
The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 237

Ciphertext-Only Attack on RSA Using Lattice Basis

Reduction
Anas Ibrahim1,2, Alexander Chefranov1, and Rushdi Hamamreh3

1Computer Engineering Department, Eastern Mediterranean University, North Cyprus
2Computer Engineering Department, Palestine Technical University, Palestine

3Computer Engineering Department, Al-Quds University, Palestine

Abstract: We use lattice basis reduction for ciphertext-only attack on RSA. Our attack is applicable in the conditions when

known attacks are not applicable, and, contrary to known attacks, it does not require prior knowledge of a part of a message

or key, small encryption key, 𝑒, or message broadcasting. Our attack is successful when a vector, comprised of a message and

its exponent, is likely to be the shortest in the lattice, and meets Minkowski's Second Theorem bound. We have conducted

experiments for message, keys, and encryption/decryption keys with sizes from 40 to 8193 bits, with dozens of thousands of

successful RSA cracks. It took about 45 seconds for cracking 2001 messages of 2050 bits and for large public key values

related with Euler’s totient function, and the same order private keys. Based on our findings, for RSA not to be susceptible to

the proposed attack, it is recommended avoiding RSA public key form used in our experiments.

Keywords: Ciphertext-only attack, encryption key, euler’s totient function, Gaussian lattice basis reduction, RSA, shortest

vector problem.

Received May 13, 2020; accepted September 28, 2020

https://doi.org/10.34028/iajit/18/2/13

1. Introduction

We Consider Ciphertext-Only Attack (COA) on

textbook RSA [38], hereafter RSA, without

preprocessing of the plaintext such as Optimal

Asymmetric Encryption Padding (OAEP) used in RSA

standard [33]. LLL algorithm [29] of lattice basis

reduction is used for COA on RSA [10, 13, 14, 19, 20,

42, 43] and other public key cryptosystems such as

NTRU [21, 22, 27, 50]. Most of the attacks require

either message broadcasting, or prior knowledge of a

part of a message/private key. And the problem of

attacking RSA is considered as a problem of finding

the shortest vector Shortest Vector Problem (SVP) in a

lattice dimension of which grows with the growth of

the encryption exponent, e. LLL algorithm

computational complexity exponentially depends on

the lattice dimension [23, 24], and, hence, it solves

SVP efficiently for low-dimensional lattices but the

solution is infeasible for lattices with dimension

greater than 400 [25]. That is why, attacks on RSA

using LLL assume low encryption exponent value [31].

Herein, we propose a new line of COA on RSA using

LLL [29] algorithm to solve SVP in a 2-dimensional

lattice. It is based on the first found herein opportunity

of RSA encryption representation in terms of 2-

dimensional lattice. It requires neither message

broadcasting, nor prior knowledge of a part of a

message/private key contrary to all known approaches.

Below, in subsections 1.1-1.3, we briefly review

literature on the attacks on RSA private key and

plaintext message, and introduce the paper structure

attacks on RSA are reviewed, e.g., in [7, 34, 49].

1.1. Lattice-Based Attacks against RSA Private

Key

In [13], prime factors of N =p ∙ q, used as the modulus

value in RSA encryption (3) with the public key, e, and

decryption (5) with the private key, d, are found as

roots of a bivariate polynomial constructed using high

order (
1

4
+ 휀) log2 𝑁 bits of 𝑝, 휀 > 2/ log2 𝑁 (high

order bits of 𝑞 are known by division of N by p). LLL

lattice basis reduction algorithm is used for dimension

r = 2k + 1,k> 1/ (4ε). In [8, 9], LLL method is used to

disclose the private key, 𝑑 < 𝑁𝛿 , 𝛿 = 0.292, that

extends the attack applicability compared to attack [46]

assuming 𝛿 = 0.25. In [45], two parameters define the

attack applicability: 𝛿, and 𝛽 such that Δ = |𝑝 − 𝑞| =
𝑁𝛽. In [45], Figure 1, specifies that known attacks on

RSA are not applicable for 𝛽 ∈ [0.5, 1], and mainly not

applicable for 𝛿 ∈ [0.5, 1], 𝛽 ∈ [0.25, 0.5]. Using 𝛽,

the attack [45] extends applicability of [9] attack up to

𝛿 → 1 for 𝛽 → 0.25 + 휀, 휀 → 0. In [10, 42, 43], LLL

algorithm is used to disclose secret RSA exponent

provided that part of it (least- or most-significant bits)

are known. Figures 1, 2 in [42, 43] show that 𝛿 can be

extended to 0.57 and 0.37 for the use of most-and

least-significant bits, respectively.

1.2. Lattice-Based COA against RSA Messages

In [14], an encrypted RSA message is disclosed as a

root of a univariate polynomial of low order, 𝑒.

Exponent considered in the paper is e=3 resulting in

the polynomial of order, k=e=3. Message, m, to be

238 The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

found shall be rather small: |𝑚| < 𝑁
1

𝑘
− , 휀 =

1

log 𝑁
, 𝑘 <

log 𝑁, (see section 2 in [14]). Respective lattice size is

𝑆𝑖𝑧𝑒 = 2ℎ ⋅ 𝑘 = 𝑘 ≥ 2 ⋅
1

𝑘
𝑘 − 𝑘

= 2 log2 𝑁 − 𝑘 > 0 ,

Where h is such that h ∙ k ≥ 7 and ℎ − 1 ≥

(ℎ𝑘 − 1)(
1

𝑘
− 휀). It is known from NTRU security

requirements [25] that if the size of a lattice is, Size ≥

400, then LLL attack is unfeasible. Thus, from (1), it

follows that already for 512-bit RSA the attack is not

feasible because log2N = 512, k < 512, and, hence, Size

≥ 1024 - k ≥ 512. Note that in [14], estimates of RSA

parameters, such that the proposed attack is feasible,

are not defined. Hastad [19] showed that the message,

m, can be revealed in polynomial time when it is

encrypted with several public keys, (ei, Ni) each having

the same public exponent, e, and different moduli

values, Ni,i=1, …, k, expected to be mutually relatively

prime, and meeting (2):

𝑚 < min
𝑖=1,⋯,𝑘

𝑁𝑖 , 𝑘 >
𝑒(𝑒+1)

2
,

𝑁 > 𝑛
𝑒(𝑒+1)

2 (𝑘 + 𝑒 + 1)
(𝑘+𝑒+1)

2 2
(𝑘+𝑒+1)2

2 (𝑒 + 1)𝑒+1 ,

𝑁 = ∏ 𝑁𝑖

𝑘

𝑖=1

,

Method [20] is practically the same as in [19] with

slightly different lattice constructed, and, thus, slightly

differing from 2 inequalities [20] and is also applied to

a broadcasted message. The broadcasted message, m, is

revealed by applying LLL algorithm to the lattice

defined using coefficients of the polynomials resulting

from the message encryption using different moduli.

Also, Chinese Remainder Theorem (CRT) is used.

1.3. Non-Lattice-Based Attacks against RSA

Private Keys and Messages

RSA secret key can be disclosed if the integer

modulus, N, is factorized. Methods of integer

factorization are reviewed in [2, 36], and application of

one of them, Number Field Sieve (NFS), in [28] in

December, 2009, resulted in factoring 768-bit RSA

modulus, RSA-768. RSA moduli RSA240 and

RSA250 with 795 and 829 bits were factored by NFS

in December 2, 2019, and February 28, 2020, [47]

which took 4000 and 2700 core-years of Intel Xeon

Gold 6130 CPUs as a reference (2.1GHz), respectively

[44, 51].

In [12], a method of factoring RSA modulus, N =

pq, q < p < 2q, in time polynomial in 𝑙𝑜𝑔𝑁 is proposed

under assumption that an encryption exponent, e,

meets 𝑒 · 𝑥 − (𝑝2 − 1)(𝑞2 − 1)𝑦 = 𝑧, 𝑔𝑐𝑑(𝑦, 𝑥) =

1, 𝑧 ≠ 0, 𝑥 · 𝑦 < 2𝑁– 4√2𝑁
3

4, |𝑧| < (𝑝 – 𝑞)𝑁
1

4𝑦, 𝑒 <

(𝑝2 – 1)(𝑞2 – 1) . In [46], continued fractions are

used for d disclosure with 𝛿 ≤ 0.25. In [48],

applicability of the attack [46] is extended to 𝑑 ≤ 𝑁𝛿 ∙

2𝑟, 𝑟 ≤ 7. In [17], a method of 𝑁 factorization is

proposed applicable when |𝑁0.5 − 𝑝0.5 ∙ 𝑞0.5| is

sufficiently small (less than 2112 as explained on in

[17]).

Timing attacks are type of attacks where an intruder

compromise secrete parameters from the execution of

the cryptosystem rather than from any ingrained

weakness in the mathematical properties of the system

[5]. In [1] a timing attack is proposed against RSA

private key using genetic algorithm. A Super-

encryption (successive encryption of the ciphertexts) is

proposed in [41, 4]. However, in [26, 37], it is shown

that the probability of success is about 10-90 for the

parameters proposed for RSA in [38] because p-1, q-1

shall have large prime factors, and similar for them as

well. Bleichenbacher [6] defines that plaintexts mi are

related if mi= fi(m) for some known polynomials 𝑓𝑖 and

shows that having 𝑙 RSA public keys

(e1,N1),…,(el,Nl),N = N1N2…Nl and ci= fi(m)ei mod Ni

for i=1,…,l, the plaintext m can be computed in time

polynomial in log N using Coppersmith’s algorithm

[14], A method of the broadcasted message disclosure

is proposed based on the use of the CRT allowing

reducing a number of modular equations to a single

equation and then finding 𝑒-th order root over integers,

in the simplest case of broadcasting one and the same

message, [6], or a univariate polynomial root finding

using Coppersmith method [14] for broadcasting

related messages based on a small message. The paper

considers messages, mi, related to the base message, 𝑚,

by an affine transformation, mi = αi ∙ m + βi mod ni [6],

p. 242, whereas in Coppersmith method only

translation transformation is expected to be used: ḿ =

m+t [14], DeLaurentis [16] considered two cases. In

Case 1, a probabilistic algorithm is proposed that

allows factoring modulus N = p ∙ q, using information

on the public-private key pair of the attacker (insider)

but not of the other users, neither public, nor private

keys, within average number of runs at most 2. In Case

2, without factoring of 𝑁, an own encryption-

decryption key pair as well as an encryption key of

another valid user are used to disclose an equivalent

for the private key of another user that may be used to

disclose his messages and to forge his signature.

Simmons [40] considers one message encrypted by

two different encryption keys resulting in two

ciphertexts of one and the same message. If the

encryption keys are co-prime, their mutual inverses

may be found and used for the message disclosing. In

[30], it is said: “Values such as 3 and 17 can no longer

be recommended, but commonly used values such as

216+1=65537 still seem to be fine. If one prefers to stay

on the safe side one may select an odd 32-bit or 64-bit

public exponent at random.”

If a known plaintext-ciphertext pair, (P,C) is known,

Discrete Logarithm Problem (DLP) solution can be

used to disclose the private key as d = loɡC,NP. DLP

computational complexity is of the order of that of

(2)

(1)

Ciphertext-Only Attack on RSA Using Lattice Basis Reduction 239

integer factorization and in parallel with factorization

respective DLP solving is reported in [44, 51].

In [14], a method for recovering RSA messages is

proposed for rather large encryption exponent such as,

e = 216+1. The method assumes that two plain

messages are encrypted with the same encryption

exponent, e, and modulus, N, and one of the messages,

m2, is related with another one, 𝑚1, by an affine

transformation, m2 = a ∙ m1 + b, and two respective

ciphertexts are known, c1,c2. The message, m1, is found

as a root of a polynomial which is the Greatest

Common Divisor (GCD) of two univariate

polynomials modulo N, 𝑝1(𝑚1) = 𝑚1
𝑒 − 𝑐1, 𝑝2(𝑚1) =

(𝑎 · 𝑚1 + 𝑏)𝑒 − 𝑐2. The GCD is obtained using

Euclid’s algorithm. The method is generalized for the

cases of m2=p(m1), where 𝑝() is a polynomial, and

for multiple messages polynomially related, p(m1,…,

mk) = 0. As far as all the related messages, m2,…, mk

depend on the single message, m1, this mode of

operation can be considered as “broadcasting” of the

message m1 and its dependent messages, m2,…, mk

encrypted each with its own encryption exponent.

Maximal encryption exponent mentioned in the paper

is e = 216+1. We found GCD of two univariate

polynomials, p1 = xe – C1 mod N and p2=(x+1)e - C2

mod N, where N= p ∙ q = (220 +7) ∙ (220+13), C1= me

mod N, C2= (m + 1)e mod N, e = 216+1 by Maple 2016

(Intel i7-7700 CPU 3.60 GHz, 8GB RAM), nearly in 6

minutes. Then, message, m = 2, is recovered as the root

of GCD (Figure 1), Boneh [11] proposed attacking n-

bit RSA message, m, using Meet-In-The-Middle

(MITM) attack. MITM attack is applied by two steps.

A pre-computation step where the message is

represented as m = m1m2 with 𝑚1 ≤ 2𝑛1 and 𝑚2 ≤
2𝑛2. Hence, 𝑐 𝑚2

𝑒⁄ = 𝑚1
𝑒 𝑚𝑜𝑑 𝑁. A table of size 2𝑛1

has to be built containing the values 𝑚1
𝑒 𝑚𝑜𝑑 𝑁 for all

𝑚1 ∈ 0,1, ⋯ , 2𝑛1 − 1. Then, in the search step we

check for each𝑚2 ∈ 0, 1, ⋯ , 2𝑛2 − 1, whether

𝑐 𝑚2
𝑒⁄ 𝑚𝑜𝑑 𝑁 is present in the table. Any collision

reveals the message m. We implemented MITM attack

[11] using NTL [39] library (Intel i5-8250U CPU 1.60

GHz, 8GB RAM). Our implementation shows that the

time to recover a 40-bit message encrypted with e =

216+1 (see Example 1)

Is 2.25 seconds for pre-computation step and 0.202

second for searching step. Thus, from the analysis

conducted we see that known lattice-based attacks

against RSA private key section 1.1 and against RSA

messages practically use small public encryption

exponent, large part of the message to be known in

advance, or a message to be broadcast. On the other

hand, a non-lattice based attack in [15] has cost of

O(e2) for computing GCD [3], where e is the RSA

encryption exponent represents the degree of

polynomials, while MITM [13] has cost of 𝑂(𝑛√2𝑛),

where n is the message length in bits. Table 1 shows

features of the known RSA attacks. The analysis of the

attacks on RSA conducted above shows that they are

not applicable for key-size greater than 829 bits, with

p,q such that p ̵ 1, q ̵ 1 have large prime factors,

encryption and decryption keys are greater than N0.5,

and 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) is large. Herein, we

propose a new fast attack using LLL against RSA

messages based on the first found herein opportunity of

RSA encryption representation as an element of 2-

dimensional RSA lattice. Our attack works in the

conditions specified above where other attacks can’t

work, and requires neither knowledge of any part of

the message in advance, nor limitations on the size of

public exponent e, nor message broadcasting as shown

in the last row of Table 1 but imposes constraints on

the recoverable messages. Our COA attack

computational complexity is O(n2), see Section 3.4. In

our experiments, see example 3, our attack on 2001

RSA 2050-bit messages took 45.775 seconds with

about 0.1 success rate. The rest of the paper is

organized as follows. In section 2, we introduce RSA

algorithm, lattice concepts, and LLL algorithm. In

section 3, we introduce 2-dimensional RSA lattice and

COA on RSA using LLL is proposed, its complexity is

estimated. Additional experiments on application of

our attack to RSA cracking with up-to 8193-bit

messages are given in section 4. Section 5 concludes

the paper.

Figure 1. Maple code implementation of GCD attack [12],

recovering RSA message encrypted with large exponent e=216+1,

as a root of a polynomial which is the GCD of two polynomials P1

and P2 nearly in 6 minutes.

240 The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

Table 1. Comparison between lattice basis reduction COA and
other known RSA attacks.

Attack

Attack’s Requirements

Prior

knowledge of

number of bits

Small value of

exponent 𝒆

Broadcast

messages

Coppersmith [13] Yes No No

Boneh et al. [10] Yes No No

Takayasu and Kunihiro

[43]
Yes No No

Coppersmith [14] No Yes No

Hastad [20] No No Yes

Bleichenbacher [6] No No Yes

Hastad [19] No No Yes

Simmons [40] No No Yes

DeLaurentis [16] No No Yes

Boneh [11] No No No

Bunder [12] No Yes No

Lattice Basis Reduction

COA
No No No

2. RSA Algorithm, Lattice Concepts, and

LLL Algorithm

In this section, we

1. Review RSA [38],

2. Introduce lattice concepts including Minkowski

Second Theorem [35], which sets an upper bound

for the norm of the shortest vector in a 2-

dimensional lattice,

3. Introduce LLL [29] to find a shortest vector in a 2-

dimensional lattice.

2.1. Review of RSA

A message, 𝑚 ∈ 𝑍𝑁, is encrypted using

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁,

Where N = p ∙ q, p and q are two different prime

numbers, and the encryption exponent, e, is chosen

according to

gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1

The message, m, is retrieved by decryption of the

ciphertext, c, from (3) as follows

𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑁,

Where the decryption exponent, d, is the multiplicative

inverse of e satisfying

𝑒 ⋅ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) = 1.

The public key is (N,e), and the private key is(N,d).

 Example 1 Example of 40-bit RSA

encryption/decryption. Let p = 220 + 33= 10485609

and q = 220 + 13 = 1048589 be two prime numbers.

Then modulus N = p ∙ q= 1099559862701.

According to (4), let encryption exponent, e = 216 +

1= 65537. According to (6), decryption exponent,

d=1082377437569. The public key is

(N,e)=(1099559862701,65537), and the private key

is (N,d)=(1099559862701,1082377437569). Let the

message, m=986648, then the ciphertext is

calculated according to (3):

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 480808351840.

Message, m, is retrieved by decryption of the

ciphertext (7) according to (5) as shown in (8):

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑁 = 986648.

2.2. Lattice Concepts

In the following, ||𝑥||, (𝑥 ⋅ 𝑦), ⌈𝑎⌋, and ℤ denote

Euclidean norm [18] of the vector x, dot product of the

vectors, x and y, rounding of the real number, a, and

the set of integer numbers, respectively.

Let 𝐸(𝑉1, 𝑉2) ⊂ ℤ2 be a 2-dimensional lattice with

basis vectors, 𝑉1 and 𝑉2 shown in (9):

𝐸(𝑉1, 𝑉2) = {𝑎1𝑉1 + 𝑎2𝑉2: 𝑎1, 𝑎2 ∈ ℤ}.

The same lattice can be represented by different bases.

SVP is one of the most widely studied computational

problem on lattices [32] defined as follows [23], p.

395:

 Definition 1 SVP is the problem of finding a

shortest nonzero vector in a lattice L, i.e., v ∈ L that

minimizes the Euclidean norm ||v||.

 Remark 1 There may be more than one solution to

the SVP.

For example, the integer lattice ℤ2, is the set of all 2-

dimensional vectors with integer entries. Integer lattice

ℤ2 can be represented by basis vectors V1 = (1,1) and

V2= (1, 2), while the four nonzero vectors (0,±1),

(±1,0) are the solutions to the SVP.

Minkowski’s Second Theorem [35], sets an upper

bound for the norm, l, of the shortest nonzero vector in

a 2-dimensional lattice given by (10):

𝜆 ≤ √𝛾2 det(𝐿)
1
2,

Where 𝛾2 =
2

√3
≈ 1.154 is Hermit’s constant [35], p.

41, and det(L) is the determinant of the lattice matrix

formed by its basis vectors. Hence,

𝛾 ≤ √1.154 det(𝐿) ≈ 1.07 √det(𝐿).

2.3. LLL lattice Basis Reduction Algorithm

LLL [29] is a lattice reduction algorithm, on

termination returns the shortest vectors in the lattice,

beginning with the shortest vector v1, and then with

vectors whose lengths increase as slowly as possible

until we reach the last vector in the basis in E(V1,V2).

In next section we propose COA on RSA using LLL.

3. COA on RSA using LLL

We introduce COA on RSA using LLL algorithm.

More specifically we

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(10)

Ciphertext-Only Attack on RSA Using Lattice Basis Reduction 241

1. Show that RSA encryption forms a 2-dimensional

RSA lattice,

2. Show that the plaintext message can be revealed as

a component of the shortest vector in the RSA

lattice.

3. Propose using LLL for COA on RSA by solving

SVP in the RSA lattice.

4. Evaluate complexity of the proposed COA on RSA,

and conduct experiments for up to 8193-bit

messages.

3.1. 2-Dimensional RSA Lattice

RSA message recovery problem can be formulated as

SVP in a 2-dimensional lattice, E(V1,V2). From (3), we

can see that:

𝑐 = 𝑚𝑗 ⋅ 𝑚𝑒−𝑗𝑚𝑜𝑑 𝑁, 𝑗 = 1. . 𝑒 − 1,

And, hence,

𝑚𝑗 = (𝑚𝑒−𝑗)
−1

⋅ 𝑐 𝑚𝑜𝑑 𝑁.

From (13), we see that for any pair of integers, A and

B, satisfying:

𝐵 = 𝐴 · 𝑐 𝑚𝑜𝑑 𝑁

(A,B) is likely to be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗).

Hence, Equation (14) can be written as

𝐴 · 𝑐 + 𝑁 · 𝑟 = 𝐵,

Where r is an integer. It forms a 2-dimensional RSA

lattice,

𝐴 · 𝑉1 + 𝑟 · 𝑉2 = (𝐴, 𝐵),

Where V1=(1,c) and V2=(0,N) are basis vectors, at least

one of them having Euclidean norm of order O(N), and

determinant of the lattice equal to N.

3.2. RSA Message as the Shortest Vector in the

RSA Lattice

According to Minkowski’s Second theorem (11),

vector (A,B) (16) likely is the shortest vector in the

RSA lattice, if

||𝐴, 𝐵|| < 1.07√𝑁.

Hence, our task is to find a pair of comparatively

small, (A,B), satisfying (16) where V1=(1,c) and

V2=(0,N) are known vectors. Then, (A,B), is likely to

be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). In our attack we

adopt LLL to find the shortest vector in the 2-

dimensional RSA lattice (16).

3.3. LLL Attack on RSA Message as a Shortest

Vector in the RSA Lattice

We want to find a shortest vector w from E(V1,V2)

using LLL that might disclose

(𝐴, 𝐵) = ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)

if ||((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)|| from (18) is of the order of

𝑂(√𝑁) meeting (17). In our experiments we used LLL

algorithm implemented in Maple 2016.2.

 Example 2 shows LLL attack on Example 1

message.

 Example 2 LLL attack on 40-bit RSA message from

Example 1.

Ciphertext from Example 1, c = 480808351840, and

modulus N = 1099559862701.

Hence, V1=(1, 480808351840), and V2=(0,

1099559862701). LLL attack with V1=(1,

480808351840), V2=(0, 1099559862701), defined in

(16) terminates in 15 milliseconds using Maple,

obtaining the shortest vector (see Figure 2) given in

(19):

𝑣1 = (82493,986648).

Figure 2. LLL attack on RSA message in example 1 using maple

2016.2.

We also run the experiment in C using NTL [39]

and found that LLL attack terminates in 4 × 10−5

seconds. Thus, we see that our attack, both in Maple

and C, takes less time than attacks mentioned in

Section 1.3. LLL attack succeeds to retrieve message

since it is a component of a shortest vector in the

lattice,

||(𝑚𝑒−1)−1, 𝑚|| ≈ 990090.6 < 1.07√𝑁 ≈ 1124497.2.

3.4. Complexity of LLL Lattice Basis

Reduction Algorithm

Lenstra et al. [29] state that for n-dimensional lattices

with integer input basis vectors of bounded length N,

the LLL algorithm terminates after at most O(n2logN)

iterations.

(12)

(13)

(17)

(16)

(15)

(14)

(18)

(19)

242 The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

4. Experiments on RSA Cracking for Up to

8193-Bit Messages

We have conducted experiments using Maple 2016.2

in Windows 8.1 on Lenovo laptop with Intel i5-6200U

CPU 2.30 GHz, 8 GB RAM, for RSA with 𝑝, 𝑞 values

specified in Table 2 with sizes of

𝑁 = 𝑝 ⋅ 𝑞

from 40 to 8193 bits more than twice exceeding

recommended RSA key size, 4047 bits, for 2050 year

according to the requirements of [30], Table 1. Values

of p, q are defined as integer expressions (see Table 2).

Note that the prime values (p,q) used in Rows 1, 2 of

Table 2 are strong according to [38], since p ̵ 1, q ̵ 1

have large primes as their factors, that is confirmed by

the following Maple code:

It can be checked that (p,q) values in rows 1, 2, and 6

of Table 2 have large 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋)

values precluding attack [17].

Table 2. Pairs (p,q), bit size of N used in our experiments, (a,b) pairs from (27)-(29) for which RSA was cracked, number of cracked

messages, and respective 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 from (30), for Digits=10 and C=0 in Maple.

1 2 3 4 5 6 7 8

Pair(p,q)# p q
Bit size of

N

(a,b)from (24) for which RSA was
cracked, k= 1

Number of
RSA cracks

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥

0 220 + 33 220 + 13 40 (8, 1), (4, ±1), (2, ±1) 153 0.025 0.508625
1 2130 − 5 2131 + 39 261 (14, −1), (4, 2), (2, ±1) 58 0.01 0.5010325
2 3 × 2250 + 17 (2129 − 1)2 − 2 509 (2, ±1), (4, −1), (22, ±1) 59 0.01 0.5007125
3 3 × 2512 + 349 3 × 2512 − 511 1026 (4, 1), (8, −1), (2, ±1) 85 0.01 0.5007065
4 3 × 21024 + 545 3 × 21024 − 1717 2050 (20, 6), (4, 2), (2, ±1) 64 0.01 0.5005
5 3 × 22048 + 595 3 × 22048 − 1105 4098 (26, 5), (4, 2), (2, ±1) 68 0.001 0.5007
6 3 × 24096 + 1075 24096 − 2549 8193 (28,4), (4,2), (2, ±1), (14, −1) 66 0.00375 0.50003

In our experiments, messages are defined via a

parameter,

𝛿 ∈ (0,1)

As follows,

𝑚 = 𝑖𝑛𝑡(𝑁𝛿) + 𝑖𝑖, 𝑖𝑖 ∈ −𝐶, ⋯ , 𝐶, 𝐶 ≥ 0,

Where C ≥ 0 is an integer and int() returns integer part

of its input. Calculations on the float-point numbers are

done with accuracy of 10, 15, 100, 200, 600, 800, and

1600 digits:

We try vectors

𝑣(𝑗) = ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)

Meeting the following two-dimensional lattice

equation

𝑣(𝑗)1 ⋅ 𝑉1 + 𝑟 ⋅ 𝑉2 = 𝑣(𝑗)

With

𝑉1 = (
1
𝑐

) , 𝑉2 = (
0
𝑁

)

For j=1,…,100, according to (16), by the following

code:

 Code 1. Maple code for RSA cracking using LLL

with j∈ {1,··· ,100}. Initial conditions for the code

are defined in Code 3 and example 3. It trie cracking

2001 RSA messages in the range m0-

1000…m0+1000, where m0 is defined in its first

line as trunc (𝑁𝛿).

In the Code 1, with C = 1000, we check the both

returned by LLL vectors and each their component on

equality to mj. Exponentiation function and LLL used

in Code 1 are introduced in Code 2 as follows:

 Code 2. Maple code introducing exponentiation

function and LLL.

(20)

(22)

(23)

(21)

(25)

(24)

Ciphertext-Only Attack on RSA Using Lattice Basis Reduction 243

RSA was successfully cracked under conditions (27)-

(29) on the encryption key, e, defined via Euler totient

function,

𝜙(𝑁) = (𝑝 − 1) ⋅ (𝑞 − 1),

In a general form

𝑒 = 𝑘 ⋅
𝜙(𝑁)

𝑎
− 𝑏,

Such that

gcd(𝑒, 𝜙(𝑁)) = 1,

𝜙(𝑁) 𝑚𝑜𝑑 𝑎 = 0.

It is implemented in Maple by the following Code 3,

for Digits=1600:

 Code 3. Maple implementation of RSA encryption

key, e, calculation according to (27)-(29), for N of

2050 bit size from Table 2.

For the example of data shown in Code 2, 𝑒 ≈
𝑁

2
, 𝑑 ≈

𝑁

10
, thus attacks described in section 1 are not

applicable. We try finding a range of the parameter,

𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥],

Or a set of values, { 𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥}, for which our

method successfully cracks RSA (see Table 2, columns

7, 8). In Table 2, columns 5, 6, pairs (a, b), for which

RSA was successfully cracked, and number of

successful cracks are given (for C = 0 in (22)). We

found that for all successful cracks,

𝑗 = |𝑏|,

holds, where j,b are from (23), (24), and (27),

respectively, i.e., the power of the plaintext message,

m, revealed by our attack on RSA, always is equal to

jbj from (27). Thus, in the experiments, we find two

conditions, (29) and (31), holding that need

explanation. Also, the results of all our experiments

show that condition (32) holds

𝛿𝑚𝑎𝑥 ⋅ |𝑏| ≈ 0.501.

To verify (32), we have conducted special massive

investigation of its validity for (p,q) pair from Table 2,

row 4, results of which are given in Table 3, and

confirm its validity. Hence, we need explaining (29),

(31), and (32).

Table 3. Results of experiments in Maple 2016 on RSA cracking

for Digits=600, p := 3∙21024+515, q:=3∙21024+1717, (27)-(29) hold,

k=1, 𝐶 = 1000, 𝛿𝑚𝑎𝑥 is from (30).

a b Number of cracks 𝜹𝒎𝒂𝒙 𝜹𝒎𝒂𝒙 ⋅ |𝒃|
20 6 9205 0.0835 0.501

20 10 4987 0.050107 0.50107

20 -4 2082 0.12521 0.50084

20 -6 1642 0.038348 0.50088

20 -8 1913 0.062615 0.50092

20 -14 1336 0.035769 0.500766

5 -1 5626 0.501 0.501

5 -25 2896 0.020045 0.501125

4 2 21599 0.25066 0.50132

4 6 22937 0.083528 0.501168

10 13 6469 0.0385503 0.501154

Total

cracks:
80692

Average

 𝛿𝑚𝑎𝑥 ⋅ |𝑏|:
0.501022

Explanation of (29). Consider (20), (21), (22) for C

= 0, (26), and (27). Then, RSA ciphertext, c, is defined

as follows:

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 𝑚𝑘⋅
𝜙(𝑁)

𝑎
−𝑏𝑚𝑜𝑑 𝑁.

Experiments show that with high probability, ranging

from 0.1 to 0.5, (34) holds:

𝑚
𝑘𝜙(𝑁)

𝑎 𝑚𝑜𝑑 𝑁 = 1.

Note that due to Euler’s theorem [2],

𝑚𝑘𝜙(𝑁)𝑚𝑜𝑑 𝑁 = 1,

And the left-hand side (LHS) of (34) is a-th root of

unity from LHS of (35), which is highly likely to be

also unity. The probability of our COA on RSA

success estimate is illustrated by example 3.

 Example 3 Conducting calculations by Code 1 in

Maple 2016.2, with Digits=1600, q=3∙21024-1717, p =
3 · 21024 + 515, δ = 0:071435 considering 2001

numbers, m = ⌊Nδ⌋ + ii, ii ∈ [-C,··· , C],C = 1000,

we find 216 cases when (34) holds, in particular, for

ii = −998,−992,−988, etc., Respective Maple

output is shown below:

(26)

(28)

(27)

(29)

(32)

(30)

(33)

(35)

(34)

(31)

244 The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

Thus, probability of (34) holding, and thus our attack

takes 45.775 seconds, its success probability under

conditions (27)-(29), may be estimated as

216/2001=0.1079, and (29) is explained. Now, we

explain (31) and (32).

Explanation of (31) and (32). Our method of

cracking of RSA ciphertext is as follows (recall (12)-

(16), (23), (24)). Rewrite (33):

𝑐 = 𝑚𝑒−𝑗 ⋅ 𝑚𝑗 𝑚𝑜𝑑 𝑁, 0 < 𝑗 < 𝑒.

From (36), we get

𝑐(𝑚𝑒−𝑗)
−1

= 𝑚𝑗 𝑚𝑜𝑑 𝑁.

Reminding (23), from (37), we arrive at (24). Applying

LLL algorithm to the lattice defined by (25), we obtain

a shortest vector, (
𝑆1

𝑆2
), of the lattice such that (

𝑆1

𝑆2
) =

𝑣(𝑗), if the norm of v(j) meets Minkowski’s Second

theorem

||(
𝑆1

𝑆2
)|| ≤ ||𝑣(𝑗)|| = √𝑣(𝑗)1

2 + 𝑣(𝑗)2
2 ≤ √𝛾2 ⋅ 𝑁

= √
2

3
⋅ 𝑁,

Where 𝛾2 ≈ 1.1547 is Hermite’s constant for the 2-

dimensional lattice. To meet (38), from (23), we have

√(𝑚−𝑒+𝑗)2 + 𝑚𝑗2
≤ √

2

√3
⋅ 𝑁

From, (22) with C = 0, (27), (34), (39), we have

√(𝑚𝑏+𝑗)2 + 𝑚𝑗2
=

√⌊𝑁𝛿⌋
𝑏+𝑗

+ ⌊𝑁𝛿⌋
𝑗2

≤ √2 ⋅
𝑁

√3
≈ 𝑁0.50005

From (40), we have two cases

 Case 1: 𝑏 ≥ 0. Let 𝑗 = 0 in (40). Then, 𝑣(𝑗) =

(𝑚𝑏

1
), and we have

√⌊𝑁𝛿⌋
𝑏2

+ 1 ≈ 𝑁𝑏⋅𝛿 ≤ 𝑁0.5005,

And thus,

𝑏 ⋅ 𝛿 ≤ 0.50005.

 Case 2: 𝑏 < 0. Let 𝑗 = −𝑏 = |𝑏|. Then, 𝑣(𝑗) =

(
1

𝑚𝑏), and we have

√⌊𝑁𝛿⌋
|𝑏|2

+ 1 ≈ 𝑁|𝑏|⋅𝛿 ≤ 𝑁0.5005,

And then,

|𝑏| ⋅ 𝛿 ≤ 0.50005.

Thus, from (41), (43), we may have RSA cracks in the

from

|𝑣(𝑗)| = (𝑚𝑏

1
) or |𝑣(𝑗)| = (

1
𝑚𝑏),

that have been observed in all our experimental results

shown in Tables 2, and 3.

Example 4 confirms that (45) holds in a particular

experiment as in all other ones.

 Example 4 Maple output for RSA cracking with k =

9, a = 20, b = ±6, d = 0:071435, showing that (34)

holds, and values found by LLL in VR [1,1..2], see

Code 1, meet (45).

Also, range for 𝛿 defined by (42), (44) is confirmed by

our experiments. From Table 3, last row, we see that

(44) holds on average with accuracy 0.00097=0.50102-

0.50005. Table 3 contains number of RSA successful

cracks for different values of a, b, maximal 𝛿𝑚𝑎𝑥 from

(30) and LHS of (44). Thus, (45) explains (31), and

(36)

(37)

(39)

(38)

(45)

(42)

(43)

(41)

(40)

(44)

Ciphertext-Only Attack on RSA Using Lattice Basis Reduction 245

(44) explains (32). To find the relation between a and

number of RSA successfully cracked messages, we run

Code 1 with p, q from rows 3-6 of Table 2, 𝛿 ∈ 0.01,

…,0.52 yields to launch 104,052 attacks on each (p, q,

a) value. Figure 3 shows an inverse proportion

between value of 𝑎 and number of successful cracks.

Thus, decreasing of the public key leads to decreasing

of the success rate of our attack

a) Shows 20010 message cracks at a =2 and drops to 51 message cracks at a = 2048

out of 104,052 message attacks.

b) Shows 34017 message cracks at a = 2 and drops to 18 message cracks at a=2053 out

of 104,052 message attacks.

c) Shows 20010 message cracks at a = 2 and drops to 0 message cracks at a = 33739

out of 104,052 message attacks.

d) Shows 20010 message cracks at a = 2 and drops to 199 message cracks at a = 222

out of 104,052 message attacks.

Figure 3. Inverse relation between value of parameter 𝑎 in (27) and

number of successful RSA message cracks out of 104,052 message

attacks. (a)-(d) show results for (p, q) from rows 3-6 in from Table

2 respectively. Horizontal and vertical axes represent a and the

number of successfully cracked RSA messages, respectively.

5. Conclusions

In this paper, we show that RSA-encrypted message

considered as a component of a shortest vector of the

RSA lattice can be revealed by LLL attack. LLL attack

runs in time quadratic in the bit number of modulus N

(see section 3.4). LLL attack targets messages meeting

(13)-(17) being a shortest vector in the RSA lattice.

Our attack works in the conditions discussed in Section

1 in which known attacks can’t work, and it does not

impose any other requirements, such as the need for

very small public exponent, e, part of the plaintext to

be known in advance, or a message broadcasting to

sufficiently many participants, each holding a different

modulus with a known affine transformation, or using

common modulus as other attacks do [10, 19, 20, 21,

22, 28]. Our attack shows significant speed (15

milliseconds using Mupad, and 4 × 10−5 seconds

using NTL [39] library for Example 2) in recovering a

40- bit message in comparison to our implementation

for Boneh MITM attack [11] where 2.202 seconds are

needed to recover the same length message (2 seconds

for pre-computation step, and 0.202 seconds

For searching step using NTL [39] library).

Additionally, we have conducted experiments with the

proposed method for N with bit sizes up to 8193 in

Maple 2016.2, with results presented in Tables 2-3, in

which thousands of successful RSA cracks were

conducted using Code 1 run-time of which in the

conditions of example 3 for 2001 RSA 2050-bit

messages cracking is about 45 seconds. The cracks

were made for large public key values meeting (27)-

(29) for which truth of (29), (31), (32) was discovered.

Based on these findings, for RSA not to be susceptible

to the attack proposed herein, it is recommended RSA

public keys to be selected such that (27)-(29) are not

satisfied.

References

[1] Ali H. and Al-Salami M., “Timing Attack

Prospect for RSA Cryptanalysis Using Genetic

Algorithm Technique,” The International Arab

Journal of Information Technology, vol. 1, no. 1,

pp. 80-85, 2004.

[2] Alimorad R. and Arkian H., “Integer

Factorization Implementations,” ICTACT Journal

on Communication Technolgy, vol. 7, no. 2, pp.

1310-1314, 2016.
[3] Belhaj S. and Kahla H., “on the Complexity of

Computing the GCD of two Polynomials via

Hankel Matrices,” ACM Communications in

Computer Algebra, vol. 46, no. 3/4, pp. 74-75,

2013.
[4] Berkovits S., “Factoring Via Superencryption,”

Cryptologia, vol. 6, no. 3, pp. 229-237, 182.
[5] Biswas S. and Tiwari N., “Attacks and Threats

on RSA,” in Proceedings of Emerging

Technologies in Data Mining and Information

Security, pp. 737-747, 2018.

[6] Bleichenbacher D., “On the Security of the

KMOV Public Key Cryptosystem,” in

Proceedingsof Annual International Cryptology

246 The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

Conference Lecture Notes in Computer Science,

Santa Barbara, pp. 235-248, 1997.

[7] Boneh D., “Twenty Years of Attacks on the RSA

Cryptosystem,” Notices of the AMS, vol. 46, no.

2, pp. 203-213, 1999.
[8] Boneh D. and Durfee G., “Cryptanalysis of RSA

with Private Key d Less than N^0:292,” in

Proceedings of Eurocrypt'99 Proceedings of the

17th International Conference on Theory and

Application of Cryptographic Techniques, Berlin,

pp. 1-11, 1999.
[9] Boneh D. and Durfee G., “Cryptanalysis of RSA

with Private Key d Less Than N0.292,” IEEE

Transactions on Information Theory, vol. 46, no.

4, pp. 1339-1349, 2006.
[10] Boneh D., Durfee G., and Frankel Y., “An Attack

on RSA Given A Small Fraction of The Private

Key Bits,” in Proceedings of International

Conference on the Theory and Application of

Cryptology and Information Security, Beijing,

pp. 25-34, 1998.
[11] Boneh D., Joux A., and Nguyen P., “Why

Textbook Elgamal and RSA Encryption Are

Insecure,” in Proceedings of International

Conference on the Theory and Application of

Cryptology and Information Security, Kyoto, pp.

30-43, 2000.

[12] Bunder M., Nitaj A., Susilo W., and Tonien J.,

“A Generalized Attack on RSA Type

Cryptosystems,” Theoretical Computer Science,

vol. 704, pp. 74-81, 2017.
[13] Coppersmith D., “Finding A Small Root of A

Bivariate Integer Equation, Factoring with High

Bits Known,” in Proceedings of International

Conference on the Theory and Applications of

Cryptographic Techniques, Lecture Notes in

Computer Science, Saragossa, pp. 178-189, 1996.

[14] Coppersmith D., “Finding a Small Root of a

Univariate Modular Equation,” in Proceedings of

International Conference on the Theory and

Applications of Cryptographic Techniques,
Saint-Malo, pp. 155-165, 1996.

[15] Coppersmith D., Franklin M., Patarin J., and

Reiter M., “Low Exponent RSA With Related

Messages,” in Proceedings of International

Conference on the Theory and Applications of

Cryptographic Techniques, Lecture Notes in

Computer Science, Saragossa, pp. 1-91, 996.

[16] DeLaurentis J., “A Further Weakness in the

Common Modulus Protocol for the RSA

Cryptoalgorithm,” Cryptologia, vol. 8, no. 3, p.

253-259, 1984.
[17] Ghafar A., Ariffin M., and Asbullah M., “A New

LSB Attack on Special-Structured RSA Primes,”

Symmetry, vol. 12, no. 5, pp. 1-13, 2020.
[18] Gradshteyn I., Ryzhik I., Jeffrey A., and

Zwillinger D., Table of Integrals, Series, and

Products, Sixth Edition 6th Edition, Academic

Press, 2000.
[19] Hastad J., “On using RSA with Low Exponent in

A Public Key Network,” in Proceedings of

Conference on the Theory and Application of

Cryptographic Techniques, Lecture Notes in

Computer Science, Santa Barbara, pp. 403-408,

1985.
[20] Hastad J., “Solving Simultaneous Modular

Equations of Low Degree,” Society for Industrial

and Applied Mathematics, vol. 17, no. 2, pp. 336-

341, 1988.
[21] Hoffstein J., Howgrave-Graham N., Pipher J.,

and Whyte W., The LLL Algorithm, Springer

Link, 2009.
[22] Hoffstein J., Pipher J., and Silverman J., “NTRU:

A Ring-Based Public Key Cryptosystem,” in

Proceedings of International Algorithmic

Number Theory Symposium, Portland, pp. 267-

288, 1988.

[23] Hoffstein J., Pipher J., and Silverman J., An

Introduction to Mathematical Cryptography,

Springer Link, 2014.
[24] Hoffstein J., Silverman J., and Whyte W.,

“Estimated Breaking Times for NTRU Lattices

Updated 2003,” Technical Report, 1999.
[25] “IEEE Standard Specification for Public Key

Cryptographic Techniques Based on Hard

Problems Over Lattices,” 2009.
[26] Jamnig P., “Securing The RSA-Cryptosystem

Against Cycling Attacks,” Cryptologia, vol. 12,

no. 3, pp. 159-164, 1988.
[27] Kirchner P. and Fouque P., “Revisiting Lattice

Attacks on Overstretched NTRU Parameters,” in

Proceedings of Annual International Conference

on the Theory and Applications of Cryptographic

Techniques, Part I, Lecture Notes in Computer

Science, Paris, pp. 3-26, 2017.

[28] Kleinjung T., Aoki K., Franke J., Lenstra A.,

Thomé E., Bos J., Gaudry P., Kruppa A.,

Montgomery P., Osvik D., Riele H., Timofeev

A., and Zimmermann P., “Factorization of A

768-Bit RSA Modulus,” in Proceedings of

Annual Cryptology Conference, Santa Barbara,

pp. 333-350, 2010.

[29] Lenstra A., Lenstra H., and Lovasz L., “Factoring

Polynomials with Rational Coefficients,”

Mathematische Annalen, vol. 261, no. 4, pp. 515-

534, 1982.
[30] Lenstra A. and Verheul E., “Selecting

Cryptographic Key Sizes,” Journal of

Cryptology, vol. 14, pp. 255-293, 2001.
[31] May A., in The LLL Algorithm-Survey and

Applications, Springer Link, 2009.
[32] Micciancio D., “Shortest Vector Problem,” in

Encyclopedia of Algorithms., pp. 1974-1977,

2016.

Ciphertext-Only Attack on RSA Using Lattice Basis Reduction 247

[33] Moriarty J., Kaliski B., Jonsson J., and Rusch A.,

“PKCS# 1: RSA Cryptography Specifications

Version 2.2.,” Technical Report 2016.
[34] Mumtaz M. and Ping L., “Forty Years of Attacks

on the RSA Cryptosystem: A Brief Survey,”

Journal of Discrete Mathematical Sciences and

Cryptography, vol. 22, no. 1, pp. 9-29, 2019.
[35] Nguyen P. and Valle B., The LLL Algorithm:

Survey and Applications, Springer Link, 2009.
[36] Rabah K., “Review of Methods for Integer

Factorization Applied to Cryptography,” Journal

of Applied Sciences, vol. 6, no. 1, pp. 458-481,

2006.
[37] Rivest R., “Remarks on A Proposed

Cryptanalytic Attack on The M.I.T. Public-Key

Cryptosystem,” Cryptologia, vol. 2, no. 1, pp. 62-

65, 1978.
[38] Rivest R., Shamir A., and Adleman L., “A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems,” Communications of

the ACM, vol. 21, no. 2, pp. 120-126, 1978.
[39] Shoup V., NTL: A Library For Doing Number

Theory. https://www.shoup.net/ntl/, Last Visited,

2020.
[40] Simmons G., “A “weak” Privacy Protocol Using

The RSA Crypto Algorithm,” Cryptologia, vol.

7, no. 2, pp. 180-182, 1983.
[41] Simmons G. and Norris M., “Preliminary

Comments on The M.I.T. Public Crypto-

System,” Cryptologia, vol. 1, no. 4, pp. 406-414,

1977.
[42] Takayasu A. and Kunihiro N., “Partial Key

Exposure Attacks on RSA: Achieving the Boneh-

Durfee Bound,” in Proceedings of International

Conference on Selected Areas in Cryptography,

Montreal, pp. 345-362, 2014.
[43] Takayasu A. and Kunihiro N., “Partial Key

Exposure Attacks on RSA: Achieving The

Boneh-Durfee Bound,” Theoretical Computer

Science, vol. 761, pp. 51-77, 2019.
[44] Thome E., LISTSERV.

https://listserv.nodak.edu/cgibin/wa.exe?A2=NM

BRTHRY;fd743373.1912&S, Last Vested, 2020.
[45] Weger B., “Cryptanalysis of RSA with Small

Prime Difference,” Applicable Algebra in

Engineering, Communication, and Computing,

vol. 13, 2002.
[46] Wiener M., “Cryptanalysis of Short RSA Secret

Exponents,” IEEE Transactions on Information

Theory, vol. 36, no. 3, pp. 553-558, 1990.
[47] Wikipedia.

https://en.wikipedia.org/wiki/RSA_Factoring_Ch

allenge Last Vested 2020.
[48] Wu M., Chen C., Lin Y., and Sun H., “On the

Improvement of Wiener Attack on RSA with

Small Private Exponent,” The Scientific World

Journal, pp. 1-9, 2014.
[49] Yan S., Cryptographic attacks on RSA, Springer

Link, 2008.
[50] Yang Z., Fu S., Qu L., and Li C., “A Lower

Dimension Lattice Attack on NTRU,” Science

China Information Sciences, vol. 61, no. 5, p. 1-

9, 2018.
[51] Zimmermann P.,

https://lists.gforge.inria.fr/pipermail/cado-nfs-

discuss/2020-February/001166.html, Last Visted,

2020.

Anas Ibrahim a Ph.D. (Computer

Engineering) Candidate at Eastern

Mediterranean University, North

Cyprus. He is a Docent at Palestine

Technical University, State of

Palestine. His research interests in

information security include

symmetric and asymmetric ciphers, authentication and

key exchange protocols, database security.

Alexander Chefranov holds the

degree of a Ph.D. (Computer

Science) and a Doctor of

Engineering Sciences. He is

currently an Associate Professor of

the Department of Computer

Engineering, Eastern Mediterranean

University, Famagusta, North Cyprus. His research

interests in information security include symmetric and

asymmetric ciphers, authentication and key exchange

protocols, database security.

Rushdi Hamamreh received his

M.S. degree in computer engineering

from the Saint Petersburg State

Technical University in 1998 and his

Ph.D. in Distributed Information

Systems and Networks Security from

the Saint Petersburg State Technical

University in 2002. He is currently an associate

professor of computer engineering at the department of

computer engineering, Al-Quds University, Jerusalem.

His research and teaching interests include design and

development multiagent systems, Networks Security,

Cybercrime law and Mobile Networks.

https://www.shoup.net/ntl/
https://listserv.nodak.edu/cgi
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html

