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Abstract: Automatic classification of modulation type in detected signals is an intermediate step between signal detection and 

demodulation, and is also an essential task for an intelligent receiver in various civil and military applications. In this paper, a 

new two-stage partially supervised classification method is proposed for Additive White Gaussian Noise (AWGN) channels 

with unknown signal to noise ratios, in which a system adaptation to the environment Signal-to-Noise Ratios (SNR) and 

signals classification are combined. System adaptation to the environment SNR enables us to construct a blind classifier to the 
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modulation type of input signals. Simulation results show that the accuracy of the proposed algorithm approaches to a well-

trained system in the target SNR, even in low SNRs. 
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1. Introduction 

Automatic Modulation Classification (AMC) is an 

important issue in cognitive telecommunication signal 

processing and its related fields, including blind 

investigating the frequency spectrum for civil and 

military applications. Today, telecommunication 

signals are propagated using various modulation types 

and in different frequency bands. In many commercial 

and military applications (e.g., commercial 

communication systems, spectrum monitoring, signal 

surveillance, interferer identification, universal 

demodulation and software defined radio), it is 

essential to detect and demodulate the signal without 

given priori information on that signal. This is in 

contrast to regular receiver‟s functionalities in which 

the prior information of the received signals, such as 

carrier frequencies, frequency bandwidth, bit rate, and 

modulation type is available. In other words, the 

receiver is blind. Furthermore, online techniques are 

required for real-time signal interception and 

processing, which are vital for decisions involving 

electronic warfare operations and other tactical actions. 

Generally, designing a modulation classifier 

substantially consists of two steps; pre-processing of 

the received signal and choosing a proper classification 

algorithm. The pre-processing task might include noise 

reduction, carrier frequency estimation, and signal to 

noise ratio estimation. Depending on the classification 

algorithm in the second step, the pre-processing tasks 

should be provided. The focus of this study is on the 

second step. 

In the classification step, the employed algorithms 

may be divided into two major categories: Decision 

Theory Based Approaches (DTBAs) and Feature 

Matching Based Approaches (FMBAs) [7, 11, 18, 22]. 

DTBA algorithms are based on the received signal 

likelihood function. In this category, the decision is 

made by comparing the likelihood function with a 

threshold. The complexity of DTBA is usually high. In 

addition, this classifier does not perform well when the 

sampled signal has random phase offsets, timing 

offsets, and timing jitters. In contrast, FMBA usually 

extracts one or more features form the received signal 

and the decision is performed based on their measured 

values by using a trainable classification algorithms. 

The calculation complexity of FMBA is often lower 

than DTBA. Our proposed algorithm may be 

categorized as an FMBA algorithm. 

Feature matching based systems can be further divided 

into two main subsystems: the feature extraction 

subsystem and the classifier subsystem. Feature 

extraction subsystem, extracts the features from the 

received signal, and the classifier subsystem, determine 

the membership of the received signal to each class. 

This study proposes a blind large margin classifier 

using classic state of the art features. Therefore, the 

contribution of the paper is concentrated on the 

classifier subsystem. Large margin classifiers are a 

category of classifiers which minimizes the empirical 

risk of misclassification and shows the state of the art 

results in pattern classification problems [5, 21]. 
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From the published works in AMC [1, 13, 15, 19, 20, 

23], it appears clear that one of the main drawbacks 

with these studies is the Signal-to-Noise Ratios (SNR) 

aware assumption of the classifier in the most learning 

methods. In otherwords, the training and testing 

procedure are performed on equal SNRs which are far 

away from realistic conditions. Sengur [19] is an 

exception for this deduction whose results is not 

glancing for low Signal-to-Noise Ratios (SNRs). In 

fact, since the optimistic objective of AMC is blind 

detection of the modulated signals, the receiver should 

have no pre-knowledge on the sent signal‟s SNR. 

Consequently, by now, the proposed algorithms could 

not be considered as blind classifiers. Therefore, 

proposing a new method that could automatically 

match with the SNR of environment and has lower 

computational complexity is crucial. 

In this paper, we propose to employ the idea of 

passive-aggressive algorithm [9] as an online large 

margin classifier to present novel partially supervised 

classification architecture for Additive White Gaussian 

Noise (AWGN) channels with unknown or variable 

signal to noise ratios. In this paper, it is assumed that 

signal to noise ratio is unknown. However, the 

proposed idea is well applicable to variable SNR case 

with some generalizations in mathematical formulation 

and architecture. 

The rest of the paper is organized as follows: in 

section 2, we present the proposed architecture and 

discuss our algorithm. This section also reviews the 

online passive-aggressive learning algorithms as the 

basis of the proposed architecture. Section 3 provides a 

description of the experimental setup and simulation 

results. Finally, section 4 concludes the paper and 

comments on how this algorithm can be further 

expanded. 

2. Proposed Classifier Architecture  

Large margin classifiers are assumed as state of the art 

classifiers. The most commonly used large margin 

classifiers are support vector machines [8]. A support 

vector machine is a batch learning algorithm that finds 

out the separating hyper-plane with the maximum 

possible margin. Our Approach is constructed based on 

online version of support vector machine. Online 

algorithms, such as passive-aggressive, can be used to 

adapt the classifier system within terms of input 

signals. In addition, they can be adapted to have a 

partially supervised classifier. Extensions of batch 

learning algorithms to online settings have practically 

proven to be successful in many civil and military 

applications. In this section, the mathematical 

formulation of classic offline and online large margin 

classifiers are briefly discussed and then the proposed 

idea is presented both in architecture and mathematical 

analysis aspects.  

2.1. Large Margin Classifier 

2.1.1. Support Vector Machine 

Suppose to have a binary classification problem and 

training set of 1 labeledsamples , 1i i

l
x y i  where d

xi   is 

an input vector describing i
th
 samples and 11

i
y { , }   is 

its labels. We attempt to learn the function 

 ( )f x = w.φ x +b  which assigns the correct label to an 

unseen test sample.  φ x is a feature mapping induced 

by the kernel k(x,x )=φ(x).φ(x )  , and b is the bias. 

The goal is to find parameters ( )w,b suchthat the 

following equation is minimized, 

l
21

2
1

w,b
i

i=

w +C ξmin   

..ts   1Ty w φ(x)+b ³ - ξi i
, 0i li ,...,1  

Where the components of vector  are slack variables, 

and C is a penalty parameter. 

2.1.2. Online Passive-Aggressive Classifier 

Passive-Aggressive (PA) algorithms [9] are a family of 

maximum margin based, online learning algorithms 

that update the model parameters by each observation. 

Online PA algorithm, on one hand, modifies the 

current classifier 
tw ×φ(x)+b in order to correctly 

classify the current example Xi, by updating the weight 

vector from 
tw  to

1t+
w ; and on the other hand, the new 

classifier 
1t+w ×φ(x)+b should be as close as possible to 

the current classifier
tw ×φ(x)+b . 

Our classifier architecture for modulations 

classification was based on PA algorithm, and we 

pursued both of above ideas at the same time. The 

vectorw1 is initialized to (0,…,0). In round t, the new 

weight vector wt+1 was determined by solving the 

following optimization problem, 

21
1

2nt+ twÎ R

w = min w- w +Cξ  

..ts 0 1 0t t t tw × xmax{ , y ( )} ,      

Where C is a positive parameter which controls the 

influence of the slack term  on the objective function.

t
 is a loss suffered by the algorithm on round t. In 

order to confidently make a prediction, 
t

 claims that 

the margin should be larger than 1 or otherwise, the 

algorithm should suffer a positive loss. 

We can see that there is no need to update the weight 

vectors whenever 0
t
 , that is, the resulting algorithm 

is passive. Otherwise, the algorithm aggressively 

forces the new weight vectorwt+1to satisfy the 

constraint 0
t
 . Therefore the algorithm has been 

named as passive-aggressive.The solution to the 

optimization problem in the Equation 2 can be 

rewritten as a simple closed form solution, 

(1) 

 

(2) 
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1t+ t t t tw = w + μ y x ; 
2

t
t

t

min{C, }
x

 
  

Where parameter t is called the learning rate and 

regulates the smoothness and the speed of 

convergence. This update is derived using standard 

convex analysis tools e.g., [4].  

In the case of multiclass classification, the algorithm 

prediction is a vector in R
K
 where each element in the 

vector corresponds to a score which is assigned to 

thescore calculations, have been devised in [10]. The 

prediction of the PA algorithm is set to the label with 

the highest score. 

2.2. Proposed Classifier 

In this section, we introduce a partially supervised 

algorithm that is proposed in this paper for AMC 

application. The reason why we use the word “partially 

supervised” here is that the algorithm is capable to 

classify the input samples correctly, using a reasonable 

set of correctly recognized samples. In this study, it is 

assumed that the signal to noise ratio is unknown. 

Thus, the development of the self-adaptation of 

classifier with the SNR of environment is a problem 

demanding attention. In addition, it is assumed that the 

label of the all training samples is not determined.  

It is worth mentioning that the novelty of this 

strategy mainly lies in the idea of the unique 

combination of the two stages; system adaptation and 

input signal classification. To illustrate the novelty of 

the proposed method, we hereinafter present theoverall 

block diagram of this classifier as shown in Figure 1.  
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Figure 1. The overall block diagram of presented classifier. 

 

The proposed classifier is conducted by the 

following steps: 
 

 Step 0. Initial Training a general classifier was 

previously trained using a set of pre-labeled signals, 

which is to be expected have different SNRs. The 

results are stored in „the general training‟ block. 

 Step 1. Adaptation the input signals were introduced 

to the system to classify as well as its confidence. In 

this step, we consider a confidence measure to 

collect the well-recognized samples and to use them 

to adapt the new classifier through a self-training 

approach. The obtained results from the simulation 

show that a simple thresholding on the classifier 

output value could not be used for this purpose. The 

proposed procedure to extract a reliable confidence 

measure is discussed in the next subsection. The 

system is adapted to the high-confidence unlabeled 

signals to have a new adapted trained classification 

system. It should be noted that the weight vector of 

confident samples for new training did not start from the 

clean signal initial point, but started from the obtained 

weight vector of the general training. 

 Step 2. Classification In the classification phase, this 

new adapted classifier is used to classify the 

unknown input signals. 

2.3. Proposed Confidence Measure 

In a partially supervised large margin algorithm, the 

system may miss the accuracy or even miss the 

convergence unless the new labeled data would be 

reliable. In large margin classifier, samples with 

greater distances from the decision boundary are 

assumed to be more reliable and have been called as 

confident samples. 

Therefore, a class dependent threshold has been 

determined as the minimum distance of reliable 

samples for each class. This threshold is determined 

using the training input samples without prior 

knowledge of the label of this sample or the SNR of 

environment. However, the experiments show that this 

threshold varies in different signal to noise ratios, 

which is reported in the results section which is 

obviously depended on the predicted class. The 

histogram of distance to decision boundary 

(discriminant value) as the confidence measure for 

different classes in SNR= 4 dB are showed in Figure 2 

which is obviously depended on the predicted class. 

 

Figure 2. The histogram of distance to decision boundary for 

different classes (horizontal axis and vertical axis represents the 

confidence value and frequency of samples respectively). 

Therefore, a constant threshold on discriminant 

values could not be used for separating confident 

samples in different predicted classes. 

The proposed confidence measure is calculated as 

follows: the histogram of distance to classification 

boundary for predicted training samples is extracted in 

each predicted class separately and the threshold was 

set to select 90% in the collected samples. 
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To select a more reliable subset of this 90% samples 

set, we collected the samples that have positive 

discriminant value for the predicted class and negative 

discriminant value for all other classes. These final 

collected samples were chosen as confident samples. 

Consequently, according to the confidence measure 

extraction procedure, a confidence threshold is 

determined for each predicted class.  

3. Experiments and Results 

3.1. Evaluation Benchmarks 

According to emerging development of digital systems 

and the trend towards digital telecommunications 

instead of analog telecommunication, digital signals 

are mostly put to use today. Considering the changes in 

message parameters, there are four general digital 

signal types, M-ary Amplitude Shift Keying (M-ASK), 

M-ary Phase Shift Keying (M-PSK), M-ary Frequency 

Shift Keying (M-FSK) and M-ary Quadrature 

Amplitude Modulation (M-QAM) [16]. In this study, 

the set of input digital signal types was considered as 

follows: 2FSK, 4FSK, 2ASK, 4ASK, 2PSK, 4PSK, 

8PSK, 16QAM, 32QAM, and 64QAM. To simplify the 

notation, these signals were substituted with S1, S2, S3, 

S4, S5, S6, S7, S8, S9 and S10, respectively. 

The carrier frequency (fc) was assumed to be 150 

kHz. The sampling rate (fs)was 1200 kHz. The symbol 

rate (rs) was 12.5 kHz and the number of samples in a 

symbol sequence was 4096. 

The RBF kernel function of the form 
2

( ) ( )k x,x = exp -γ x - x   was employed for this experiment 

as the kernel function of PA classifier. A grid search 

technique was used to find the optimal values of kernel 

parameters. In practice, the standard method to 

determine the optimum value for RBF kernel 

parameter,  , and misclassification penalty parameter, 

,C  is through grid search method [5]. We used a 3 fold 

cross-validation approach to evaluate the classifier 

generalization performance and to divide these 

generated dataset into training and testing dataset. The 

performance of the algorithms was compared on the 

basis of the classification accuracy. Classification 

accuracy assessments of different classes were 

provided by the confusion matrix and accuracy 

analysis of different classes in percentage. The value of 

learning rate for PA classifier was set to 0.01. By 

choosing this learning rate value, the system was able 

to learn well and the algorithm execution time for a 

real-time system would be acceptable. Here we 

assumed that the carrier frequency has previously been 

correctly estimated or it was known. Therefore, we 

considered complex baseband signals. In addition, it 

was assumed that the simulated signals were 

bandwidth limited. The Gaussian white noise was 

added according to SNRs in 0 dB, 4 dB, 8dB, and 12 

dB. Each signal type has 100 realizations which were 

generated randomly for each trial to ensure 

independent results.  

3.2. Feature Extraction 

Since the choice of features highly affects the 

performance of the classifier, feature extraction is the 

determinant part of a pattern recognition system where 

its aim is to reveal the distinctive properties of an 

object to be recognized. In this study, a suitable set of 

features was considered as a combination of high order 

statistics and instantaneous characteristics of digital 

signal types. The rest of this section, briefly describe 

these features. 

3.2.1. Instantaneous Feature 

Instantaneous features are suitable for signals which 

contain instantaneous phase or instantaneous frequency 

[14]. In this work, the instantaneous features for 

classification were selected from the proposed features 

by Azzouz and Nandi [2, 3]. These features were 

derived from the instantaneous properties of the 

received signals. Therefore, these features are called as 

instantaneous features. The instantaneous key features 

which were used for the proposed tracking algorithm 

were derived from the instantaneous amplitude a(t), 

and the instantaneous frequency f(t), of the signal 

under consideration. 

The first feature is the maximum value of the power 

spectral density of the normalized-centered 

instantaneous amplitude of the intercepted signal 

which is formulated as follows: 

2
DFT(a (i))cn

γ = maxmax Ns

 
 
 
 

 

Where Nsis the number of the sample in the range and 

acn(i) is value of centralized normalized instantaneous 

amplitude that is defined by 

1,
cn n n

a

Δ Δ a(i)
a (i)=a (i) - a (i)=

m
 

And ma is the average value of instantaneous amplitude 

over one frame, i.e., 

1

1 Ns

a
i=

s

m = a(i)
N

  

This feature is designed to discriminative between 

Constant Envelopes (CE) signals (e.g., FSK and PSK) 

and non-CE signals (e.g., ASK). 

The second feature is the standard deviation of 

absolute value of normalized-centered instantaneous 

frequency over non-weak segments of the intercepted 

signal which is calculated as: 

2

2

af cn
a (i)>acn tcn t

Δ 1 1
σ = f (i) - f (i)cn

L La (i)>a

   
    

   

 

(4) 

(5)   

(6) 

(7)        
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(8) 

Wherefcn(i) is the centralized normalized instantaneous 

frequency and it is defined by: 

c

cn
b

f (i)
f (i)= ,r

( ) ( )
c f

f i = f i - m ,
1

1 ( )
N

f
i=

m = f i
N
  

Whererbis the bit rate, and atis a preset threshold for 

detecting non-weak samples because instantaneous 

frequency is very noise sensitive. In this paper, the 

threshold for detection of non-weak samples is chosen 

asat=0.95 [2].  

3.2.2. Higher Order Statistics 

The first set of employed statistical features is 

moments. A moment of a random variable may be 

defined as:       

 
q

p-q *

p, q
M = E s s 

  
 

Wherep is called the moment order and s
*
 stands for 

the complex conjugation of s. 

The second set of employed statistical features is 

cumulants which is the most widely used feature in this 

area. The symbolism for p
th
 order cumulants is similar 

to that of the pth order moment. 

* *

p,q
C = Cum s,...,s,s ,...,s    

The mentioned expression has (p-q) terms of s, in 

addition to q terms of s
*
. Cumulants may be expressed 

in term of moments as 
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Where the summation index is over all partitions

),...,1( qvvv for the set of indices ),...,1( n , and q is the 

number of elements in a given partition. 

Based on Fisher Discriminant Analysis (FDA) [6, 

17], we selected a proper set of higher order moment 

and cumulants as below. FDA represents the capability 

of the selected features for separation of two 

predefined classes and is defined by 

 2

2 21 1

ji

ij

μ -μ

= σ σd +
i j  

Where  and   are mean and variance of these two 

classes.The important selected statistical features are 

M41, M61, M84, C40, C61, C63, C80, C82, and M84. 

Unfortunately, these characteristics are noise 

dependent. Therefore, a strategy must be devised to 

decrease the effect of this dependency, as far as 

possible. The proposed classifier perfectly solves this 

problem. Figure 3 shows the variation of higher order 

statistics in different SNRs, and for the selected 

modulations set. 

 

Figure 3. Variation of statistical featuresin different SNR. 

3.3. Performance Evaluation of Proposed 

Classifier 

In this section, we evaluated the performance of the 

proposed classifier at different SNRs.  The classifier 

training was done on a subset of 100 symbols, out of 

the total 1000 symbols dataset. 
The classification rates in percentage for the 

proposed adaptable PA Classifier in 0, 4, 8 and 12 dB 

SNRs is shown in Table 1. From the mentioned results 

in Table 1, it can be deduced that the performance of 

the classifier in different SNRs are generally good. 

Because the samples that were used to train the 

classifier had a high confidence. Of course, the 

performance is slightly degraded in lower SNRs. This 

indicates that these features may not be able to tolerate 

high noise. 

Table 1. Classification rate of proposed classifier for each class in 
different SNR. 

Modulation 

classes 

SNR 

0 dB 4 dB 8 dB 12 dB 

S1 99.9 100 100 100 

S2 99.8 100 100 100 

S3 92.2 96.1 100 100 

S4 92.5 96.7 100 100 

S5 100 100 100 100 

S6 97.4 100 100 100 

S7 87.6 67.4 100 100 

S8 35.2 64.3 88.6 100 

S9 68.4 99.4 100 100 

S10 40.6 96.1 94.2 100 

Mean 81.36 92.00 98.28 100 

As a sample, the confusion matrix was extracted at 

SNR=4 dB to analyse in the confusion of different 

classes. These results are presented in Table 2. 

Table 2. Confusion matrix of proposed algorithm in SNR=4 dB 
(%). 

True    

modulations 

Predicted modulations 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

S1 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

S2 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

S3 0.0 0.0 96.1 3.9 0.0 0.0 0.0 0.0 0.0 0.0 

S4 0.0 0.0 3.3 96.7 0.0 0.0 0.0 0.0 0.0 0.0 

S5 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 

S6 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

S7 0.0 0.0 0.0 0.0 0.0 0.0 67.4 0.0 32.6 0.0 

S8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64.3 0.3 35.4 

S9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.4 0.6 

S10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.9 96.1 
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 As it is observed in Table 2, the recognition 

accuracy for all classes except class 7 and 8 was good 

even at low SNR. It can be seen that there is a 

tendency for S7 modulation to be mostly confused with 

S9 modulation, S8 modulation withS10 modulation. This 

issue may be explained by the fact that the 

constellation shapes of these classes as very close 

together and there is a tendency for S7 modulation to be 

mostly confused with S8 modulation. Consequently, the 

selectedfeatures to discriminate these two classes in 

low SNRs do not perform well. In addition, the 

considered statistical features for S7, S8, S9 and S10 are 

very close and heavily noise dependent. Therefore, the 

recognition accuracies of these modulated signals in 

low SNRs were not good. 

As it is mentioned in section 2.2.a confidence 

threshold should be determined to collect well 

confident samples in each class based on the explained 

method in section 2.3. The extracted values of 

confidence thresholds for each class in different SNRs 

are presented in Table 3. As it is observed in Table 3, 

the confidence threshold is very low level for SNR=12 

dB. In this case, all of the samples are assumed as high 

confident and there is no need to apply the confidence 

threshold. 

Table 3. Confidence threshold for each class in different SNRs. 

Modulation 

classes 

SNR 

0 dB 4 dB 8 dB 12 dB 

S1 0.8100 0.8910 1.1310 0.0750 

S2 0.7300 0.9810 1.4650 0.2190 

S3 0.7800 0.0550 0.0002 0.0004 

S4 1.6000 0.0570 0.0640 0.0006 

S5 1.6050 0.0590 0.4890 0.0002 

S6 0.0600 1.3140 1.5530 0.1490 

S7 0.0201 1.5400 1.3620 0.3270 

S8 0.0264 1.1370 1.2850 0.1080 

S9 1.4000 1.2110 1.2760 0.2440 

S10 1.4500 1.2620 1.3087 0.1490 

In the next step, we evaluated the reliability of the 

proposed confidence measure. For this purpose, we 

found the number of high-confident samples in 

different classes and then determine the number of 

samples that were correctly predicted among them. 

This parameter, known as reliability, shows the 

performance of the proposed confidence measure. The 

result of this analysis is shown in Table 4. 
 

 

Table 4. Reliability evaluation of the confidence measure. 

c.c. / c.+ 
SNR 

0 dB 4 dB 8 dB 12 dB 

S1 
82/82 

358/358 
82/82 

567/567 

S2 
355/355 

287/287 
293/293 

155/155 

S3 
87/99 

117/117 
19/19 

30/30 

S4 
75/80 

205/205 
106/106 

145/145 

S5 
590/590 

619/619 
329/329 

184/184 

S6 
267/267 

282/282 
258/258 

296/296 

S7 
188/188 

161/161 
78/78 

443/443 

S8 
254/475 

184/184 
278/278 

492/492 

S9 
158/209 

583/645 
294/294 

373/373 

S10 
127/278 

319/382 
318/318 

301/302 

+: c.c. / c. indicate the ratio of correct high-confidence samples to high-

confidence samples. 

3.4. Performance Comparison 

In this section, the accuracies which were obtained 

from the proposed classifier were compared to the 

system that was trained by supervised PA algorithm in 

the matched SNR (SNR aware mode), a clean trained 

system (a system which was trained by clean samples 

instead of a general training set) and a general trained 

system with no adaptation. In addition, to evaluate the 

effectiveness of the confidence measure, the proposed 

algorithm is performed in the no confidence mode.  

Furthermore, we simulated previous classifiers [12, 

13] in similar situations, to show the superiority of our 

proposed idea. The results are indicated in Table 5 in 

percentage.  

Table 5. Performance Comparison (%). 

Methods 0 dB 4 dB 8 dB 12 dB Noise free 

Proposed Classifier 

using clean training 

samples 

11.18 28.14 62.34 63.00 100 

PA classifier with 

labeled data & General 

Training  (No 

Adaptation) 

79.35 88.86 96.21 98.91 100 

Supervised PA classifier 

in SNR aware case with 

labeled data 

85.09 97.21 99.84 100 100 

Proposed classifier 

without confidence 

evaluation 

80.06 88.27 97.88 99.90 100 

[12] 71.91 86.22 92.87 98.26 100 

[13] 79.88 90.17 97.23 100 100 

Proposed classifier (SNR 

unaware case, training 

samples are not labeled) 

81.36 92.00 98.28 100 100 

As it is observed in Table 5, all of the evaluated 

algorithms have similar performance in noise-free 

mode. Simulation results show that the proposed 

algorithm generally performs well in low SNRs and its 

accuracy is close to the SNR aware case. If the initial 

training in the proposed method performs with clean 

signals, the recognition accuracy was greatly reduced 

in very low SNR. Therefore, the first algorithm cannot 

track SNR changes in new existing conditions. 

Simulation results indicate that the errors were 

relatively 40.22% reduced with applying the 

confidence idea. The fair comparison with other state 

of art competing algorithms shows that the proposed 

algorithm is well outperforms the others. If the initial 

training in the proposed method performs with clean 

signals, the recognition accuracy was greatly reduced 

in very low SNR.  

Therefore, the first algorithm cannot track SNR 

changes in new existing conditions. Simulation results 

indicate that the errors were relatively 40.22% reduced 

with applying the confidence idea. The fair comparison 

with other state of art competing algorithms shows 
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thatthe proposed algorithm is well outperforms the 

others. 

4. Conclusions 

Automatic modulations classification plays a 

significant role in civil and military applications. In 

this paper, we have presented, implemented and tested 

a new partially supervised classifier for AMC 

application in which system adaptation to the SNR of 

environment and classification of modulated signal are 

efficiently combined.System adaptation and 

classification is performed according to the online 

passive-aggressive algorithm. In training procedure, 

the idea of general training is used.  The experimental 

results revealed that the performance of proposed 

classifier, even in low SNRs, is comparable to batch 

trained system in SNR aware case. In future works, we 

attempt to make this algorithm online so that the 

evaluation results for each sample would be 

determined at the time of its entering.  
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