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1. Introduction 

We Consider Ciphertext-Only Attack (COA) on 

textbook RSA [38], hereafter RSA, without 

preprocessing of the plaintext such as Optimal 

Asymmetric Encryption Padding (OAEP) used in RSA 

standard [33]. LLL algorithm [29] of lattice basis 

reduction is used for COA on RSA [10, 13, 14, 19, 20, 

42, 43] and other public key cryptosystems such as 

NTRU [21, 22, 27, 50]. Most of the attacks require 

either message broadcasting, or prior knowledge of a 

part of a message/private key. And the problem of 

attacking RSA is considered as a problem of finding 

the shortest vector Shortest Vector Problem (SVP) in a 

lattice dimension of which grows with the growth of 

the encryption exponent, e. LLL algorithm 

computational complexity exponentially depends on 

the lattice dimension [23, 24], and, hence, it solves 

SVP efficiently for low-dimensional lattices but the 

solution is infeasible for lattices with dimension 

greater than 400 [25]. That is why, attacks on RSA 

using LLL assume low encryption exponent value [31]. 

Herein, we propose a new line of COA on RSA using 

LLL [29] algorithm to solve SVP in a 2-dimensional 

lattice. It is based on the first found herein opportunity 

of RSA encryption representation in terms of 2-

dimensional lattice. It requires neither message 

broadcasting, nor prior knowledge of a part of a 

message/private key contrary to all known approaches. 

Below, in subsections 1.1-1.3, we briefly review 

literature on the attacks on RSA private key and 

plaintext message, and introduce the paper structure 

attacks on RSA are reviewed, e.g., in [7, 34, 49]. 

1.1.  Lattice-Based Attacks against RSA Private 

Key 

In [13], prime factors of N =p ∙ q, used as the modulus 

value in RSA encryption (3) with the public key, e, and 

decryption (5) with the private key, d, are found as 

roots of a bivariate polynomial constructed using high 

order (
1

4
+ 휀) log2 𝑁 bits of 𝑝, 휀 > 2/ log2 𝑁 (high 

order bits of 𝑞 are known by division of N by p). LLL 

lattice basis reduction algorithm is used for dimension 

r = 2k + 1,k> 1/ (4ε). In [8, 9], LLL method is used to 

disclose the private key, 𝑑 < 𝑁𝛿 , 𝛿 = 0.292, that 

extends the attack applicability compared to attack [46] 

assuming 𝛿 = 0.25. In [45], two parameters define the 

attack applicability: 𝛿, and 𝛽 such that Δ = |𝑝 − 𝑞| =
𝑁𝛽. In [45], Figure 1, specifies that known attacks on 

RSA are not applicable for 𝛽 ∈ [0.5, 1], and mainly not 

applicable for 𝛿 ∈ [0.5, 1], 𝛽 ∈ [0.25, 0.5]. Using 𝛽, 

the attack [45] extends applicability of [9] attack up to 

𝛿 → 1 for 𝛽 → 0.25 + 휀, 휀 → 0. In [10, 42, 43], LLL 

algorithm is used to disclose secret RSA exponent 

provided that part of it (least- or most-significant bits) 

are known. Figures 1, 2 in [42, 43] show that 𝛿 can be 

extended to 0.57 and 0.37 for the use of most-and 

least-significant bits, respectively. 

1.2. Lattice-Based COA against RSA Messages 

In [14], an encrypted RSA message is disclosed as a 

root of a univariate polynomial of low order, 𝑒. 

Exponent considered in the paper is e=3 resulting in 

the polynomial of order, k=e=3. Message, m, to be 
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found shall be rather small: |𝑚| < 𝑁
1

𝑘
− , 휀 =

1

log 𝑁
, 𝑘 <

log 𝑁, (see section 2 in [14]). Respective lattice size is 

𝑆𝑖𝑧𝑒 = 2ℎ ⋅ 𝑘 = 𝑘 ≥ 2 ⋅
1

𝑘
𝑘 − 𝑘

= 2 log2 𝑁 − 𝑘 > 0 ,
 

Where h is such that h ∙ k ≥ 7 and ℎ − 1 ≥

(ℎ𝑘 − 1)(
1

𝑘
− 휀). It is known from NTRU security 

requirements [25] that if the size of a lattice is, Size ≥ 

400, then LLL attack is unfeasible. Thus, from (1), it 

follows that already for 512-bit RSA the attack is not 

feasible because log2N = 512, k < 512, and, hence, Size 

≥ 1024 - k ≥ 512. Note that in [14], estimates of RSA 

parameters, such that the proposed attack is feasible, 

are not defined. Hastad [19] showed that the message, 

m, can be revealed in polynomial time when it is 

encrypted with several public keys, (ei, Ni) each having 

the same public exponent, e, and different moduli 

values, Ni,i=1, …, k, expected to be mutually relatively 

prime, and meeting (2): 

𝑚 < min
𝑖=1,⋯,𝑘

𝑁𝑖 , 𝑘 >
𝑒(𝑒+1)

2
, 

𝑁 > 𝑛
𝑒(𝑒+1)

2 (𝑘 + 𝑒 + 1)
(𝑘+𝑒+1)

2 2
(𝑘+𝑒+1)2

2 (𝑒 + 1)𝑒+1 , 

𝑁 = ∏ 𝑁𝑖

𝑘

𝑖=1

, 

Method [20] is practically the same as in [19] with 

slightly different lattice constructed, and, thus, slightly 

differing from 2 inequalities [20] and is also applied to 

a broadcasted message. The broadcasted message, m, is 

revealed by applying LLL algorithm to the lattice 

defined using coefficients of the polynomials resulting 

from the message encryption using different moduli. 

Also, Chinese Remainder Theorem (CRT) is used. 

1.3. Non-Lattice-Based Attacks against RSA 

Private Keys and Messages 

RSA secret key can be disclosed if the integer 

modulus, N, is factorized. Methods of integer 

factorization are reviewed in [2, 36], and application of 

one of them, Number Field Sieve (NFS), in [28] in 

December, 2009, resulted in factoring 768-bit RSA 

modulus, RSA-768. RSA moduli RSA240 and 

RSA250 with 795 and 829 bits were factored by NFS 

in December 2, 2019, and February 28, 2020, [47] 

which took 4000 and 2700 core-years of Intel Xeon 

Gold 6130 CPUs as a reference (2.1GHz), respectively 

[44, 51]. 

In [12], a method of factoring RSA modulus, N = 

pq, q < p < 2q, in time polynomial in 𝑙𝑜𝑔𝑁 is proposed 

under assumption that an encryption exponent, e, 

meets 𝑒 · 𝑥 − (𝑝2 − 1)(𝑞2 − 1)𝑦 = 𝑧, 𝑔𝑐𝑑(𝑦, 𝑥) =

1, 𝑧 ≠ 0, 𝑥 ·  𝑦 < 2𝑁–  4√2𝑁
3

4, |𝑧| < (𝑝 –  𝑞)𝑁
1

4𝑦, 𝑒 <

(𝑝2 –  1)(𝑞2 –  1) . In [46], continued fractions are 

used for d disclosure with 𝛿 ≤ 0.25. In [48], 

applicability of the attack [46] is extended to 𝑑 ≤ 𝑁𝛿 ∙

2𝑟, 𝑟 ≤ 7. In [17], a method of 𝑁 factorization is 

proposed applicable when |𝑁0.5 − 𝑝0.5 ∙ 𝑞0.5| is 

sufficiently small (less than 2112 as explained on in 

[17]). 

Timing attacks are type of attacks where an intruder 

compromise secrete parameters from the execution of 

the cryptosystem rather than from any ingrained 

weakness in the mathematical properties of the system 

[5]. In [1] a timing attack is proposed against RSA 

private key using genetic algorithm. A Super-

encryption (successive encryption of the ciphertexts) is 

proposed in [41, 4]. However, in [26, 37], it is shown 

that the probability of success is about 10-90 for the 

parameters proposed for RSA in [38] because p-1, q-1 

shall have large prime factors, and similar for them as 

well. Bleichenbacher [6] defines that plaintexts mi are 

related if mi= fi(m) for some known polynomials 𝑓𝑖 and 

shows that having 𝑙 RSA public keys 

(e1,N1),…,(el,Nl),N = N1N2…Nl and ci= fi(m)ei mod Ni 

for i=1,…,l, the plaintext m can be computed in time 

polynomial in log N using Coppersmith’s algorithm 

[14], A method of the broadcasted message disclosure 

is proposed based on the use of the CRT allowing 

reducing a number of modular equations to a single 

equation and then finding 𝑒-th order root over integers, 

in the simplest case of broadcasting one and the same 

message, [6], or a univariate polynomial root finding 

using Coppersmith method [14] for broadcasting 

related messages based on a small message. The paper 

considers messages, mi, related to the base message, 𝑚, 

by an affine transformation, mi = αi ∙ m + βi mod ni [6], 

p. 242, whereas in Coppersmith method only 

translation transformation is expected to be used: ḿ = 

m+t [14], DeLaurentis [16] considered two cases. In 

Case 1, a probabilistic algorithm is proposed that 

allows factoring modulus N = p ∙ q, using information 

on the public-private key pair of the attacker (insider) 

but not of the other users, neither public, nor private 

keys, within average number of runs at most 2. In Case 

2, without factoring of 𝑁, an own encryption-

decryption key pair as well as an encryption key of 

another valid user are used to disclose an equivalent 

for the private key of another user that may be used to 

disclose his messages and to forge his signature. 

Simmons [40] considers one message encrypted by 

two different encryption keys resulting in two 

ciphertexts of one and the same message. If the 

encryption keys are co-prime, their mutual inverses 

may be found and used for the message disclosing. In 

[30], it is said: “Values such as 3 and 17 can no longer 

be recommended, but commonly used values such as 

216+1=65537 still seem to be fine. If one prefers to stay 

on the safe side one may select an odd 32-bit or 64-bit 

public exponent at random.”  

If a known plaintext-ciphertext pair, (P,C) is known, 

Discrete Logarithm Problem (DLP) solution can be 

used to disclose the private key as d = loɡC,NP. DLP 

computational complexity is of the order of that of 

(2) 

(1) 
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integer factorization and in parallel with factorization 

respective DLP solving is reported in [44, 51]. 

In [14], a method for recovering RSA messages is 

proposed for rather large encryption exponent such as, 

e = 216+1. The method assumes that two plain 

messages are encrypted with the same encryption 

exponent, e, and modulus, N, and one of the messages, 

m2, is related with another one, 𝑚1, by an affine 

transformation, m2 = a ∙ m1 + b, and two respective 

ciphertexts are known, c1,c2. The message, m1, is found 

as a root of a polynomial which is the Greatest 

Common Divisor (GCD) of two univariate 

polynomials modulo N, 𝑝1(𝑚1) = 𝑚1
𝑒 − 𝑐1, 𝑝2(𝑚1) =

(𝑎 · 𝑚1 + 𝑏)𝑒 − 𝑐2. The GCD is obtained using 

Euclid’s algorithm. The method is generalized for the 

cases of m2=p(m1), where 𝑝( ) is a polynomial, and 

for multiple messages polynomially related, p(m1,…, 

mk) = 0. As far as all the related messages, m2,…, mk 

depend on the single message, m1, this mode of 

operation can be considered as “broadcasting” of the 

message m1 and its dependent messages, m2,…, mk 

encrypted each with its own encryption exponent. 

Maximal encryption exponent mentioned in the paper 

is e = 216+1. We found GCD of two univariate 

polynomials, p1 = xe – C1 mod N and p2=(x+1)e - C2 

mod N, where N= p ∙ q = (220 +7) ∙ (220+13), C1= me 

mod N, C2= (m + 1)e mod N, e = 216+1 by Maple 2016 

(Intel i7-7700 CPU 3.60 GHz, 8GB RAM), nearly in 6 

minutes. Then, message, m = 2, is recovered as the root 

of GCD (Figure 1), Boneh [11] proposed attacking n-

bit RSA message, m, using Meet-In-The-Middle 

(MITM) attack. MITM attack is applied by two steps. 

A pre-computation step where the message is 

represented as m = m1m2 with 𝑚1 ≤ 2𝑛1 and 𝑚2 ≤
2𝑛2. Hence, 𝑐 𝑚2

𝑒⁄  =  𝑚1
𝑒 𝑚𝑜𝑑 𝑁. A table of size 2𝑛1 

has to be built containing the values 𝑚1
𝑒 𝑚𝑜𝑑 𝑁 for all 

𝑚1 ∈ 0,1, ⋯ , 2𝑛1 −  1. Then, in the search step we 

check for each𝑚2 ∈ 0, 1, ⋯ , 2𝑛2 − 1, whether 

𝑐 𝑚2
𝑒⁄ 𝑚𝑜𝑑 𝑁 is present in the table. Any collision 

reveals the message m. We implemented MITM attack 

[11] using NTL [39] library (Intel i5-8250U CPU 1.60 

GHz, 8GB RAM). Our implementation shows that the 

time to recover a 40-bit message encrypted with e = 

216+1 (see Example 1) 

Is 2.25 seconds for pre-computation step and 0.202 

second for searching step. Thus, from the analysis 

conducted we see that known lattice-based attacks 

against RSA private key section 1.1 and against RSA 

messages practically use small public encryption 

exponent, large part of the message to be known in 

advance, or a message to be broadcast. On the other 

hand, a non-lattice based attack in [15] has cost of 

O(e2) for computing GCD [3], where e is the RSA 

encryption exponent represents the degree of 

polynomials, while MITM [13] has cost of 𝑂(𝑛√2𝑛), 

where n is the message length in bits. Table 1 shows 

features of the known RSA attacks. The analysis of the 

attacks on RSA conducted above shows that they are 

not applicable for key-size greater than 829 bits, with 

p,q such that p ̵ 1, q ̵ 1 have large prime factors, 

encryption and decryption keys are greater than N0.5, 

and 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) is large. Herein, we 

propose a new fast attack using LLL against RSA 

messages based on the first found herein opportunity of 

RSA encryption representation as an element of 2-

dimensional RSA lattice. Our attack works in the 

conditions specified above where other attacks can’t 

work, and requires neither knowledge of any part of 

the message in advance, nor limitations on the size of 

public exponent e, nor message broadcasting as shown 

in the last row of Table 1 but imposes constraints on 

the recoverable messages. Our COA attack 

computational complexity is O(n2), see Section 3.4. In 

our experiments, see example 3, our attack on 2001 

RSA 2050-bit messages took 45.775 seconds with 

about 0.1 success rate. The rest of the paper is 

organized as follows. In section 2, we introduce RSA 

algorithm, lattice concepts, and LLL algorithm. In 

section 3, we introduce 2-dimensional RSA lattice and 

COA on RSA using LLL is proposed, its complexity is 

estimated. Additional experiments on application of 

our attack to RSA cracking with up-to 8193-bit 

messages are given in section 4. Section 5 concludes 

the paper. 

 

Figure 1. Maple code implementation of GCD attack [12], 

recovering RSA message encrypted with large exponent e=216+1, 

as a root of a polynomial which is the GCD of two polynomials P1 

and P2 nearly in 6 minutes. 
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Table 1. Comparison between lattice basis reduction COA and 
other known RSA attacks. 

Attack 

Attack’s Requirements 

Prior 

knowledge of 

number of bits 

Small value of 

exponent 𝒆 

Broadcast 

messages 

Coppersmith [13] Yes No No 

Boneh et al. [10] Yes No No 

Takayasu and Kunihiro 

[43] 
Yes No No 

Coppersmith [14] No Yes No 

Hastad [20] No No Yes 

Bleichenbacher [6] No No Yes 

Hastad [19] No No Yes 

Simmons [40] No No Yes 

DeLaurentis [16] No No Yes 

Boneh [11] No No No 

Bunder [12] No Yes No 

Lattice Basis Reduction 

COA 
No No No 

2. RSA Algorithm, Lattice Concepts, and 

LLL Algorithm 

In this section, we 

1. Review RSA [38], 

2.  Introduce lattice concepts including Minkowski 

Second Theorem [35], which sets an upper bound 

for the norm of the shortest vector in a 2-

dimensional lattice, 

3. Introduce LLL [29] to find a shortest vector in a 2-

dimensional lattice. 

2.1. Review of RSA 

A message, 𝑚 ∈ 𝑍𝑁, is encrypted using 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁, 

Where N = p ∙ q, p and q are two different prime 

numbers, and the encryption exponent, e, is chosen 

according to 

gcd(𝑒, (𝑝 − 1 )(𝑞 − 1)) = 1 

The message, m, is retrieved by decryption of the 

ciphertext, c, from (3) as follows 

𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑁, 

Where the decryption exponent, d, is the multiplicative 

inverse of e satisfying 

𝑒 ⋅ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) = 1. 

The public key is (N,e), and the private key is(N,d). 

 Example 1 Example of 40-bit RSA 

encryption/decryption. Let p = 220 + 33= 10485609 

and q = 220 + 13 = 1048589 be two prime numbers. 

Then modulus N = p ∙ q= 1099559862701. 

According to (4), let encryption exponent, e = 216 + 

1= 65537. According to (6), decryption exponent, 

d=1082377437569. The public key is 

(N,e)=(1099559862701,65537), and the private key 

is (N,d)=(1099559862701,1082377437569). Let the 

message, m=986648, then the ciphertext is 

calculated according to (3): 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 480808351840. 

Message, m, is retrieved by decryption of the 

ciphertext (7) according to (5) as shown in (8): 

𝑚 = 𝑐𝑑  𝑚𝑜𝑑 𝑁 = 986648. 

2.2. Lattice Concepts 

In the following, ||𝑥||, (𝑥 ⋅  𝑦), ⌈𝑎⌋, and ℤ denote 

Euclidean norm [18] of the vector x, dot product of the 

vectors, x and y, rounding of the real number, a, and 

the set of integer numbers, respectively.  

Let 𝐸(𝑉1, 𝑉2) ⊂ ℤ2 be a 2-dimensional lattice with 

basis vectors, 𝑉1 and 𝑉2 shown in (9): 

𝐸(𝑉1, 𝑉2) = {𝑎1𝑉1 + 𝑎2𝑉2: 𝑎1, 𝑎2 ∈ ℤ}. 

The same lattice can be represented by different bases. 

SVP is one of the most widely studied computational 

problem on lattices [32] defined as follows [23], p. 

395: 

 Definition 1 SVP is the problem of finding a 

shortest nonzero vector in a lattice L, i.e., v ∈ L that 

minimizes the Euclidean norm ||v||. 

 Remark 1 There may be more than one solution to 

the SVP.  

For example, the integer lattice ℤ2, is the set of all 2-

dimensional vectors with integer entries. Integer lattice 

ℤ2 can be represented by basis vectors V1 = (1,1) and 

V2= (1, 2), while the four nonzero vectors (0,±1), 

(±1,0) are the solutions to the SVP. 

Minkowski’s Second Theorem [35], sets an upper 

bound for the norm, l, of the shortest nonzero vector in 

a 2-dimensional lattice given by (10): 

𝜆 ≤ √𝛾2 det(𝐿)
1
2, 

Where 𝛾2 =
2

√3
≈ 1.154 is Hermit’s constant [35], p. 

41, and det(L) is the determinant of the lattice matrix 

formed by its basis vectors. Hence, 

𝛾 ≤ √1.154 det(𝐿) ≈ 1.07 √det(𝐿). 

2.3. LLL lattice Basis Reduction Algorithm 

LLL [29] is a lattice reduction algorithm, on 

termination returns the shortest vectors in the lattice, 

beginning with the shortest vector v1, and then with 

vectors whose lengths increase as slowly as possible 

until we reach the last vector in the basis in E(V1,V2). 

In next section we propose COA on RSA using LLL. 

3. COA on RSA using LLL 

We introduce COA on RSA using LLL algorithm. 

More specifically we 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 

(10) 



Ciphertext-Only Attack on RSA Using Lattice Basis Reduction                                                                                                  241 

1. Show that RSA encryption forms a 2-dimensional 

RSA lattice, 

2. Show that the plaintext message can be revealed as 

a component of the shortest vector in the RSA 

lattice. 

3. Propose using LLL for COA on RSA by solving 

SVP in the RSA lattice. 

4. Evaluate complexity of the proposed COA on RSA, 

and conduct experiments for up to 8193-bit 

messages. 

3.1. 2-Dimensional RSA Lattice 

RSA message recovery problem can be formulated as 

SVP in a 2-dimensional lattice, E(V1,V2). From (3), we 

can see that: 

𝑐 = 𝑚𝑗 ⋅ 𝑚𝑒−𝑗𝑚𝑜𝑑 𝑁, 𝑗 = 1. . 𝑒 − 1, 

And, hence, 

𝑚𝑗 = (𝑚𝑒−𝑗)
−1

⋅ 𝑐 𝑚𝑜𝑑 𝑁. 

From (13), we see that for any pair of integers, A and 

B, satisfying: 

𝐵 =  𝐴 · 𝑐 𝑚𝑜𝑑 𝑁 

(A,B) is likely to be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). 

Hence, Equation (14) can be written as 

𝐴 · 𝑐 + 𝑁 · 𝑟 =  𝐵, 

Where r is an integer. It forms a 2-dimensional RSA 

lattice, 

𝐴 · 𝑉1 + 𝑟 · 𝑉2 = (𝐴, 𝐵), 

Where V1=(1,c) and V2=(0,N) are basis vectors, at least 

one of them having Euclidean norm of order O(N), and 

determinant of the lattice equal to N. 

3.2. RSA Message as the Shortest Vector in the 

RSA Lattice 

According to Minkowski’s Second theorem (11), 

vector (A,B) (16) likely is the shortest vector in the 

RSA lattice, if  

||𝐴, 𝐵|| < 1.07√𝑁. 

Hence, our task is to find a pair of comparatively 

small, (A,B), satisfying (16) where V1=(1,c) and 

V2=(0,N) are known vectors. Then, (A,B), is likely to 

be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). In our attack we 

adopt LLL to find the shortest vector in the 2-

dimensional RSA lattice (16). 

3.3. LLL Attack on RSA Message as a Shortest 

Vector in the RSA Lattice 

We want to find a shortest vector w from E(V1,V2) 

using LLL that might disclose 

(𝐴, 𝐵) =  ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗) 

if ||((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)|| from (18) is of the order of 

𝑂(√𝑁) meeting (17). In our experiments we used LLL 

algorithm implemented in Maple 2016.2. 

 Example 2 shows LLL attack on Example 1 

message. 

 Example 2 LLL attack on 40-bit RSA message from 

Example 1. 

Ciphertext from Example 1, c = 480808351840, and 

modulus N = 1099559862701.  

Hence, V1=(1, 480808351840), and V2=(0, 

1099559862701). LLL attack with V1=(1, 

480808351840), V2=(0, 1099559862701), defined in 

(16) terminates in 15 milliseconds using Maple, 

obtaining the shortest vector (see Figure 2) given in 

(19): 

𝑣1 = (82493,986648). 

 

Figure 2. LLL attack on RSA message in example 1 using maple 

2016.2. 

We also run the experiment in C using NTL [39] 

and found that LLL attack terminates in 4 × 10−5 

seconds. Thus, we see that our attack, both in Maple 

and C, takes less time than attacks mentioned in 

Section 1.3. LLL attack succeeds to retrieve message 

since it is a component of a shortest vector in the 

lattice, 

||(𝑚𝑒−1)−1, 𝑚|| ≈ 990090.6 <  1.07√𝑁  ≈  1124497.2. 

3.4. Complexity of LLL Lattice Basis 

Reduction Algorithm 

Lenstra et al. [29] state that for n-dimensional lattices 

with integer input basis vectors of bounded length N, 

the LLL algorithm terminates after at most O(n2logN) 

iterations. 

(12) 

(13) 

(17) 

(16) 

(15) 

(14) 

(18) 

(19) 
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4. Experiments on RSA Cracking for Up to 

8193-Bit Messages 

We have conducted experiments using Maple 2016.2 

in Windows 8.1 on Lenovo laptop with Intel i5-6200U 

CPU 2.30 GHz, 8 GB RAM, for RSA with 𝑝, 𝑞 values 

specified in Table 2 with sizes of 

𝑁 = 𝑝 ⋅ 𝑞 

from 40 to 8193 bits more than twice exceeding 

recommended RSA key size, 4047 bits, for 2050 year 

according to the requirements of [30], Table 1. Values 

of p, q are defined as integer expressions (see Table 2). 

Note that the prime values (p,q) used in Rows 1, 2 of 

Table 2 are strong according to [38], since p ̵ 1, q ̵ 1 

have large primes as their factors, that is confirmed by 

the following Maple code: 

 

It can be checked that (p,q) values in rows 1, 2, and 6 

of Table 2 have large 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) 

values precluding attack [17].  

Table 2. Pairs (p,q), bit size of N used in our experiments, (a,b) pairs from (27)-(29) for which RSA was cracked, number of cracked 

messages, and respective 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 from (30), for Digits=10 and C=0 in Maple.

1 2 3 4 5 6 7 8 

Pair(p,q)# p q 
Bit size of 

N 

(a,b)from (24) for which RSA was 
cracked, k= 1 

Number of 
RSA cracks 

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥 

0 220 + 33 220  + 13 40 (8, 1), (4, ±1), (2, ±1) 153 0.025 0.508625 
1 2130 − 5 2131 + 39 261 (14, −1), (4, 2), (2, ±1) 58 0.01 0.5010325 
2 3 × 2250 + 17 (2129 − 1)2 − 2 509 (2, ±1), (4, −1), (22, ±1) 59 0.01 0.5007125 
3 3 × 2512 + 349 3 × 2512  − 511 1026 (4, 1), (8, −1), (2, ±1) 85 0.01 0.5007065 
4 3 × 21024 + 545 3 × 21024  − 1717 2050 (20, 6), (4, 2), (2, ±1) 64 0.01 0.5005 
5 3 × 22048 + 595 3 × 22048  − 1105 4098 (26, 5), (4, 2), (2, ±1) 68 0.001 0.5007 
6 3 × 24096 + 1075 24096 − 2549 8193 (28,4), (4,2), (2, ±1), (14, −1) 66 0.00375 0.50003 

In our experiments, messages are defined via a 

parameter, 

𝛿 ∈ (0,1) 

As follows, 

𝑚 =  𝑖𝑛𝑡(𝑁𝛿) + 𝑖𝑖, 𝑖𝑖 ∈  −𝐶, ⋯ , 𝐶, 𝐶 ≥ 0, 

Where C ≥ 0 is an integer and int( ) returns integer part 

of its input. Calculations on the float-point numbers are 

done with accuracy of 10, 15, 100, 200, 600, 800, and 

1600 digits: 

 

We try vectors 

𝑣(𝑗) = ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗) 

Meeting the following two-dimensional lattice 

equation 

𝑣(𝑗)1 ⋅ 𝑉1 + 𝑟 ⋅ 𝑉2 = 𝑣(𝑗) 

With  

𝑉1 = (
1
𝑐

) , 𝑉2 = (
0
𝑁

) 

For j=1,…,100, according to (16), by the following 

code: 

 Code 1. Maple code for RSA cracking using LLL 

with j∈ {1,··· ,100}. Initial conditions for the code 

are defined in Code 3 and example 3. It trie cracking  

 

2001 RSA messages in the range m0-

1000…m0+1000, where m0 is defined in its first 

line as trunc (𝑁𝛿). 

 

In the Code 1, with C = 1000, we check the both 

returned by LLL vectors and each their component on 

equality to mj. Exponentiation function and LLL used 

in Code 1 are introduced in Code 2 as follows: 

 Code 2. Maple code introducing exponentiation 

function and LLL. 

(20) 

(22) 

(23) 

(21) 

(25) 

(24) 
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RSA was successfully cracked under conditions (27)-

(29) on the encryption key, e, defined via Euler totient 

function, 

𝜙(𝑁) = (𝑝 − 1) ⋅ (𝑞 − 1), 

In a general form 

𝑒 = 𝑘 ⋅
𝜙(𝑁)

𝑎
− 𝑏, 

Such that 

gcd(𝑒, 𝜙(𝑁)) = 1, 

𝜙(𝑁) 𝑚𝑜𝑑 𝑎 = 0. 

It is implemented in Maple by the following Code 3, 

for Digits=1600: 

 Code 3. Maple implementation of RSA encryption 

key, e, calculation according to (27)-(29), for N of 

2050 bit size from Table 2. 

 

For the example of data shown in Code 2, 𝑒 ≈
𝑁

2
, 𝑑 ≈

𝑁

10
, thus attacks described in section 1 are not 

applicable. We try finding a range of the parameter, 

𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥], 

Or a set of values, { 𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥}, for which our 

method successfully cracks RSA (see Table 2, columns 

7, 8). In Table 2, columns 5, 6, pairs (a, b), for which 

RSA was successfully cracked, and number of 

successful cracks are given (for C = 0 in (22)). We 

found that for all successful cracks, 

𝑗 = |𝑏|, 

holds, where j,b are from (23), (24), and (27), 

respectively, i.e., the power of the plaintext message, 

m, revealed by our attack on RSA, always is equal to 

jbj from (27). Thus, in the experiments, we find two 

conditions, (29) and (31), holding that need 

explanation. Also, the results of all our experiments 

show that condition (32) holds 

𝛿𝑚𝑎𝑥 ⋅ |𝑏| ≈ 0.501. 

To verify (32), we have conducted special massive 

investigation of its validity for (p,q) pair from Table 2, 

row 4, results of which are given in Table 3, and 

confirm its validity. Hence, we need explaining (29), 

(31), and (32). 

Table 3. Results of experiments in Maple 2016 on RSA cracking 

for Digits=600, p := 3∙21024+515, q:=3∙21024+1717, (27)-(29) hold, 

k=1, 𝐶 = 1000, 𝛿𝑚𝑎𝑥 is from (30). 

a b Number of cracks 𝜹𝒎𝒂𝒙 𝜹𝒎𝒂𝒙 ⋅ |𝒃| 
20 6 9205 0.0835 0.501 

20 10 4987 0.050107 0.50107 

20 -4 2082 0.12521 0.50084 

20 -6 1642 0.038348 0.50088 

20 -8 1913 0.062615 0.50092 

20 -14 1336 0.035769 0.500766 

5 -1 5626 0.501 0.501 

5 -25 2896 0.020045 0.501125 

4 2 21599 0.25066 0.50132 

4 6 22937 0.083528 0.501168 

10 13 6469 0.0385503 0.501154 

 
Total 

cracks: 
80692 

Average 

 𝛿𝑚𝑎𝑥 ⋅ |𝑏|: 
0.501022 

Explanation of (29). Consider (20), (21), (22) for C 

= 0, (26), and (27). Then, RSA ciphertext, c, is defined 

as follows: 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 𝑚𝑘⋅
𝜙(𝑁)

𝑎
−𝑏𝑚𝑜𝑑 𝑁. 

Experiments show that with high probability, ranging 

from 0.1 to 0.5, (34) holds: 

𝑚
𝑘𝜙(𝑁)

𝑎 𝑚𝑜𝑑 𝑁 = 1. 

Note that due to Euler’s theorem [2], 

𝑚𝑘𝜙(𝑁)𝑚𝑜𝑑 𝑁 = 1, 

And the left-hand side (LHS) of (34) is a-th root of 

unity from LHS of (35), which is highly likely to be 

also unity. The probability of our COA on RSA 

success estimate is illustrated by example 3. 

 Example 3 Conducting calculations by Code 1 in 

Maple 2016.2, with Digits=1600, q=3∙21024-1717, p =
3 · 21024 + 515, δ = 0:071435 considering 2001 

numbers, m = ⌊Nδ⌋ + ii, ii ∈ [-C,··· , C],C = 1000, 

we find 216 cases when (34) holds, in particular, for 

ii = −998,−992,−988, etc., Respective Maple 

output is shown below: 

(26) 

(28) 

(27) 

(29) 

(32) 

(30) 

(33) 

(35) 

(34) 

(31) 
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Thus, probability of (34) holding, and thus our attack 

takes 45.775 seconds, its success probability under 

conditions (27)-(29), may be estimated as 

216/2001=0.1079, and (29) is explained. Now, we 

explain (31) and (32).  

Explanation of (31) and (32). Our method of 

cracking of RSA ciphertext is as follows (recall (12)-

(16), (23), (24)). Rewrite (33): 

𝑐 = 𝑚𝑒−𝑗 ⋅ 𝑚𝑗 𝑚𝑜𝑑 𝑁, 0 < 𝑗 < 𝑒. 

From (36), we get 

𝑐(𝑚𝑒−𝑗)
−1

= 𝑚𝑗 𝑚𝑜𝑑 𝑁. 

Reminding (23), from (37), we arrive at (24). Applying 

LLL algorithm to the lattice defined by (25), we obtain 

a shortest vector, (
𝑆1

𝑆2
), of the lattice such that (

𝑆1

𝑆2
) =

𝑣(𝑗), if the norm of v(j) meets Minkowski’s Second 

theorem 

||(
𝑆1

𝑆2
)|| ≤ ||𝑣(𝑗)|| = √𝑣(𝑗)1

2 + 𝑣(𝑗)2
2 ≤ √𝛾2 ⋅ 𝑁 

= √
2

3
⋅ 𝑁, 

Where 𝛾2 ≈ 1.1547 is Hermite’s constant for the 2-

dimensional lattice. To meet (38), from (23), we have 

√(𝑚−𝑒+𝑗)2 + 𝑚𝑗2
≤ √

2

√3
⋅ 𝑁 

From, (22) with C = 0, (27), (34), (39), we have 

√(𝑚𝑏+𝑗)2 + 𝑚𝑗2
= 

√⌊𝑁𝛿⌋
𝑏+𝑗

+ ⌊𝑁𝛿⌋
𝑗2

≤ √2 ⋅
𝑁

√3
≈ 𝑁0.50005 

From (40), we have two cases 

 Case 1: 𝑏 ≥  0. Let 𝑗 =  0 in (40). Then, 𝑣(𝑗)  =

(𝑚𝑏

1
), and we have 

√⌊𝑁𝛿⌋
𝑏2

+ 1 ≈ 𝑁𝑏⋅𝛿 ≤ 𝑁0.5005, 

And thus, 

𝑏 ⋅ 𝛿 ≤ 0.50005. 

 Case 2: 𝑏 < 0. Let 𝑗 = −𝑏 = |𝑏|. Then, 𝑣(𝑗) =

(
1

𝑚𝑏), and we have  

√⌊𝑁𝛿⌋
|𝑏|2

+ 1 ≈ 𝑁|𝑏|⋅𝛿 ≤ 𝑁0.5005, 

And then, 

|𝑏| ⋅ 𝛿 ≤ 0.50005. 

Thus, from (41), (43), we may have RSA cracks in the 

from 

|𝑣(𝑗)| = (𝑚𝑏

1
) or |𝑣(𝑗)| = (

1
𝑚𝑏), 

that have been observed in all our experimental results 

shown in Tables 2, and 3. 

Example 4 confirms that (45) holds in a particular 

experiment as in all other ones. 

 Example 4 Maple output for RSA cracking with k = 

9, a = 20, b = ±6, d = 0:071435, showing that (34) 

holds, and values found by LLL in VR [1,1..2], see 

Code 1, meet (45). 

 

Also, range for 𝛿 defined by (42), (44) is confirmed by 

our experiments. From Table 3, last row, we see that 

(44) holds on average with accuracy 0.00097=0.50102-

0.50005. Table 3 contains number of RSA successful 

cracks for different values of a, b, maximal 𝛿𝑚𝑎𝑥 from 

(30) and LHS of (44). Thus, (45) explains (31), and 

(36) 

(37) 

(39) 

(38) 

(45) 

(42) 

(43) 

(41) 

(40) 

(44) 
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(44) explains (32). To find the relation between a and 

number of RSA successfully cracked messages, we run 

Code 1 with p, q from rows 3-6 of Table 2, 𝛿 ∈ 0.01, 

…,0.52 yields to launch 104,052 attacks on each (p, q, 

a) value. Figure 3 shows an inverse proportion 

between value of 𝑎 and number of successful cracks. 

Thus, decreasing of the public key leads to decreasing 

of the success rate of our attack 

 
a) Shows 20010 message cracks at a =2 and drops to 51 message cracks at a = 2048 

out of 104,052 message attacks. 

 
b) Shows 34017 message cracks at a = 2 and drops to 18 message cracks at a=2053 out 

of 104,052 message attacks. 

 
c) Shows 20010 message cracks at a = 2 and drops to 0 message cracks at a = 33739 

out of 104,052 message attacks. 

 
d) Shows 20010 message cracks at a = 2 and drops to 199 message cracks at a = 222 

out of 104,052 message attacks. 

Figure 3. Inverse relation between value of parameter 𝑎 in (27) and 

number of successful RSA message cracks out of 104,052 message 

attacks. (a)-(d) show results for (p, q) from rows 3-6 in from Table 

2 respectively. Horizontal and vertical axes represent a and the 

number of successfully cracked RSA messages, respectively. 

5. Conclusions 

In this paper, we show that RSA-encrypted message 

considered as a component of a shortest vector of the 

RSA lattice can be revealed by LLL attack. LLL attack 

runs in time quadratic in the bit number of modulus N 

(see section 3.4). LLL attack targets messages meeting 

(13)-(17) being a shortest vector in the RSA lattice. 

Our attack works in the conditions discussed in Section 

1 in which known attacks can’t work, and it does not 

impose any other requirements, such as the need for 

very small public exponent, e, part of the plaintext to 

be known in advance, or a message broadcasting to 

sufficiently many participants, each holding a different 

modulus with a known affine transformation, or using 

common modulus as other attacks do [10, 19, 20, 21, 

22, 28]. Our attack shows significant speed (15 

milliseconds using Mupad, and 4 × 10−5 seconds 

using NTL [39] library for Example 2) in recovering a 

40- bit message in comparison to our implementation 

for Boneh MITM attack [11] where 2.202 seconds are 

needed to recover the same length message (2 seconds 

for pre-computation step, and 0.202 seconds 

For searching step using NTL [39] library). 

Additionally, we have conducted experiments with the 

proposed method for N with bit sizes up to 8193 in 

Maple 2016.2, with results presented in Tables 2-3, in 

which thousands of successful RSA cracks were 

conducted using Code 1 run-time of which in the 

conditions of example 3 for 2001 RSA 2050-bit 

messages cracking is about 45 seconds. The cracks 

were made for large public key values meeting (27)-

(29) for which truth of (29), (31), (32) was discovered. 

Based on these findings, for RSA not to be susceptible 

to the attack proposed herein, it is recommended RSA 

public keys to be selected such that (27)-(29) are not 

satisfied. 
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