplex [2] is an instance based schema matching

system. Autoplex used Naive Bayesian based learner to

exploit characteristics of instances for identifying

attributes match from a relational source schema to

global schema. Naive Bayesian used example of

instances to acquire probabilistic knowledge on the

examples. The probability of instances occurs in an

attribute mapped to another attribute, is estimated by

the proportion of the occurrences of the instance among

instances from attributes that are mapped to. For each

attribute of the source schema, both match and

mismatch probability with respect to every global

attribute are determined. These probabilities are

normalized to sum to 1 and the match probability is

returned as the similarity between the source and global

attributes. However, evaluation showed that Autoplex

achieved only 0.81 for both soundness and

completeness.

A new approach of instance based schema matching

is proposed by [11], based on the hypothesis that

corresponding attributes are relatively equally

important. The main components of their three-part

framework: attribute ranking, attribute classification

and matching phase. In contrast to traditional

approaches, which consider all attributes with the same

importance, they employ machine learning methods in

prioritizing all schema attributes according to rank and

class. When matching, they have constructed an

optimal objective function to determine all equivalent

attributes. However, the approach is suitable only for

numeric instances, as the result of precision (P)

dropped to 66% when string instances are considered.

2.3. Information Theoretic Discrepancy

The approach by [21] handles the problem of schema

matching when the interpretations of schema

information are incorrect or ambiguous by evaluating

the instances in schemas, playing as equivalent role as

schema information. The approach has two-steps of

domain-independent schema matching technique. In

this technique shared information between pair-wise

attributes employing the concept of mutual information

is measured. Then, a graph is constructed to represent

the weighted links for each input schema. Here, schema

matching changes to a weighted graph matching

problem and a graduated assignment algorithm is used

to determine the correspondences of vertices between

graphs. The proposed schema matching approach

achieved 70% precision on average.

Two approaches proposed by [14, 15] are similar to

the approach proposed by [21]. The approach in [15]

involves computing the mutual information between

pairs of columns in each schema, and then applying

this statistical characterization of pairs of columns in

one schema to propose matching pairs of columns in

the other schema. The proposed approach has a two-

step technique that can be used even when opaque

column names and data values are present. First, it

measures the pair-wise attribute correlations in the

tables to be matched and then constructs a dependency

graph utilizing mutual information as shown in

Equation 1 as a measure of the dependency between

attributes.

In the second step, it locates matching node pairs in

the dependency graphs by running a graph matching

algorithm.

I(X, Y) = ∑i∑j ρ (Xi,Yj) log = ρ (Xi, Yj) / ρ (Xi) ρ (Yj)

 I(X,Y) is the mutual information, or the strength of

the relation of the attributes X and Y.

 Xi and Yj are discrete values of X and Y,

respectively.

 (Xi) and (Yj) are marginal probability when X has

the value of Xi and Y has the value of Yj.

 ρ(Xi, Yj) is the joint probability.

The work in [15] is almost similar to their previous

work in [13] except that it handles the remaining

challenge from previous work which is the

computational complexity of the graph-matching

problem in the second step. As in the previous work of

[14], this approach also has two steps. The first step

measures the dependencies between attributes within

tables using mutual information measure and

constructs a dependency graph for each table to

capture the dependencies among attributes. The

second step involves finding matching node pairs

across the dependency graphs utilizing graph

matching algorithm. The P, R, and F achieved by [14,

15] is in the range of 45% - 93%.

2.4. Rule Based

Attribute identification is an algorithm proposed by

[4] which fully explores data instances. It can also

detect corresponding attributes to be integrated even in

misleading schema information based on the

assumption that entity identification can be performed

successfully before matching. So, the main

contribution of this study is to determine and offer an

instance-based attribute identification method for the

improvement of database integration in cases when

schema information proves insufficient or unsuitable.

However, their algorithm achieved 72% of matched

attributes.

The work in [3] introduced algorithm that shows

how the existence of duplicates in a data set would be

758 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

helpful and if exploited can automatically identify

matching attributes. One of the rules that could be used

“two attributes match if they have the same data

values”. The algorithm of [3] starts by discovering

duplicates among data sets through comparison of

instances in the duplicate records and then using them

to perform schema matching between schemas and

opaque column names. Soft-TFIDF is a measure used

to determine the string similarity between the instances

of the tuples. However, The P, R achieved by [3] are

75% and 87%, respectively.

From the previous works that have been reviewed in

this section, it can be seen that different strategies have

been applied in instance based schema matching.

These works focused on one main goal which is to

achieve high quality match results. The results reported

by these works are in the range of 45%-96% in terms of

the P, R, and F. However, most of these approaches

treated the instances numeric values as strings. This

prevents discovering common patterns or performing

statistical computation between the numeric instances.

As a consequence, this causes unidentified matches

especially for numeric instances and further reduces the

quality of match results. Thus, much effort is still

required to further improve the accuracy of instance

based schema matching.

3. The Proposed Approach

In this section we present an instance based schema

matching approach that determines correspondences

between schema attributes. In addition, the proposed

approach rely on strategies that combine the strength of

Google as a web semantic and regular expression as

pattern recognition. The proposed approach consists of

five main phases as illustrated in Figure 1. These

phases are analysing instances, classifying schema

attributes, extracting the optimal sample size,

identifying instance similarity, and identifying the

match which are further explained in the following

subsections.

Figure 1. The phases of the proposed approach.

3.1. Analysing Instances

This phase aims to determine the data type of each

attribute of both the target and source schemas. This is

achieved by analysing the characters of an instance

selected randomly from each attribute of the schemas.

We classify the data type of an attribute as alphabetic,

numeric and mix. The alphabetic data type is for

attributes whose instances consist of only alphabetic

characters ([A...Z, a…z]). The numeric data type is for

attributes whose instances consist of only digit

characters ([0…9]), whereas the mix data type is for

attributes whose instances consist of combination of

alphabetic, digit and special characters (e.g.,[-, /,\, .,]).

This phase starts by randomly selecting an instance of

an attribute and counts the number of characters for

each data type, then checks whether the number is

equal to the length of the instance or not. If the

number of characters of a data type is equal to the

length of the instance (without whitespace), then the

data type of the instance is identified as alphabetic if

all the characters are alphabetic or numeric if all the

characters are numeric. Otherwise, if the number of

characters of a data type is less than the length of the

instance, then the data type of the instance is identified

as mix. For example, the instance “New York” has

seven alphabetic characters which is equal to the

length of the instance (without whitespace), while the

instance “255 Courtland” has three numeric characters

and nine alphabetic characters which are not equal to

the length of the instance which is twelve. Thus, “New

York” and “255 Courtland” are classified as

alphabetic and mix data type, respectively.

3.2. Classifying Schema Attributes

After we have determined the data type of each

attribute as discussed in the previous phase, the next

step is to classify the attributes that share the same

data type in the same class. The main aim of this

phase is to reduce the number of possible comparisons

that needs to be performed during the matching

process. The maximum number of classes created for

each schema is based on the number of data types that

have been determined from the previous phase. Table

1 shows an example which is used to clarify this phase

of the proposed approach. The following instances

“New York”, “Doctorate”, “255 Courtland”,

“818/762-1221”, and ”49” have been classified into

three data types which are alphabetic, numeric, and

mix. Hence, three classes are created based on the

identified data types. The class of alphabetic data type

(C_alpha) includes the attributes of the instances

“New York” and “Doctorate”, the class of mix data

type (C_mix) includes the attributes of the instances

“255 Courtland” and “818/762-1221”, and the class of

numeric data type (C_num) includes the attribute of

the instance “49”.

An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression 759

Table 1. Classifying Schema Attributes based on the Data Type.

Class of Alphabetic Data Type

Attribute 1 Attribute 2

New York Doctorate

Class of Mix Data Type

Attribute 1 Attribute 2

255 Courtland 818/762-221

Class of Numeric Data Type

Attribute 1 -

49 -

3.3. Extracting the Optimal Sample Size

This phase aims at extracting a sample of instances for

each attribute of the classes (C_alpha, C_num, and

C_mix) based on the optimal sample size which is

equal to 50% of the actual table size. The optimal

sample size has been chosen through a set of

experiments. This is due to the fact that relying on the

entire instances of an attribute which might involve

huge data size to determine the similarity between

attributes will lead to low performance with respect to

processing time. The experiments of the optimal sample

size have been designed in such a way that each

experiment will use different size of samples starting

from 5% of the actual table size. The size of samples is

increased either 5% or 10% in the subsequent

experiments. The experiments are ended when the P, R,

and F are at least 96% which is at least equal to the best

results reported in the previous works [30].

3.4. Identifying Instance Similarity

The aim of this phase is to compare the attributes in the

same class that belong to different schemas, whether

they are representing the same entity or not. To find

correspondences between attributes in each class, two

strategies are adopted. The first strategy utilizes regular

expression for syntactic similarity and the second

strategy utilizes Google similarity for semantic

similarity.

3.4.1. Regular Expression

Regular expression (known as regexes) is a way to

describe text through pattern (format) matching and

provide an easy way to identify text. Regular

expression is a language used for parsing and

manipulating text [12, 17]. Furthermore, regular

expression is a string containing a combination of

normal characters and special metacharacters or

metasequences (*, +, ?). Table 2 shows the most

common metacharacters and metasequences in regular

expression [10] that are used in our work.

Table 2. The Common Metacharacters in Regular Expression.

Metacharacter Name Matches

d\ Digit Matches a digit

s\ Whitespace Matches whitespace

[a-z, A-Z]
A range of

letters

Matches any letter in the

specified range

. Dot
Matches any one

character

[…] Character class
Matches any one

character listed

[^…]
Negated

character class

Matches any one

character not listed

? Question
One allowed, but it is

optional

* Star
Any number allowed, but

all are optional

+ Plus
At least one required;

additional are optional

| Alternation
Matches either expression

it separates

^ Caret
Matches the position at

the start of the line

$ Dollar
Matches the position at

the end of the line

{X,Y} Specified range X required, max allowed

Regular expression provides several benefits, which

are [9, 27]:

 Relatively inexpensive and does not require

training or learning as in learning-based or neural

network techniques.

 Regular expression can provide a quick and concise

method to capture valuable user knowledge about

the domain.

In our approach, regular expression is derived only for

those attributes with numeric or mix data types. This

is explained below.

3.4.1.1. Regular Expression for Numeric Data Type

This sub-section explains the process of creating

regular expression for the attributes with numeric data

type. The attributes with numeric data type are

attributes whose instances consist of only digit

characters ([0…9]). In creating a regular expression

for an attribute, the minimum and maximum values of

the attribute are required. Thus, three variables have

been identified, namely: nomin, nomax and

uppervalue. Initially, nomin and nomax are assigned

the minimum and maximum values of the attribute,

respectively. However in the following iterations, the

value of nomin is changed to the last uppervalue + 1.

The uppervalue is a value which is greater than the

value of nomin and less than the value of nomax; and

is derived based on the following conditions:

a) When the nomin's length of digits is less than the

nomax's length of digits, the uppervalue is the

maximum value based on the nomin’s length of

digits and not greater than the value of nomax. For

instance, if the nomin’s length of digits is three

(e.g., 345) then the uppervalue is 999. If the

uppervalue is greater than the value of nomax, then

760 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

(2)

the first digit of the uppervalue is changed to the

first digit of nomin (399 for the above example).

This is then checked against the value of nomax. If

the new uppervalue is still greater than the value of

nomax then the second digit of the uppervalue is

changed to the second digit of nomin (349 for the

above example). This process is repeated in which

the next digit of the uppervalue is changed to the

next digit of nomin until the condition stated in the

definition of uppervalue is satisfied. However, if all

the digits of uppervalue have been changed, i.e., the

value of uppervalue is now equal to the value of

nomin, then the value of nomax is assigned to

uppervalue. This is to reduce the number of

iterations needed in identifying the uppervalue.

b) When the nomin's length of digits is equal to the

nomax's length of digits and the nomin has at least

one zero digit on the right, the uppervalue is derived

using the formula shown in Equation 2. The

Equation 2 derives the closest uppervalue to the

nomax.

 uppervalue = (nomax - (nomax MOD Sumz * 10) - 1)

Where Sumz returns the number of zero digits on the

right of the nomin. If the Equation 2 returns an

uppervalue which does not satisfy the condition that we

have stated earlier, then the step as mentioned in (a)

above is applied. For instance, when the nomin's length

of digits is equal to the nomax's length of digits (e.g.

120 and 123, respectively), the uppervalue is 119 based

on the Equation 2. The result of uppervalue does not

satisfied the definition of uppervalue which is greater

than the value of nomin and less than the value of

nomax. Then, the steps as mentioned in condition (a)

above are applied to derive the value of uppervalue.

Table 3 illustrates an example of the proposed idea for

numerical data type.

Table 3. The Mechanism of the RegEx for Numerical Domain.

Iteration Nomin
Upper

value
RegEx Accumulated RegEx

1 7 9 [7-9] [7-9]

2 10 99 [1-9][0-9] [7-9]|[1-9][0-9]

3 100 119 1[0-1][0-9] [7-9]|[1-9][0-9]|1[0-1][0-9]

4 120 123 12[0-3] [7-9]|[1-9][0-9]|1[0-1][0-9]|12[0-3]

3.4.1.2. Regular Expression for Mix Data Type

The attributes with mix data type consist of instances

that includes alphabetic, numeric and special

characters. The general idea is to divide an instance into

a set of sub-tokens. Each sub-token is a sequential set

of characters of a particular data type. Then, a regular

expression is built for each sub-token of the instance.

Finally, the regular expressions of each sub-token are

combined as the regular expression of the instance. For

example, the following instance "255 Courtland" can be

divided into two sub-tokens which are "255" and

"Courtland". The first sub-token "255" is considered as

a sub-token of the numeric data type since it consists

of a sequential set of numeric characters. While, the

second sub-token “Courtland” belongs to the

alphabetic data type as it consists of a sequential set of

alphabetic characters. Finally, we combine the regular

expressions of each sub-token that are “\\d+” for the

sub-token with numeric characters and “([a-zA-Z]+)”

for the sub-token with the alphabetic characters as the

final regular expression of the instance “255

Courtland”. Table 4 illustrates an example of the

proposed idea for mix data type.

Table 4. An example of the mix data type

Instance Regular Expression

255 Courtland d\+\s[a-z, A-Z]+

589/265/954 d\+/d\+/d\+

3.4.2. Google Similarity

The Google similarity uses the World Wide Web as a

database and Google as a search engine. Google‟s

similarity of words and phrases from the World Wide

Web uses Google page counts, as shown in Equation

3.
GSD (x, y) = max (log f (x), log f (y)) - log f (x, y) /

log M - min (log f (x), log f (y))

Where f (x) is the number of Google hits for the search

term x, f (y) is the number of Google hits for the

search term y, f (x, y) is the number of Google hits for

both terms x and y together, and M is the number of

web pages indexed by Google. The World Wide Web

is the largest database on earth and the context

information entered by millions of independent users

averages out to provide automatic semantics of useful

quality [6, 7]. The Google similarity calculates the

semantic similarity score for the attributes with

alphabetic data type that comprises instances

consisting of only alphabetic characters ([A...Z,

a…z]). For instance, if we want to search for a given

term in the Google web pages, e.g. “Msc”, we will get

a number of hits that is 127,000,000. This number

refers to the number of pages where this term is found.

For another term, “Phd”, the number of hits for this

term is 50,600,000. Furthermore, if we search for

those pages where both terms ” Msc” and “Phd” are

found, that gives us 36,100,000 hits. Consequently, we

can use these numbers of hits for the terms “Msc”,

“Phd” and both terms together in addition to the

number of pages indexed by Google, which is around

3,000,000,000 in the Equation 3. The equation

produces the similarity degree between the two terms

“Msc” and “Phd” as follows: GSD (Msc, Phd) = 0.31.

3.5. Identifying the Match

After we have analyzed the instances, classified the

attributes, extracted the optimal sample size, and

performed the tasks of syntactic and semantic

matching, the last phase of our proposed approach

(3)

An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression 761

(4)

(5)

(6)

attempts to find the correct matching between the

attributes that shared the same data type. For classes of

numeric and mix, this phase specifies a match by

matching the regular expression of the instances of the

source schema derived from the previous phase against

sample of instances of the target schema. If a match

occurs, then the instances of the regular expression of

the source schema is said to correspond to the instances

of the target schema. Finally, for the class of alphabetic

we compare the similarity scores of the instances that

have been derived from the previous phase (utilizing

Google similarity) with a predefined threshold value. In

our work the threshold value is set to 60 as used by

previous work Khan et al. [16]. Similarity scores for

instances above or equal to the threshold are related;

otherwise they are not related.

4. Results and Discussion

4.1. Data Set

For the purpose of evaluating our proposed approach

two real data sets have been used in the experiment

study, namely: Restaurant [25] and Census

[29], both of

which are available online. In our experiments we

created two sub-tables by randomly selecting the

attributes from the original table of both data sets. The

number of attributes of each sub-table is equal to the

number of attributes of the original table. However,

these attributes might occur in different sequence and

the same attributes might be selected more than once.

These sub-tables were populated with instances taken

randomly from the original table of the data sets. The

number of instances of both sub-tables is different to

represent real world cases. We pretended that these

sub-tables were two different tables that needed to have

their schemas matched as applied in [5, 14, 15].

Restaurant is the first real data set to which our

approach is applied. The data set comprises of lists of

restaurants in two popular websites that are Zagat and

Foodor. Restaurant data set has 864 records and five

attributes, namely: Name, Address, City, Phone

Number, and Type of Food. The attribute Name is the

name of the restaurant that contains instances

comprising of only letters. The attribute Address refers

to the address of the restaurant, this field contains mix

of characters (numeric and alphabetic). The attribute

City refers to the city of the restaurant. The attribute

Type of Food refers to the type of food provided by the

restaurant. Both the attributes Type of Food and City

contain instances which comprise of only letters.

Finally, the attribute Phone Number contains numbers

and some special characters such as „/‟ and „-‟.

Restaurant data set has been used as it is one of the real

databases which is available and appropriate to evaluate

our proposed approach.

For our second data set, we used Census data set

which contains 358171 instances, 32561 records and 11

attributes. Four attributes consist of only numeric

characters, which are age, fnlwgt, Education-num and

capital-gain, while the other attributes contain only

letters, which are workclass, education, relationship,

race, sex, marital status, and native-country. Census

data set have been used by several proposed

approaches [14, 15].

For comparison purpose, we compared our proposed

approach to [14, 15] in terms of P, R, and F. We did

not compare our proposed approach to the approaches

that are reported in the related work section, as these

approaches used different data sets that are not

accessible through the internet [3, 11, 15, 19, 21, 22,

30]. Besides, some of these approaches required

specific rules [3, 21] and user intervention [17, 18, 27]

to perform the matching process.

4.2. Measurements

The evaluation metrics considered in this work are P,

R and F shown in Equations 4, 5 and 6, respectively. It

is based on the notion of true positive, false positive,

true negative, and false negative.

 True Positive (TP): The number of matches detected

when it is really matches.

 False Positive(FP): The number of matches detected

when it is really non-match.

 True Negative (TN): The number of non-matches

detected when it is really non-match.

 False Negative (FN): The number of non-matches

detected when it is really matches.

Precision = |TP| / |TP| + |FP|

Recall = |TP| / |TP| + |TN|

F-measure = 2 * Precision * Recall / Precision + Recall

For each table, we kept the number of attributes to 11

and 5 for Census and Restaurant data sets,

respectively. We repeated each experiment 5 times,

measured the P, R and F and averaged these results.

4.3. Result

Figure 2 presents the results of accuracy in terms of P,

R and F for the proposed approach of instance based

schema matching. From the results presented in Figure

2, the following can be concluded: 1) we achieved

96% for P, 93% for R and 95% for F for the

Restaurant data set, while with Census data set we

achieved 99% for P, 96% for R, and 97% for F. The

size of samples used is 50% of the actual table size

which has been identified through experiments; and 2)

our proposed approach produced high accuracy in

spite of the approach considered a sample of instances

instead of considering the whole instances during the

process of instance based schema matching.

762 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

Figure 2. Matching results of census and restaurant data sets.

Figure 3 shows the matching results using census

data set of our proposed approach compared to the

approaches proposed by [14, 15] in terms of P, R and F.

From these results, we can conclude that our proposed

approach achieved better results although only a sample

of instances is used instead of considering the whole

instances during the process of instance based schema

matching as used in the previous works [14, 15].

Figure 3. Matching results of the census data set.

5. Conclusions

In this paper, we proposed an instance based schema

matching approach to identify 1-1 schema matching.

Our proposed approach rely on strategies that combine

the strengths of Google similarity as a web semantic

and regular expression as pattern recognition. Our

experimental results show that our proposed approach

is able to identify 1-1 matches with high accuracy in

terms of P, R and F although only a sample of instances

is used instead of considering the whole instances

during the process of instance based schema matching.

In the near future, we plan to extend our framework to

handle complex schema matching (n-m), since

identifying complex matches is a more challenging

problem.

References

[1] Benslimane S., Malki M., and Bouchiha D.,

“Deriving Conceptual Schema from Domain

Ontology: A Web Application Reverse

Engineering Approach,” The International Arab

Journal of Information Technology, vol. 7, no. 2,

pp. 167-176, 2010.

[2] Berlin J. and Motro A., Cooperative Information

Systems, Springer Link, 2001.

[3] Bilke A. and Naumann F, “Schema Matching

using Duplicates,” in Proceeding of the 21
st

International Conference on Data Engineering,

Washington, pp. 69-80, 2005.

[4] Christen P, Data Matching: Concepts and

Techniques for Record Linkage, Entity

Resolution and Duplicate Detection, Springer

Link, 2012.

[5] Chua C., Chiang R., and Lim E., “Instance-based

Attribute Identification in Database Integration,”

The International Journal on Very Large Data

Bases, vol. 12, no. 3, pp. 228-243, 2003.

[6] Cilibrasi R., and Vitanyi P., “The Google

Similarity Distance,” IEEE Transactions on

Knowledge and Data Engineering, vol. 19, no. 3,

pp. 370-383, 2007.

[7] Cilibrasi R. and Vitanyi P., “Automatic Meaning

Discovery using Google,” Technical Report,

2004.

[8] De Carvalho M., Laender A., Gonçalves M.,

and Da-Silva A., “An Evolutionary Approach to

Complex Schema Matching,” Information

Systems, vol. 38, no. 3, pp. 302-316, 2013.

[9] Doan A. and Halevy A., “Semantic Integration

Research in the Database Community: A Brief

Survey,” AI Magazine, vol. 26, no. 1, pp. 83-94,

2005.

[10] Doan A., Domingos P., and Halevy A.,

“Reconciling Schemas of Disparate Data

Sources: A Machine-Learning Approach” in

Proceedings of ACM SIGMOD International

Conference on Management of Data, New York,

pp. 509-520, 2001.

[11] Feng J., Hong X., and Qu Y., “An Instance-

Based Schema Matching Method with Attributes

Ranking and Classification,” in Proceedings of

the 6
th
 International Conference on Fuzzy

Systems and Knowledge Discovery, New Jersey,

pp. 522-526, 2009.

[12] Friedl J., Mastering Regular

Expressions, O'Reilly Media, 2006.

[13] Goyvaerts J. and Levithan S, Regular

Expressions Cookbook, O'reilly, 2012.

[14] Kang J. and Naughton J., “On Schema Matching

with Opaque Column Names and Data Values,”

in Proceeding of the ACM SIGMOD

International Conference on Management of

Data, New York, pp. 205-216, 2003.

[15] Kang J. and Naughton J., “Schema Matching

using Interattribute Dependencies,” Knowledge

and Data Engineering IEEE Transactions, vol.

20, no. 10, pp. 1393-1407, 2008.

[16] Khan L., Partyka J., Parveen P., Thuraisingham

B., and Shekhar S., “Enhanced Geographically-

Typed Semantic Schema Matching,” Journal of

Web Semantics, vol. 9, no. 1, pp. 52-70, 2011.

An Approach for Instance Based Schema Matching with Google Similarity and Regular Expression 763

[17] Kleene S., Representation of Events in Nerve Nets

and Finite Automata, Princeton University Press,

1951.

[18] Li W. and Clifton C., “SEMINT: A Tool for

Identifying Attribute Correspondences in

Heterogeneous Databases using Neural

Networks,” Data and Knowledge

Engineering, vol. 33, no. 1, pp. 49-84, 2000.

[19] Li W. and Clifton C., “Semantic Integration in

Heterogeneous Databases using Neural

Networks,” in Proceeding of the 20
th

International Conference on Very Large Data

Bases, San Francisco, pp. 1-12, 1994.

[20] Li Y., Liu D., and Zhang W., “Schema Matching

using Neural Network,” in Proceeding of the

IEEE/WIC/ACM International Conference on

Web Intelligence, Washington, pp. 743-746, 2005.

[21] Liang Y., “An Instance-Based Approach for

Domain-Independent Schema Matching,” in

Proceeding of the 46
th
 Annual Southeast Regional

Conference on XX, New York, pp. 268-271, 2008.

[22] Liu G., Huang S., and Cheng Y., Frontiers in

Computer Education, Springer, 2012.

[23] Mehdi O., Ibrahim H., and Affendey L., “Instance

Based Matching using Regular Expression,”

Procedia Computer Science, vol. 10, pp. 688-695,

2012.

[24] Rahm E. and Bernstein P., “A Survey of

Approaches to Automatic Schema Matching,”

The International Journal on Very Large Data

Bases, vol. 10, no. 4, pp. 334-350, 2001.

[25] Restaurant Reviews Dataset, http://www

.cs.cmu.edu/~ mehrbod/RR/., Last Visited 2014.

[26] Riaz M. and Munir S., An Instance Based

Approach to Find the Types of Correspondence

Between the Attributes of Heterogeneous

Datasets, Isseratration Academic Book

Publishers, 2012.

[27] Stubblebine T., Regular Expression Pocket

Reference: Regular Expressions for Perl, Ruby,

PHP, Python, C, Java and. NET, Amazon, 2007.

[28] Tejada S., Knoblock C., and Minton S., “Learning

Object Identification Rules for Information

Integration,” Information Systems, vol. 26, no. 8,

pp. 607-633, 2001.

[29] UCI Machine Learning Repository, http://archive.

ics.uci.edu/ml/ datasets.html, Last Visited 2014.

[30] Yang Y., Chen M., and Gao B., “An Effective

Content-Based Schema Matching Algorithm,” in

Proceeding of the International Seminar on

Future Information Technology and Management

Engineering, Washington, pp. 7-11, 2008.

[31] Zaib K., “Instance-Based Ontology Matching and

the Evaluation of Matching Systems,” PhD

Dissertation, Dusseldorf University.

Osama Mehdi received his

Bachelor of Computer Science from

the University of Babylon, Iraq in

2009 and M.Sc. by research

degree in computer science and

information technology from

University Putra Malaysia,

Malaysia in 2014. Currently, he is working as a

lecturer at Al Mustaqbal College University. His

research interests include Data Integration,

Information Retrieval, Semantic Web, Pattern

Recognition and Large-Scale Data Analysis (Big

Data).

Hamidah Ibrahim is currently a

professor at the Faculty of

Computer Science and Information

Technology, Universiti Putra

Malaysia. She obtained her PhD in

computer science from the

University of Wales Cardiff, UK in

1998. Her current research interests include databases

(distributed, parallel, mobile, bio-medical, XML)

focusing on issues related to integrity constraints

checking, cache strategies, integration, access control,

transaction processing, and query processing and

optimization; data management in grid and

knowledge-based systems. (e-mail:

hamidah.ibrahim@upm.edu.my).

Lilly Affendey received her

Bachelor of Computer Science

from the University of

Agriculture, Malaysia in 1991

and MSc in Computing from the

University of Bradford, UK in

1994. In 2007 she received her

PhD in Database Systems from University Putra

Malaysia. Her research interests are in

Multimedia Database, Content-based Video

Retrieval and Big Data Analytics. She is

currently an Associate Professor in University

Putra Malaysia.

https://www.google.ae/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets.html%3Fformat%26task%26att%26area%26numAtt%26numIns%26type%26sort%3DnameUp%26view%3Dlist&ei=TxdiU_n3CcO1uASmzIHgBA&usg=AFQjCNH_mjFlsgfIHfAEAmGjy3yhdUtgDQ&bvm=bv.65788261,d.c2E
mailto:hamidah.ibrahim@upm.edu.my

