
The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021 77

Parallel Scalable Approximate Matching Algorithm

for Network Intrusion Detection Systems

Adnan Hnaif1, Khalid Jaber1, Mohammad Alia1, and Mohammed Daghbosheh2
1Faculty of Science and Information Technology, Al Zaytoonah University of Jordan, Jordan
2Faculty of Science and Information Technology, Irbid National University of Jordan, Jordan

Abstract: Matching algorithms are working to find the exact or the approximate matching between text “T” and pattern “P”,

due to the development of a computer processor, which currently contains a set of multi-cores, multitasks can be performed

simultaneously. This technology makes these algorithms work in parallel to improve their speed matching performance.

Several exact string matching and approximate matching algorithms have been developed to work in parallel to find the

correspondence between text “T” and pattern “P”. This paper proposed two models: First, parallelized the Direct Matching

Algorithm (PDMA) in multi-cores architecture using OpenMP technology. Second, the PDMA implemented in Network

Intrusion Detection Systems (NIDS) to enhance the speed of the NIDS detection engine. The PDMA can be achieved more than

19.7% in parallel processing time compared with sequential matching processing. In addition, the performance of the NIDS

detection engine improved for more than 8% compared to the current SNORT-NIDS detection engine.

Keywords: Exact matching algorithms, approximate matching algorithms, parallel processing, network intrusion detection

systems.

Received February 13, 2020; accepted June 17, 2020

https://doi.org/10.34028/iajit/18/1/9

1. Introduction

Matching algorithms (searching algorithms) are one of

the main topics in the fields of computer science

applications, where the aim is to find the pattern “P” in

a text “T;” “T” is usually longer than “P” [1, 17]. The

searching algorithm can be used to find the exact

matching or any pattern “P” close to the text “T”

(partially matched). Hence, matching algorithms

divided into two types: exact matching algorithms and

approximate matching algorithms. The exact matching

algorithms are used to find the pattern “P” in the text

“T.” While the approximate matching algorithms are

concerned with finding the similarity percentage

between pattern “P” and text “T” [3, 19].

Many experiments were carried out using multi-core

technology to accelerate the sequential matching

process [18, 22]. This paper introduces a parallel

scalable approximate matching algorithm based on

Direct Matching Algorithm (DMA) called Parallelized

the Direct Matching Algorithm (PDMA), which can be

used to find an exact or an approximate matching

between pattern “P” and text “T” in parallel. Thus, the

PDMA consists of two steps: First, create a two-

dimensional array called array-index or matrix “M,” to

arrange all of the text characters in the “M” based on

their positions; second, run the PDMA on multi-cores

to find all the occurrences of the pattern “P” in the text

“T.”

Many computer applications, such as the Intrusion

Detection System (IDS), use an exact or approximate

matching algorithm to detect the intruders who try to

access the network. IDS is one of the network security

applications that are responsible for protecting the

interior network from intruders [15]. Hence, IDS can

be defined as software or hardware to monitor the

private network activity from any suspicious behavior

and then applying a specific action based on the system

security administrator [21]. Therefore, IDS can be used

to detect the intrusions on how to try to steal the

information or affect the network [16].

Besides, IDS classified into two categories: misuse

detection and anomaly detection [10]. Misuse detection

is also known as signature-based detection, which

defined a pattern that similar common attacks. This

technique is efficient in finding known intruders by

using any exact matching algorithm but suffers from a

slow speed of its detection engine in case of using

sequential matching processing [14]. As well, anomaly

detection, which also called anomaly-based detection,

works based on network behavior [20].

Further, misuse detection used any known exact

matching algorithm in the Network Intrusion Detection

Systems (NIDS) detection engine by applying the

matching process between the incoming packet content

and the pre-defined ruleset. Using exact matching

algorithm in the NIDS detection engine will increase

the possibility of increasing the false positive or false

negative alarms, because it is often possible that a

portion of the pattern “P” matched with a text “T” in

the ruleset, so, the system passes it to the network

where it should raise an alert and vice versa.

In order to obtain processing results rapidly, the

simultaneous execution of the same task on multiple

78 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

processors is known as parallel computing. Hence,

more than one task can be achieved simultaneously,

which produces a significant reduction in the result

response time. However, parallel computing plays a

very critical role in big data applications such as

weather forecasting, data visualization, Biology,

engineering, underwater routing, etc., [2, 12].

In parallel computing architecture, all involved

nodes (memory or distributed memory) should be

connected to set up a parallel environment. In general,

Communications are also implementing processing in

parallel computation. Therefore, to initiate and

configure the messaging environment in parallel

computing communications, many message-passing

libraries have been developed to send and receive

packets of data between processors. The most popular

message-passing libraries are Parallel Virtual Machine

(PVM) and Message Passing Interface (MPI), whereby

POSIX Thread and OpenMP which are considered as

the most popular routines in shared address space

paradigms [12].

On the other hand, the elapsed time between the

beginning and the ending of execution processing on a

sequential machine is defined as a serial runtime of a

program (Ts). Whereby, the elapses time that specified

from the moment of a parallel computation starts to the

moment of finishing the last processing is defined as

the Parallel run time (Tp).

The rest of the paper is organized as follows: section

2 discusses the related works, and section 3 will

present the proposed models of the PDMA and its

implementation. Sections 4, 5, and 6 will discuss the

Benchmark, test data set, and System Requirements,

respectively. Finally, the evaluation results and

discussion will be presented in section 7.

2. Related Works

In the following section, we present some of the known

algorithms that are used in exact string matching

algorithms and approximate matching algorithms.

Some of these algorithms are also used in NIDS.

2.1. Exact String Matching Algorithms

The Boyer-Moore algorithm, Quick search algorithm,

and Weighted Exact Matching Algorithm (WEMA) are

examples of the best-known exact matching

algorithms. They were designed for matching between

text “T” and pattern “P.” The Boyer-Moore algorithm

consists of two phases: The heuristic phase and the

good suffix shift phase. The heuristic phase used to

create a bad character shift table, which used to

determine the number of characters shifted based on

pattern length. While the good suffix shift used to look

for the occurrences of the substring that matched

before when a mismatch occurs. The time complexity

of the boyer-moore algorithm is O (mn) [5].

Moreover, the Quick searching algorithm

considered as simplicity of the Boyer-Moore

algorithm; it has two phases: the first phase is to create

a quick search bad character table, which used to

determine the number of character shifted in case of

mismatch occurs, and the second phase is the searching

phase, which used to make a comparison between the

pattern “P” and the corresponding characters in the text

“T.” The Boyer-Moore algorithm is faster than the

quick search algorithm in a long text [5]. While

WEMA Hlayel and Hnaif [7] is different from Boyer-

Moore and Quick search algorithms, in WEMA, the

matching process starts from the minimum character

weight that exists in the pattern “P.” If the minimum

character weight is equal to zero, then no need to

continue the matching process because the pattern “P”

does not exist in the text “T.” The limitation of WEMA

is unable to find the similarity percentage between the

pattern “P” and the text “T.”

Furthermore, Jaber et al. [13] presented a

framework for parallel Boyer-Moore and Quick search

algorithms. The proposed hybrid algorithm

implemented using Threads technology or shared

memory architecture. On the other hand, Hnaif et al.

[11] presented a parallel Quick search algorithm by

using OpenMP and Pthread to speed up the matching

process in the NIDS detection engine between the

incoming packet payload and snort ruleset.

Hnaif [8] Parallelized WEMA by using multi-

processors with multi-cores and then implemented it to

the NIDS detection engine. The author defined a

platform to enhance the speed of the detection engine

based on WEMA in both sequential and in parallel

mode.

2.2. Approximate Matching Algorithms

One of the best approximate matching algorithms is the

edit distance algorithm, also known as the Levenshtein

Distance algorithm. The algorithm defined the

minimum number of insertions, deletions, or

substitutions needed to convert the first string into the

second string. If the distance between the two strings is

zero, that means the two strings are identical [4, 6]. In

addition, Hlayel and Hnaif [8] introduced an efficient

approximate matching algorithm called DMA, which

can be used to find the exact or the similarity

percentage between two strings. DMA has an

advantage of Levenshtein Distance algorithm in case

of the distance between the first string and the second

string is zero, because the Levenshtein Distance

algorithm must complete all the algorithm steps until it

reaches the end of the text, while in DMA, the

algorithm goes directly to the all possible locations

which can find a match and start from those locations.

Parallel Scalable Approximate Matching Algorithm for Network Intrusion Detection Systems 79

3. The Proposed Models of PDMA and Its

Implementation

In this section, we introduce two frameworks: first is

the framework of PDMA by using a hybrid distributed-

shared memory programming model in order to

increase the DMA performance (software solution).

Second, the framework of the PDMA to be used in the

NIDS detection engine, which aims to improve the

speed of the NIDS detection engine. Also, the

proposed frameworks can be able to run on a single-

processor with a multi-core architecture (software

solution).

3.1. The Framework of the PDMA

In the PDMA programming model, PDMA runs on a

hybrid distributed-shared memory programming

model. The workers simultaneously perform a different

task on each core.

The PDMA has two phases: the pre-processing

phase and the parallel matching phase. In the pre-

processing phase, the “M” will be created in

preparation for the parallel matching phase, see Figure

1.

Figure 1. The pre-processing phase of the PDMA.

As shown in Figure 1, the PDMA distributes the

ruleset into available cores and based on the number of

available cores; several threads will be created, where

the optimal number of threads on each core is one.

Subsequently, “M” is created. If the ruleset is updated,

then “M” will be created automatically in parallel.

The first implemented phase is using OpenMP

technology: dynamically OpenMP partitions the

iterations of the loop based on the available number of

workers (threads), which is made available by the

parallel pool. As well as synchronizing tasks is no

guarantee anymore. If the number of workers is equal

to the number of loop iterations, one loop iteration will

be performed by one worker. If their iterations are

more than workers, some workers will perform multi-

loop iterations to reduce communication time.

As an example, consider “M”

=‘gcatcgcagaggactcctacgggaggcwgcagagtatacagtacgatg

tcgtaataaccccgccccg’. Table 1 depicts the result of the

pre-processing phase for “M” (weight “w” is the

number of characters repeated).

Table 1. the result of the pre-processing phase for “M”.

Pre-processing phase

M Result

Gcatcgcagag

actcctac

ggagcgcagagt

atacag

tacgatgtcg

taataacccc

gccccgb

Alphabetical

character

Indices of “M” characters Weigh

t (w) 1 2 3 4 5 … n

a 3 8 10 12 18 … 53 17

b 64 … 1

c 2 5 7 13 15 … 62 20

.

.

.

.

g 1 6 9 11 20 … 63 16

.

.

.

.

t 4 14 17 31 33 … 51 10

After that, the parallel matching phase will apply to

find all the similarities between the text “T” and the

pattern “P.” Consequently, the parallel matching phase

applies as depicted in Figure 2.

Figure 2. The parallel matching phase of the PDMA.

For instance, “P”=‘tactgtc,’ the searching phase

access the character positions directly, and creating the

list “L” for each different character. The searching

phase starts from the minimum character repeatedly in

80 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

the pattern “P” to reduce the number of search

attempts, in this case, character “a” or “g” (select any

one randomly), see Table 2.

Table 2. Create the list “L” for each pattern character.

character

repeated

Positions character in “M.”

1 2 3 4 5 6 … n

t(3) 14 17 31 33 38 43

a(1) 3 8 10 12 18 22 … 53

c(2) 2 5 7 13 15 16 … 62

g(1) 1 6 9 11 20 21 … 63

As shown in Table 2, the character ‘a’ has the

indices {3, 8, 10, 12, …, 53}, and character ‘g’ has the

indices {1, 6, 9, 11, …, 63} in “M.” Regarding the

PDMA, we can add the indices of character ‘a’ or

character ‘g’ to the list ‘L’ (character ‘a’ is selected)

and create the optimal number of threads under the

corresponding position (see Table 3).

Table 3. Determine the minimum character weight.

List “L” for

character

Indices in “M”

1 2 3 4 5 … n

‘a’ 3 8 10 12 18 53

Multiple threads are created to search for the

character ‘a,’ where each thread searches at a different

position. See Table 4.

As shown in Table 4, thread number 1 starts

searching from position 3, and thread number 2 starts

searching from position 8, and so on. All created

threads search in parallel. See Figure 2.

Table 4. creating multiple threads for “L”.

List “L” for

character

Threads and positions

Threads
number

1 2 3 4 5 …

Max

number of

threads

‘a’ positions 3 8 10 12 18 … 53

Figure 3. Implemented the PDMA in NIDS.

3.2. The Framework of the PDMA in NIDS

As mentioned, the most effective tool for detecting and

preventing intruders attempting to steal information is

NIDS. The current NIDS depends on finding the exact

matching between the incoming packet payload and

ruleset. It is possible to have a similarity between the

text and the pattern, for instance, if the text is equal to

‘coat’ and the pattern is equal to ‘cot’ (a cot is part of

coat). Any exact matching algorithms will not be able

to detect that ‘cot’ is part of ‘coat.’ Thus, intruders can

exploit this issue and log onto the network. Hence, we

parallelized the PDMA and applied it in the NIDS to

enhance the speed of the NIDS detection engine.

Figure 3 shows the overall framework of implemented

the PDMA in NIDS. The framework of the PDMA in

NIDS implemented using the Task Farming model:

this phase is called the Master/Slaves model or also

known as a distributed memory programming model.

Since master node creates one slave for each possible

packet based on the available number of slaves, as

shown in Figure 3. Then, the assigned packets send to

slaves to be processed via sending the values using

MPI. As well as, threads are created on each slave to

Send Packets to Slaves

Index Matrix Slave 0 Index Matrix Slave 1 Index Matrix Slave n

Initialize Threads and Distribute Packet Content Position

Thread n Thread 1

Searching using
PDMA

Searching using

PDMA
........

Thread Mutex Lock

Show the

Results

Master Received Results from All Slaves to End

End

........

Parallel Scalable Approximate Matching Algorithm for Network Intrusion Detection Systems 81

be executable, so slaves’ tasks are assigned to threads.

Finally, the Synchronization process is needed before

the results are combined and terminating all threads.

However, this process must wait to complete all threads

and then detaches the threads for joining the final

results.

4. Benchmark

To evaluate the performance of the PDMA models,

different tests will be performed and compared with

DMA and Boyer-Moore, Quick search and WEMA, in

order to test the processing time, which is the time

needed to find the pattern “p” in the text “T.” The

effects of variant pattern length will also be examined,

with changing the number of cores. Also, different tests

will be performed in the NIDS detection engine by

using PDMA.

5. Test Data Sets

We used the SNORT NIDS ruleset as an adequate

dataset that can be used in NIDS. SNORT NIDS ruleset

is one of the widest ruleset used in the NIDS because it

includes a collection of intrusions signatures in the

network environment.

6. System Requirements

This section presents the setting of the experiment of

the proposed PDMA framework and its

implementation. All experiments were run on the

JadHPC cluster 2.30 GHz, available at the Faculty of

Science and Information Technology, Al-Zaytoonah

University of Jordan. The operating system is Redhat 7,

with the development language being Java.

7. Evaluation Results and Discussion

7.1. Evaluation Results of the PDMA

The DMA algorithm works sequentially, but the ever-

increasing internet speed of up to 10 GB/S has become

necessary to develop the algorithm to cope with these

high speeds with data transmission.

The PDMA is expected to be able to find the exact

matching or the similarity matching between the

incoming packet payload and ruleset. The presence of

high speeds link will not affect the matching process.

Accordingly, the matching phase will increase to

process a large amount of data with a slower time than

it takes in sequential processing time.

The PDMA using multi-cores architecture is testes

with data set. The results are obtained according to the

comparisons between the implementations of the

PDMA and the DMA, which measure the

enhancements of the PDMA over DMA. A range of

1000 to 10000 patterns read from the file to search for

in the data sets. The comparison result between

PDMA and DMA and the speedup is shown in Figures

4 and 5, respectively.

Figure 4. The comparison result between PDMA and DMA.

The relative benefit of solving a problem in parallel

is measured by Speedup (S). Though, (S) is computed

for identical processing elements “p” as the ratio of

solving a problem time on a single processing element

to solving the problem time on a parallel computer;

see by Equation (1) [10]. Table 5 shows the time

required needed to process the range of 1000-10000

patterns in sequential and in parallel, with several 1-10

threads.

 𝑆 =
𝑇𝑠

𝑇𝑝

Table 5. Time required to process 1000-10000 patterns with
several 1-10 threads.

Number of

patterns

Parallel time

(ms)

Sequential time

(ms)
Speed up

1000 31.0 43.0 1.39

2000 28.0 43.0 1.54

3000 29.0 43.0 1.48

4000 30.0 43.0 1.43

5000 28.0 43.0 1.54

6000 25.0 43.0 1.72

7000 28.0 43.0 1.54

8000 30.0 43.0 1.43

9000 31.0 43.0 1.39

10000 32.0 43.0 1.34

Figure 5. Speedup of the PDMA.

Besides, Figures 6, 7, and 8 represent the

comparison results between the PDMA, WEMA,

Boyer-Moore, and Quick Search in a parallel manner,

the efficiency and overhead.

1.39 1.54 1.48 1.43 1.54
1.72

1.54 1.43 1.39 1.34

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10

Number of threads

Speed up

(1)

82 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

Figure 6. The comparison results between PDMA, WEMA, Boyer-

Moore, and Quick Search in parallel.

As well, the efficiency (E) is defined as the ratio of

the speedup to the number of processing elements that

have been processed. The value of (E) is between zero

and one, depending on the effectiveness of the

processing elements utilization. (E) can be calculated

by Equation (2) [10].

𝐸 =
𝑆

𝑃

Where E: efficiency, S: speedup, and P: number of

processors.

Figure 7. The efficiency results of the PDMA, WEMA, Boyer-

Moore, and Quick Search.

The overhead (To) describe as the average time

spent by all processing elements over the time taken to

solve the same problem on a single work element using

the fastest-known sequential algorithm. Overhead is

given by Equation (3) [10].

𝑇𝑜 = (𝑃 ∗ 𝑇𝑝) − 𝑇𝑠

Where To: Overhead, P: number of processors, Tp:

parallel time, and Ts: sequential time.

Figure 8. The overhead results of the PDMA, WEMA, Boyer-

Moore, and Quick Search.

As depicted in Figure 5, the optimal speedup result

in our experiment was obtained using 6 threads. The

overhead was acceptable in most results except when

using 10 threads. Besides, there are no communication

issues in the implementation environment, such as

network problems or any message-passing techniques.

Therefore, we can relate the amplified overhead in the

last result to the following factors: First, The number

of threads is more than the number of cores. Second,

the time complexity of Threads’ creation, sequential

distribution of tasks over the threads, distribute the

threads into the available cores, and finally, gathering

the results from threads.

 The proposed framework of the PDMA has an

improvement of 19.7% compared to the DMA; also,

the PDMA has an advantage over WEMA, Boyer-

Moore, and Quick search algorithms in terms of the

time needed to complete the searching process.

7.2. Evaluation Matching Process of the

PDMA in NIDS

As shown in the previous subsection, the speed

performance of the PDMA has improved for more

than 19.7%. Thus, the PDMA applied in NIDS using

multi-processors with multi-cores architecture. The

PDMA is testes with data sets. The results are

obtained according to the comparisons between the

implementations of the PDMA, Boyer-Moore, Quick

Search, and WEMA in the NIDS detection engine. A

range of various file sizes (15 KB, 20 KB, 25 KB, and

30 KB) reads to search for in the data sets. The

comparison result between PDMA Boyer-Moore,

Quick Search, and WEMA is shown in Figures 9.

Figure 9. The comparison result between PDMA Boyer-Moore,

Quick Search, and WEMA.

7.3. Evaluation Performance

Our experiments have also described the performance

of the PDMA over boyer-moore, quick Search,

WEMA, Levenshtein Distance, and DMA. For

instance, if the incoming packet payload is equal to

“gcatcgcag,” and one of the SNORT-ruleset is equal to

“gaatcggag,” then Boyer-Moore, quick Search and

WEMA will not be able to detect the similarity

between the packet payload and SNORT-ruleset.

However, PDMA, Levenshtein Distance and DMA

can find the similarity percentage and accordingly

apply an appropriate action.

As we have mentioned in section 2.2, DMA has an

advantage over Levenshtein Distance. In section 7.1,

we proved that PDMA has an advantage over DMA,

(2)

(3)

Parallel Scalable Approximate Matching Algorithm for Network Intrusion Detection Systems 83

which leads us to conclude that PDMA has got the best

performance (based on time and functionality) to find

the exact matching and the similarity between the Text

“T” and the Pattern “P.” Table 6 summarizes the

performance functionality of these algorithms.

Table 6. Summary of performance functionality, where E: Exact
matching and S: similarity matching, L.D: Levenshtein Distance.

PDMA
Boyer-

Moore

Quick

Search
WEMA L.D DMA

E S E S E S E S E S E S

√ √ √ × √ × √ × √ √ √ √

In practice, the evaluated results demonstrated the

performance potential of the PDMA, which reached

19.7% in comparison with DMA, and 8% improvement

over the rate of NIDS detection engine. It was

compared with the current NIDS by using different file

sizes, and different packet payload lengths.

The limitation of PDMA that appeared in the

experimental work was packet loss due to the slower

speed of the scan port of the switch. This leads to

reducing the accuracy of the NIDS detection engine.

Also, the signature-based NIDS detection engine

operates effectively as long as there is no update on the

ruleset.

References

[1] Abu-Alhaj M., Abu-Hashem M., Hnaif A,

Abouabdalla1 O., Halaiyqah M., and Manasrah

A., “An Innovative Platform to Improve the

Performance of Exact String-Matching

Algorithms,” International Journal of Computer

Science and Information Security, vol. 7, no. 1,

pp. 225-227, 2010.

[2] Ashraf S., Aslam Z., Yahya A., and Tahir A.,

“Underwater Routing Protocols: Analysis of

Intrepid Link Selection Mechanism, Challenges

and Strategies,” International Journal of

Scientific Research in Computer Science and

Engineering, vol. 8, no. 2, pp. 1-9, 2020.

[3] Berman K. and Paul J., Algorithms: Sequential,

Parallel, and Distributed, Thomson/Course

Technology, 2005.

[4] Brakensiek J. and Rubinstein A., “Constant

Factor Approximation of Near-Linear Edit

Distance in Near-Linear Time,”

arXiv:1904.05390v2, pp. 1-40, 2019.

[5] Charras C. and Lecroq T., “http://www-igm.univ-

mlv.fr/~lecroq/string/,” Last Visited, 2020.

[6] Goldenberg E., Krauthgamer R., and Saha B.,

“Sublinear Algorithms for Gap Edit Distance,” in

Proceedings of IEEE 60th Annual Symposium on

Foundations of Computer Science, Baltimore, pp.

1101-1120, 2019.

[7] Hlayel A. and Hnaif A., “A New Exact Pattern

Matching Algorithm (WEMA),” Journal of

Applied Science, vol. 14, no. 2, pp. 193-196,

2014.

[8] Hlayel A. and Hnaif A., “An Algorithm to

Improve the Performance of String Matching,”

Journal of Information Science, vol. 40, no. 3,

pp. 357-362, 2014.

[9] Hnaif A., “A New Platform NIDS Based on

WEMA,” International Journal of Information

Technology and Computer Science, vol. 7, no. 6,

pp. 52-58, 2015.

[10] Hnaif A., Aldahoud A., Alia A., Al’otoum I.,

and Nazzal D., “Multiprocessing Scalable String

Matching Algorithm for Network Intrusion

Detection System,” International Journal of

High Performance Systems Architecture, vol. 8,

no. 3, pp. 159-168, 2019.

[11] Hnaif A., Mohammad A., Abouabdalla O.,

Ramadass S., and Kadhum M., “Parallel Quick

Search Algorithm to Speed Packet Payload

Filtering in NIDS,” Journal of Engineering

Science and Technology, vol. 4, no. 2, pp. 220-

230, 2009.

[12] Jaber K., Alia O., and Shuaib., “M P-HS-SFM:

A Parallel Harmony Search Algorithm for the

Reproduction of Experimental Data in the

Continuous Microscopic Crowd Dynamic

Models,” Journal of Experimental and

Theoretical Artificial Intelligence, vol. 30, no.

2, pp. 235-255, 2018.

[13] Jaber K., Dyala R., Al-Sanhani A., and Hamad

N., “A Framework for Parallel Boyer-Moore-

Quick Search Algorithm (P-BM-QS),” in

Proceedings of 30th IBIMA Conference, Madrid,

pp. 1623-1628, 2017.

[14] Jyothsna V., Prasad V., and Prasad K., “A

Review of Anomaly-Based Intrusion Detection

Systems,” International Journal of Computer

Applications, vol. 28, no. 7, pp. 26-35, 2011.

[15] Magán-Carrión R., Urda D., Díaz-Cano I., and

Dorronsoro B., “Towards a Reliable Comparison

and Evaluation of Network Intrusion Detection

Systems Based on Machine Learning

Approaches,” Applied Sciences, vol. 10, no. 5,

2020.

[16] Mighan S. and Kahani M., “A Novel Scalable

Intrusion Detection System Based on Deep

Learning,” International Journal of Information

Security, pp. 1-17, 2020.

[17] Navarro G. and Fredriksson K., “Average

Complexity of Exact and Approximate Multiple

String Matching,” Theoretical Computer Science

321, vol. 321, no. 2-3, pp. 283-290, 2004.

[18] Raju S. and Vinayababu A., “Optimal Parallel

Algorithm for String Matching on Mesh

Network Structure,” International Journal of

Applied Mathematical Sciences, vol. 3, no. 2, pp.

167-175, 2006.

https://www.researchgate.net/scientific-contributions/53511271-ALHALAIQAH-MOHAMMAD
https://www.researchgate.net/journal/1823-4690_Journal_of_Engineering_Science_and_Technology
https://www.researchgate.net/journal/1823-4690_Journal_of_Engineering_Science_and_Technology

84 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

[19] Raju S. and Vinaya A., “Parallel Algorithms for

String Matching Problem on Single and Two

Dimensional Reconfigurable Pipelined Bus

Systems,” Journal of Computer Science, vol. 3,

no. 9, pp. 754-759, 2007.

[20] Sundararajan R. and Arumugam U., “FBMT:

Fuzzy Based Merkle Technique for Detecting and

Mitigating Malicious Nodes in Sensor Networks,”

The International Arab Journal of Information

Technology, vol. 16, no. 6, pp. 1106-1113, 2019.

[21] Tabash M., Abd Allah M., and Tawfik B.,

“Intrusion Detection Model Using Naive Bayes

and Deep Learning Technique,” The International

Arab Journal of Information Technology, vol. 17,

no. 2, pp. 215-224, 2020.

[22] You J., Park S., and Kim I., “An Efficient

Frequent Melody Indexing Method to Improve

the Performance of Query-By-Humming

Systems,” Journal of Information Science, vol.

34, no. 6, pp. 777-798, 2008.

Adnan Hnaif is an associate

professor at the computer science

department, Faculty of Science and

information technology, Al

Zaytoonah University of Jordan. Dr.

Hnaif received his Ph.D. degree in

Computer Science from University

Sains Malaysia-National Advanced IPv6 Centre and

Excellence (NAV6) in 2010. He received his MSc

degree in Computer Science from the Department of

Computer Science in 2003, and obtained his Bachelor's

degree in Computer Science from the Department of

Computer Science, in 1999/2000. His researches focus

on computer networks and communications, wireless

sensor networks, network security, parallel processing,

and algorithms.

Khalid Jaber is an Associate

Professor of Computer Science at the

Faculty of Science and Information

Technology at the Al-Zaytoonah

University of Jordan, director of the

E-learning and Open Educational

Resource Center, and IEEE Jordan

section treasurer since September 2015. He received his

B.Sc. degree in Computer Science from Al-Isra

University, Amman, Jordan in, 2005. Furthermore, he

obtained his M.Sc. and Ph.D. degrees in Computer

Science from the Universiti Sains Malaysia, Penang,

Malaysia, in 2007 and 2011, respectively. Dr. Jaber's

research interest focuses on data representation and the

associated algorithms and parallel programming.

Mohammad Alia is the dean of

Scientific Research at Al Zaytoonah

University of Jordan (ZUJ). He is a

professor at the computer

information systems department,

Faculty of Science Computer and

information technology ZUJ. He

received the B.Sc. degree in Science from the Al

Zaytoonah University, Jordan, in 2000. He obtained

his Ph.D. degree in Computer Science from the

University Science of Malaysia, in 2008. During 2000

until 2004, he worked at Al-Zaytoonah University of

Jordan as an instructor of Computer Sciences and

Information Technology. Then, he worked as a

lecturer at Al-Quds University in Saudi Arabia from

2004 - 2005. His research interests are in the field of

Cryptography and Network security.

Mohammed Daghbosheh is an

Assistant Professor of Comp uter

Information System at the Faculty

of Science and Information

Technology -Irbid National

University of Jordan. He received

his B.Sc. degree in Computer

Science from Al-Zaytonneh University, Amman,

Jordan in, 2000. Furthermore, he obtained his M.Sc.

degrees in Information Technology in 20003, and

Ph.D. degrees in Computer Information System from

the University of Arab Academy for Banking and

Financial Sciences 2012. Dr. Daghbosheh research

interest focuses on data security and artificial

intelligence

