
36 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

Reliability-Aware: Task Scheduling in Cloud

Computing Using Multi-Agent Reinforcement

Learning Algorithm and Neural Fitted Q

Husamelddin Balla, Chen Sheng, and Jing Weipeng
College of Information and Computer Engineering, Northeast Forestry University, China

Abstract: Cloud computing becomes the basic alternative platform for the most users application in the recent years. The

complexity increasing in cloud environment due to the continuous development of resources and applications needs a

concentrated integrated fault tolerance approach to provide the quality of service. Focusing on reliability enhancement in an

environment with dynamic changes such as cloud environment, we developed a multi-agent scheduler using Reinforcement

Learning (RL) algorithm and Neural Fitted Q (NFQ) to effectively schedule the user requests. Our approach considers the

queue buffer size for each resource by implementing the queue theory to design a queue model in a way that each scheduler

agent has its own queue which receives the user requests from the global queue. A central learning agent responsible of

learning the output of the scheduler agents and direct those scheduler agents through the feedback claimed from the previous

step. The dynamicity problem in cloud environment is managed in our system by employing neural network which supports the

reinforcement learning algorithm through a specified function. The numerical result demonstrated an efficiency of our

proposed approach and enhanced the reliability.

Keywords: Reinforcement learning, multi-agent scheduler, neural fitted Q, reliability, cloud computing, queuing theory.

Received April 5, 2018; accepted January 28, 2020

https://doi.org/10.34028/iajit/18/1/5

1. Introduction

Large amount of data and systems in cloud environment

are driven by the internet and provide massive

information which it can be useful for developing

applications and dictions making. Resources and

applications in the cloud environment are rather

heterogeneous and in a dynamic status, these

heterogeneity and dynamicity management needs

special care to deal with [20]. Since there are huge

resources in a dynamic changes environment such as

cloud environment, multi-agent resources allocation is

essential and it is one of the most significant issues in

cloud computing [6]. The resources in cloud computing

have been developed and increased in the recent

decades which emerges the decentralization

management for these resources is essential for the

reliability enhancement. There are many capabilities

provided by cloud computing such as sharing various

king of heterogeneous resources which are distributed

among different locations on the cloud environment. A

coordinated job scheduling plays an important role in

cloud computing where the dynamic changes in the

resources takes place [31]. The efficient algorithm for

task scheduling can enhance and boost up the

performance of system if there is a c suitable policy

used for the scheduling. Load balancing plays an

important role in cloud computing which can be defined

as complementing the all assigned jobs in

appropriate manner and time. An effective scheduling

method such as adaptive scheduling for heterogeneous

resource scheduling is required to manage the cloud

resources efficiently.

There are many advances have been done in the

cloud computing in the recent decade. Man

reinforcement learning-based scheduling approaches

have been developed for enhancing the performance in

the cloud environment, the scheduling approaches

either using a model-free or a mode-based approach. In

addition, there are many task scheduling algorithms

have been studied in the distributed system environment

[5]. On the other hand, the demand of reliability

enhancement on distributed and cloud system becomes

more and more as the increases of dynamic changes in a

complex and massive networked environment such as

cloud computing. Improving the resources scheduling

in the network affects positively the reliability and

decisions taking [23]. The taken decisions are not only

for resources processing capacity matching of users

requests or scheduling, but they also need to consider

the behavior and performance of those resources. In the

large distributed systems such as cloud systems,

services should continue working even in the presence

of unpredictable faults and the user requests should not

affect the systems performance [20, 28]. The scheduling

decisions should automatically tolerate the failure in

order to be reliable, besides, providing high availability

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 37

On the other hand, centralized schedulers can

perform efficiently if there is obtainable global

information. However, lack of the scalability can be one

of the centralized scheduling problems as well as the

lack of fault tolerance capability [17]. To overcome this

problem, several decentralized scheduling approaches

have been developed but most of them perform as

individual policies of scheduling which raises many

synchronization problems [7, 33]. The extensive

dependency between the resources and schedulers may

lead to over communicate and network resource

consumption problems. Therefore, managing

scheduling with reasonable communication cost in

decentralized environment is an essential issue. Taking

in consideration this problem, a research has been

conducted in [12] where a decentralized dynamic

scheduling approach was proposed entitled the

Community-Aware Scheduling Algorithm (CASA).

To achieve the adaptation of resources scheduling in

an environment containing heterogeneous resources,

variation performance, and application diversity

employing an adaptive scheduling approach is essential

[16]. The aim of Reinforcement Learning (RL) is to

provide a mechanism for solving uncertain decision

making problems through interacting with the

environment which can use data driven method to

obtain a near optimal policies [24]. Reinforcement

Learning is a model-free approach which can solve

many scheduling problems in a dynamic endowment

such as cloud computing environment. There are two

types of learning approaches for resource scheduling in

Reinforcement Learning. One of those two types is

based on the gradient learning policy [1, 32] and the

other type uses value function based learning [27].

In this work, we propose a Task Scheduling

Implementing Multi-Agent NFQ-based Reinforcement

Learning (TSMRL) approach for distributed resource

scheduling in cloud environment to solve the problem

of over communication and single point failure

problem. In our proposed approach, the reliability

enhanced by employing a multi-agent method for

performing the task scheduling and learning the

scheduled task efficiency by providing rewards to the

agent after each scheduling action taken by the agent.

The multi-scheduler in our proposed approach prevents

the occurrence of whole system failure and solves the

single point failure problem because if a fault occurred

in one scheduler, the scheduling system will continue

working through the other schedulers. The aspect that

simplifies the decision making mechanism in our

approach is there is only one learning table used for

resources estimation.

2. Problem Definition

The cloud environment is a dynamic environment

which can be affected by changes caused by the user

requests and demanded resources state. In addition, the

heterogeneity in cloud resources and diversity in the

applications creates some difficulties in those resources

management. Moreover, traditional approaches for

resource scheduling in cloud computing cannot solve

those problem in a satisfaction level because of the

addition overhead that could come from over

communication and network resources consumption.

Therefore, to overcome those problems, an adaptive

scheduling method is required in order to achieve a

smooth and reliable task execution in an environment

with dynamicity and heterogeneity.

3. Related Work

In the recent decade several researches have been

conducted implementing Reinforcement Learning

algorithm to solve cloud computing problems. Tesauro

et al. [26] proposed a hybrid approach combining

reinforcement learning algorithm and queuing theory in

an open and closed traffic loop. Their proposed

approach employed the queue theory for controlling the

system while keeping the offline data for reinforcement

learning to train on. In their system they used non-linear

function for approximation instead of using lookup

tables. Farahnakian et al. [8] used reinforcement

learning for consolidation the virtual machines in cloud

environment. The aim of their approach (RL based

dynamic approach consolidation) is to minimize the

active energy consumption. Bahrpeyma et al. [3]

developed a model benefits from the prediction of

demand and workload in term of discreteness and

cumulative load. Their method also uses a knowledge-

based engine employing the Ink Drop Spread which

implemented in [2] to design an adaptive controller

based on reinforcement learning. Guo et al. [11] used

reinforcement learning to minimize the response time of

multi-tier applications by using parameters such as trial-

and-error. Their approach uses neural network to

control fuzzy working which provides a fast method to

reconstruct the neural system using reinforcement

learning. Vengerov [27] proposed a general framework

in to provide a dynamic allocation for the cloud

resource. Their model uses reinforcement learning

algorithm integrated with fuzzy rules to allocate in

demand resources. They developed their model to be

working without considering the existence of a resource

allocation policy in the environment. In Zhang et al.

[32] prosed a multi-agent method to optimize the online

resources allocation. The methodology of taking the

decision to allocate the resources in their method

depends on two connected problems. The first problem

is about taking the right decision for allocating the task

locally. The second problem in their method is about

task routing and how to take a decision for where to

forward the task. In their model they employed heuristic

strategies to speed up the learning approach and avoid

the unwanted weak policies. In Hussin et al. [13] prosed

a reliability aware model to improve the reliability in

38 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

cloud environment. They implanted reinforcement

learning along with neural network to develop a task

scheduler which considers the dynamicity in the cloud

environment. Their system benefits from their previous

neural network system [9] which they proposed for task

scheduling in the grid network. To develop the task

scheduling in their grid scheduling they utilizes a fuzzy

rules which employ swarm intelligence for knowledge

acquisition. Bu et al. [4], the authors developed an

approach for define an exploration and exploitation

method shows the capabilities of agents. The agents

collaborate with the environment to increase the

learning exploration, and they estimate the state using

the applications’ information. In the meantime, the

utility or Q table (which is updated by the agent) is

ordinal and iteratively shared in the state to view and

evaluate the efficiency of resources. However, the

authors did not cover decisions regarding the dynamic

environment of distributed resources. In our proposed

system, we adopted RL, which deploys a highly

dynamic environment in a distributed structure. Our

proposed system can adapt with the changes in the

dynamic environment and take the decision regarding

these changes. To measure the indicators of

performance, such as completion time and waiting time,

the Liu et al. [19] deployed a Markov request queue

model, which was achieved by considering the shared

resources among Virtual Machines (VMs) and several

failure types. Using RL as a framework, Wu et al. [30]

proposed a distributed learning algorithm named as

Ordinal Sharing Learning (OSL). In their algorithm,

each scheduler has a utility table, and this table must be

updated in two steps. First, their algorithm uses local

rewards to update the table. Second, their approach to

update the table, the scheduler uses the utility table of

its adjacent [21]. The scheduler drives its table to the

neighbor scheduler after updating the utility table in

cooperation with other schedulers, and the neighbouring

agent completes the update and delivery of the utility

table. Vengerov [27] Proposed a general framework and

employed RL to perform dynamic resource allocation

between multiple entities. This method uses RL

combined with fuzzy rule bases and is flexible in that it

can be employed in an environment with and without

existing resource allocation policies. Compared to

aformentioned methods, our appraoches uses

tequniques to reduce the communication and network

consuption such as a single Q-table for the learning

agent. In our method we use a referee scheduler that can

conroll the task scheduling thruogh the gained feedbak

from all other schedulers in a central Q-table. We also

consider the single point failure in our system by

allowing all the agents to benifit from the central utility

table (Q-table) and send and get the reward from this

table. Therefore, our proposed system can takle the

single-point failure and reduce the communication cost

at the same time.

4. Background and Motivation

In this section we provide a motivation for using RL

algorithm and some preliminaries for the implemented

techniques in this work.

4.1. Reinforcement Learning

The main idea behind the RL algorithm is learning

through the interaction with the environment [24].

There are three main components of RL algorithm

which are the state, and the reward. The state produced

from the environment where RL is working in, while

the agent can be represented by the brain of the

algorithm and the decision maker which takes its

decision based on the received response from the

environment. The response produced from the previous

taken action and called the reward which express the

value of (state, action) pair [24]. The agent in

reinforcement learning technique trying to maximize

the reward in every step [15].

The adaptive control approach usually requires a

system model. However, the explicit model for

resources in the cloud environment is hard to afford

because of many factors and domain problems.

Therefore, the proposed adaptive control system

requires a model-free mechanism such as Q-learning

[18]. In the Q-learning method, the system does not

require a model for the environment in the decision

making process. Moreover, the only required object for

agents to take the decision is the current pair of (state,

action). Q-learning is one of RL methods that can be

employed when there is no condition of domain

knowledge need to be provided for the agents initially

[29]. Figure 1 shows the basic structure of RL. As

shown in the figure, the agent in RL approach learns

through the interaction with the environment. The agent

perform the action at when it is in the state st then

receive a reward (response) rt for the pair (st, at) and

repeat with incremental value rt+1 and st+1 in a continue

snow balling way.

Figure 1. The reinforcement learning basic architecture.

The goal of the learning process in Q-learning is to

achieve an optimal policy that can be reflected on the

expected cumulative reward named Q-value then

followed by taking an action in the current state. This

Q-value can be calculated as:

Environment

Agent

st+1

rt+1
st at

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 39

1 1 1(,) (,) (max (,) (,))t t t t t t t t tQ s a Q s a r Q s a Q s a

Where rt+1 is the immediate reward delivered to the

agent by taken action at from the state st, α is the

learning rate and γ is the discount factor.

Equation (1) shows the Temporal Difference (TD)

approach [25] which is proven to convergence to

approximate the function of action-value to an

acceptable value taken in account the probability 1 for

the target policy. Algorithm 1 shows Q-learning

working mechanism by observing the state, obtaining

the feedback and update the cumulative reward.

Algorithm 1: Q-learning policy

1. Initialize the Q-value table for the pairs (s, a)

2. Repeat for each episode

3. Repeat for each step

4. Observe the current state s

5. Select an action using an exploratory function

6. Obtain action a then get a feedback reward r to reach new

state s’

7. Update cumulative reward (the Q-value) using equation (1)

8. s = s’

9. End

4.2. Reinforcement Learning

The Q-learning rule in the previuos section can be

directly implemented in a neural network. In this

impelentation (Q-learning with neural network) an error

function plays an important rule which aims to measure

the error by caculating the difference between the

curren Q-value and the previouse one [22]. The

approximation function in the continuous domains is

essential to estimate the observed experiences in the

unseen cases because of the state domain infiniteness.

Therefore, artificial neural network is regularly

employed to provide support and knowledge base for

RL [14]. This kind of approaches that uses the artificial

neural network to provide the knowledge support for

RL is called as Neural Fitted Q (NFQ) [10].

5. RL-based Task scheduling

The main reasons behind implementing Reinforcement

Learning with Neural Fitted Q (NFQ-based RL) in our

proposed approach can be defined as follows:

1. The model-based approaches in the scheduling

mechanism (which we avoided in our system)

depend on the grid information system which delays

the resources information acquisition.

2. The dynamicity of the cloud environment produces

some difficulties in the cloud resources management,

because of that an adaptive method (such as RL) is

required.

3. To minimize network communication overhead and

reduce the network consumption using a central

coordination by NFQ-based reinforcement learning.

4. Q-learning is a flexible and practical for uncertainty

and generalization problem solution.

5. We implemented Q-learning because Q-learning is a

value iteration method not policy iteration. Policy

iteration methods need to train the agent in every

episode taking the same policies which not

applicable in a dynamic environment such as cloud

environment.

In our approach, all of the schedulers can obtain an

accurate view of the resources state. To overcome the

single point failure problem in our method, all

schedulers can undertake the task which allow learning

the task by other scheduler if the scheduler in charge

failed to schedule the task. The main idea of our

proposed approach is to learn the plant function by

interaction between the agents and the environment. We

need to set a goal to be achieved by the adopted

learning mechanism. The goal of the implemented

learning method is to achieve better results in task

scheduling and resources management (maximize the

accepted Q-values) which benefits from the used

knowledge based approach. The knowledge based

approach exquisite the information from the past

experiences to establish a suitable decision. Therefore,

more experiences can enrich the knowledge and

enhance the decision making. The metrics of our system

performance are the successful jobs execution number,

response time for jobs execution and resources

utilization which are somewhere relevant to our goal. A

general structure of our proposed approach is shown in

Figure 2.

Figure 2. The basic structure of the proposed multi-agent approach.

5.1. Learning Method

The learning method in our appraoch is based on using

multiple independing learning agents to accelerate the

learning method. There is no need for explicit

communications between agents in the independant

learning, ulternatively, based on the local reard and

state each agent learns independantly. However, this

may rise an anomalous resources allocation problem

due to the lack of communication between the agents.

VMs

Accept

Reject

Agent (1)

Agent (2)

Agent (n)

Actions

Q-values
Reward

State

(1)

40 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

To overcome this problem, we implemented nueral

ntwork mechanism to work together in a coperative way

with reinforcement learning as NFQ-based

reinforcement learning. The idea of employing NFQ-

based reinforcement learning is to learn the local

rewards that submitted by the schedulers agent after

collecting those rewards and update the global utility

table by the central learner agent.

The learner in our method is responsible of

information acquiring and the relation between the pair

(state, action). We can classify the learning procosess in

our system as a supurvised learning to formulate the

model of the system response based on (state, action)

thruogh the interaction with the environment. The

formulation of task scheduling problem in our system

as a supervised learning has a closed relation with the

concept of reinforcement learning in which the

supervised learning estimate the parameters in adaptive

way. We implemented Q-learning for the reinforcement

learning process in our system which based on dedicate

the reward value to make the decision acording to the

pair (state, action). The learnning system recieves a

reward in each step and after every action it take, that

how the learner learns how to choose the right action to

make better results.

5.2. The Environment and State

In our proposed appraoch, the environment under scope

is a dynamic envronment (cloud envronment) which

rquire special care to deal with. In our system, the state

space can be represented as the total number of the

nodes available for serving the assigned tasks. Since

queuing modeling is one of the important issues in task

scheduling, we consider the buffer size queue for each

node in the environment. In the dynamic and large

system such as cloud systems, it is hard to obtain an

accurate information about the resources due to the

contiues changes in the resources attributes. Those

changes can be rabidly occured and no chance to be

adapted by the scheduler and results to incomplete the

task within its deadline.

To vercome this problem we impelemneted a

queuing theory to control the queue buffer size and the

load for each node as a sub queue for each computing

serevr or virtual machine and a global queue for users

input and output. In our method, we consider the load-

aware of nodes represent as rectional to support the

knowledge base for the scheduler and accelerate the

processing speed. The load of nodes can defined by a

function f: Qu→Li qu ϵ Qu , the abstract f(qu) ϵ Li . The

definition of this function can be represented as:

2M
(1, 1)

3

M 2M
(1,

3 3

(1,)
3

0

t i

s i

m i

o i

f i

Qu if qu M

Qu if qu M

L Qu if qu

M
Qu if qu

Qu if qu

Where M is the full lenght of buffer size, the

remainder buffer size memorey is trivial for Qut,

semi-trivial for Qus, middile for Qum, over-middile

for Quo, and full for Quf. The periority of requests

assigning will be given to the user requests with full

remaining queue buffer size, then over-middile and so

on. The total load for each node is a compination of the

the remainder queue buffer size in addition to toatal

usage of CPU, Bandwidth, RAM and storage in the ith

node at a designated moment of time. Based on those

node’s attributes and jobs expexcted execution time, the

scheduler with the aid of NFQ-based reinforcement

learning schedule the user requests to the nominated

nodes.

5.3. Local Reward

The local rewards in our system are used to reflect the

efficiency of job scheduling and the running state.

There are differences in job scheduling as the

heterogeneity in the virtual machines or nodes. We can

represent the jobs need to be scheduled as Job=[job1,

job2 , … , jobn] and the nominated nodes as VM=[vm ,

vm2 , ... , vmm], where n is the number of jobs and m is

the number of virtual machines. As mentioned, the job

can be successfully scheduled only if it meets the

specified constrains which are the expected execution

time for each job is less than the deadline and load of

each node or virtual machine attributes is suitable and it

illustrated by following function:

1 (,) (,)
(,)

0 (,) (,)

load

i j

load

if C i j VM E i j
f J VM

if C i j VM E i j

Where C(i, j) is the completion time for each job Ji in a

virtual machine VMj, and VMload is the load for each

virtual machine which can be represented by the queue

remainder buffer size and the total usage of CPU,

RAM, Storage and Bandwidth for each VM, E(i, j) is

the expected execution time for each job Ji in a virtual

machine VMj .

Using markov decision process for the job

scheduling, the system’s current state at the scheduling

moment is simply relevant to the previous state. The

action set is represented as ‘reject’ or ‘receive’ the job

by the virtual machine. As mentioned above, ‘receive’

is represented by 1 and it is true only if the constraints

are met using Equation (4); otherwise, ‘reject’ and it is

represented by 0. The local reward is employed for each

scheduler to return the system’s running state and the

running efficiency of the job scheduling scheme. The

local reward in our approach can be represented as the

above mentioned function f(Ji, VMj) as:

1 (,) (,)
(,)

0 (,) (,)

i j load i j

i j

i j load i j

if C Job VM VM E Job VM
r Job VM

if C Job VM VM E Job VM

The job expected execution time can be calculated as:

(2)

(3)

(4)

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 41

job ininstructions job size

VM pro
,

cessing time VM bandwidth
i jE Job VM

The completion time for each job Ji in a virtual machine

VMj can be calculated as:

(,) (,)i j i j iC Job VM E Job VM VM availability

In each step a scheduler receives number of user

requests or jobs for scheduling. A record for each job

submission is created by the neural network (more

details in next section) for the entry of each submitted

job and saved in a scheduled job list. The job

submission record contains the information extracted

from Equation (5) by the neural network. The agent

searches the scheduled job list and acquires the relevant

information for each successfully completed job then

performs a positive reward for the related resource.

5.4. Neural Network and Action Performing

As we mentioned, one of our system goals is control

scheduling tasks in an environment with dynamic

changes such as cloud environment. Thus, the control

action can be represented as:

(,)a S V

Where a is the action control, ∆S is the resources

dynamic changes and V is the virtual machines

placement vision and the resources fitness for the

current job scheduling.

The fitness of the resource fitness can be donated by

using the Li extracted from Equation (3) and the

resource total usage Resource Total Usage (RTU)

which is the utilization of Centeral Processing Unint

(CPU), Read Acces Memory (RAM), Storage and

Bandwidth at a designated time. The vision of situation

to schedule the requests is a combination of resource

weight which can be driven from the current VM status

and the scheduling policy. Figure 3 shows the

implementation of the neural network in our system as

NFQ-based reinforcement learning.

Figure 3. The neural network implementation in the proposed

system as NFQ-based reinforcement learning.

Each scheduling agent interact with the environment

by obtaining the pair (state, action) at designated

moment of time (st, at). The scheduler agent uses the

above neural network (Figure 3) to acquire the (state,

action) pairs. The state elements are VM queue

remainder buffer size (Li) and the RTU while the action

elements are the resources dynamic changes ∆S, weight

and estimated sub-optimal policy. The scheduler agent

obtains a sub-optimal policy by employing the Q-

learning algorithm and updates the utility table. The

proposed system deploys a task scheduling method

created by a global task queue with a limited buffer-size

and NFQ-based reinforcement-learning task schedulers.

In our proposed model, the arrival of the user’s requests

at the system is modelled as a Poisson process with a

mean arrival rate of λ. In a cloud computing

environment, one or more servers VMs may be

available with mean service rate of the requests µ.

In order to achieve perfect results, the queuing

system in our model is structured into three sub-models.

The proposed queue model is designed using [9] as a

reference.

However, we redesigned the model to have sub-

models that interact with each other so that the output of

one of them is the input of the other at the same time

(Figure 4).

Figure 4. Queuing structure in our proposed model.

The first sub-model of our queue system is

represented by the global queue (global receiving) with

a task dispatcher. This part of queue is responsible of

receiving user’s requests and arranging them in a finite

queue using Equation (2). As mentioned above, the task

arrival is modelled as a Poisson process with a mean

arrival λglob for the first global queue (global receiving).

The global queue in our system is modelled as M/M/1

queue model. The mean response time, MRglob, for the

first global queue (global receiving) in our model is

calculated taking in account the condition λglob < µglob as

follows:

1/
|

1- /
glob glob

glob
glob

glob glob
MR

The second sub-model (connection) is a set of parallel

connections combined with a set of scheduler agents,

and each scheduler agent has a sub-buffer queue and a

Global

transaction

Dispatche

r
Sub-

queue

 Use

r

User

(5)

(6)

(7)

(8)

42 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

VM. The scenario of each scheduler agent is as follows:

the dispatcher in the first sub-queue dispatches the

user’s request to the nominated buffer queue. After that,

the scheduler picks the user’s request from the buffer

queue and delivers it to the computing server. Finally,

the VM delivers the results after execution to the third

part of the queue system (global transition) and then to

the central utility Q-table. The second sub-queue of our

system (connection) is modelled as M/M/1/m with a

buffer size m. The probability of assigning a user’s

request to the ith buffer queue is represented by pi. The

mean response time for the user’s request to be

executed in the ith buffer queue is calculated as follows:

 1

1

1/
|

1- /
conn glob

i

N

ii

glob
conn

glob glob and pp
i

MR

The conditions λconn = pi λglob and 1
1

N

ii
p

 are used to

ensure the stability of the queue. The stability response

time for the user’s request to be allocated to any of the

buffer queue is given as follows:

 1 1

1/

1- /

glob
n nconn conn

i i i glob globi i
i

MR p MR p

The third part of our queue system (global transition) is

responsible for receiving the executed results from the

second sub-queue (connection) and transmit those

results to the central learning scheduler as a feedback

and then to the cloud user. Similar to the first part of

our queue system (global receiving), the third part

(global transition) can be also represented as a global

queue but with a task transmitter instead of a task

dispatcher. Thus, all the tasks involved a global queue

twice, once at the arrival and once after the execution.

The transmitter receipts the outcome results and

transfers them back to the users. The mean of arrival

rate at the transition queue (global transition) and at the

receiving queue (global receiving) is equal if there are

no dropped tasks. The mean service rate for the

transmitter is represented by the µtrans conditioning that

λglob < µglob. This part of the queue system (global

transition) is modelled as M/M/1, and the mean

response time is denoted as:

1/

1- /

trans
trans

trans trans
MR

The total response time in our cloud environment is

calculated as follows:

 total glob conn transMR MR MR MR

As a general scenario for task scheduling, the task

dispatcher transfers the user’s requests from the main or

global queue to the sub-queue. The task dispatching at

the designated moment of time executed following

specific steps. First, the scheduler agent creates a

scheduling policy based on the following parameters:

 The execution of pre-task conditions in VMs.

 The allocation remainder capacity Li of every VM.

 The resource total usage RTU.

 The resources dynamic changes ∆S and weight.

 The prediction of the execution time of the present

task.

Second, the ith user request is assigned to the nominated

sub-queue. Third, each finished and successfully

scheduled job produces a positive reward represented

by value 1, alternatively each unfinished job produces a

negative value represented by 0. Fourth, if there are

more than one job submitted by an scheduling agent to

the same VM, then the sum of the positive and negative

rewards will be calculated and produce a single reward.

Finally, each scheduler agent delver its local reward to

the central learning agent through the global queue and

add it to the cumulative reward then all stored as a

knowledge base for NFQ-based Reinforcement learning

algorithm.

NFQ-based Reinforcement learning algorithm is

responsible for executing the aforementioned steps.

According to the state of resources, each scheduler

agent takes an action after receiving the reward from

the previous action.

5.5. Decision Making

The knowledge base provides information to the agent

as we mentioned, this information aid the agent in the

decision making processing which is selecting a proper

action in each step. The learning agent take an action

based on the exploitation (aquired) information,

however, the learner also need to execute explorative

policies to enhance the performance. There is a tradeoff

beteween the couple exploration and exploitation in the

propsed NFQ-based Reinforcement learning algorithm

because without doing so, the agent will continue in

unlimited exploration. In decision making process, the

gent searches for the most desirable action which has

the most weighted value and high cumulative reward.

The action weight can be determined by the status of

task which depends on several factors such as the

virtual machine queue remainder buffer size, resource

total usage and the cumulative reward.

There are three components which are considered in

each taken action (dynamicity or resources status

change, policy and weight) as shown in Figure 3. In our

proposed system, the weight of nominated resource can

be affected by the queue remainder buffer size for each

VM, expected job execution time and the resource total

usage (CPU, RAM, Bandwidth, and Storage). The

suboptimal policy is obtained after each episode by the

leaning agent which employing a Q-learning then

update the Q-value table. The sub optimal policy for

each scheduler agent is estimated by the neural network

model and then obtains the optimal policy for the whole

situation which created by the global reward (central

(9)

(10)

(11)

(12)

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 43

learner agent’s reward) and local rewards vector. The

learning agent continue update the Q-value table until

the leaning process is finished which can balances the

process of exploration and exploitation efficiently.

Figure 5. The decision making in the proposed system.

Each scheduler agent places its local rewards in a

vector and sends it to the learner agent (Figure 5). As

mentioned, the leaner agent receives a set of local

rewards produced by the scheduler agents in each step.

The dynamic changes can be represented by a function

of the relation between this vector of local rewards and

the current resource total usage as:

(,)locS f R RTU

Where ∆S is the resource change (dynamicity), Rloc is

the local rewards, and RTU is the resource total usage

(including the queue remainder buffer size).

The policy estimation in decision making can be

represented by the following scenario:

a) The global leaner agent (after receiving the local

rewards) is responsible of sending the new Q-table

after been updated to the all scheduler agents.

b) The global Q-table can be represented by a vector

that its size created by the number of all scheduler

agents.

c) The central learning agent (global agent) uses the

local rewards vector to updates the Q-table as:

() (1)* () * ()ii
G q G q RV q

Where G(q) is the global Q-value, α is the learning

factor, RVi (q) is the ith Q-value in the local rewards

vector created by the ith scheduler agent for the ith

resource. The ith resource efficiency is evaluated by the

summation of all related rewards.

The decision making process is built on choosing the

best action to schedule the current job based on the

aforementioned parameters. Therefore, the best action

would be taken by the learning agent according to the

highest estimated value for ∆S function. Each

scheduling agent takes a job from its queue and selects

the suitable resource which has the highest estimated

value in the global Q-table and submits the job to it. As

mentioned, only the global learning agent is responsible

of collecting the local rewards, updates the global Q-

table and sends the new Q-value to the scheduler

agents. However, to avoid the single-point failure

occurrence in our system, we designed flexibility in

holding the global learning agent job position. Any one

of the scheduler agents can hold the global learning

agent position and hold its role in case of failure

occurrence.

6. Experimental Results

To evaluate our proposed approach TSMRL

performance we conducted several experiments through

a developed simulation. We compared the performance

of our approach with other scheduling algorithms such

as First In First Serve (FIFS), Greedy and Random

scheduling algorithms in terms of successful job

execution, response time, utilization and Average Load

of Resources (AloR). In the FIFS scheduling method,

the scheduler agent selects resource in a fair way and

the resources selection is not considered under any rules

unless the priority of resource allocation FIFS. In the

Greedy method, the scheduler agent schedules the jobs

in greedy approach which is actually similar to the

reinforcement learning in some concepts. In which the

scheduler in Greedy algorithm search for optimum

scheduling locally then decide which next step of

scheduling will maximize the benefits. In Random

method, the scheduler agent randomly selects the

resources and schedules the jobs without any

consideration for load or resource total usage. The

experiments setup and parameters are stated in Table 1.

Table 1. Parameters and values.

Parameter Value

VM buffer 10-50

PEs 5

Jobs total number 100-1000

VM memory (RAM) mega byte 512-2048

VMs total number 10

VM frequency (Million Instructions Per Second) 1-30

Job length (million instructions) 100-2000

Bandwidth (Million Bits Per Second) 1-2

In Figure 6 we conducted a comparison between our

approach TSMRL and the other methods in terms of

response time under different arrival rate (from 10 to 20

user requests per second). As we can see in the figure,

the proposed approach demonstrated a lowest response

time which indicate to the efficiency and reliability

enhancement by using the proposed approach.

In Figure 7 a comparison between the proposed

approach and the other approach in term of successfully

scheduled jobs is plotted under different deadlines

varies from 10 to 60 minutes. In the figure we can

notice that the successful jobs are increase with the

dead line incremental which is obvious in the proposed

approach the successful jobs incremental rate is higher

compared with the other approach.

(13)

(14)

44 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

Figure 6. The response time under different arrival rate (request/per

second).

Figure 7. The successful jobs number under varies deadline.

The evaluation metric AloR has been used for

perfomance evaluation in grid and cloud computing job

scheduling because AloR can efficiency assess the job

scheduling performance in grid and cloud environment

[30]. As we consider the resources heterogeneity in our

proposed model, the processing power (capacity) for

each resouce is different from the other. The processing

capacity for each resource is defined as the inverse of

the required CPU time to perform a unit of a job length

[30]. Taking the above scheduling methods (Greedy,

FIFS, Random, and TSMRL) in consideration, each

resource or VM has a queue to receive the arriving user

requests in it which perform only one job at a time

based on the adopted scheduling method. In addition,

each job has its own length which needs to be

performed in a given interval. Taking those

assumptions in consideration, we can calculate ALoR as

follows:

1
()*

N

1
()* ()

N C

r

r

r

rr

ALoR LoR

L

Where |N| is the number of resources, LoRr is the load

of rth resouce. Lr is the queue total jobs length for the rth

resouce, Cr is the capacity of rth resouce.

The lower evaluation value of metric ALoR is means

better performance because it is indecate to beter load

balancing among the resources. Alternatively, higher

evaluation value for ALoR means unsatisfied

performance for the same reason of lower load

balancing level. Evaluation of our proposed approach

has been done in two different scales (small and

medium) and two levels of loads (medium and heavy).

The number of resources and schedulers defines the

system scale while the load of the system is driven from

the proportion of total jobs length in the queue buffer to

the capacity of related resource.

In all figures, the performance of our proposed

approach TSMRL is lower (higher ALoR) in the initial

steps as the learner system needs to acquire history

from the past experiences. Alternatively, our proposed

method performs better (lower ALoR) as there is

incremental in the steps because of the gained

information from the past experiments. The parameters

of scales and load for the experiments have been plotted

as follows: Figure 8 small scale (30 schedulers) and

medium load (60%); Figure 9 large scale (60

schedulers) and medium load (60%); Figure 10 small

scale (30 schedulers) and heavy load (90%); Figure 11

large scale (60 schedulers) and heavy load (90%).

Figure 8. ALoR small scale and medium load.

Figure 9. Large scale and medium load.

Figure 10. ALoR small scale and heavy load.

Figure 11. Large scale and heavy load.

(15)

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 45

Figure 12. The utilization rate for 10 virtual machines.

In Figure 12, utilization rate of 10 virtual machines is

plotted. As we can noticed from the figure, our

proposed approach TSMRL achieved the best

utilization rate among the other approaches which is

shoes the efficiency of our proposed approach.

7. Conclusions

In this paper, we developed a multi-agent task

scheduler to enhance the reliability in cloud

environmment. In our proposed model, we

impmelemnted NFQ-based Reinforcement learning

algorithm to efficiently schedule the task and utilize the

resources in a proper way. The proposed model

contains several scheduler agents which are responsible

of task scheduling with resource total usage and queue

buffer size consideration. In our approach we

implemented neural network as a support for

reinforcement learning algorithm to learn and solve the

problem of the dynamicity in cloud environment. Each

scheduler agent reserve the user requests and schedules

it based on the resources status in the designated

moment then sends the reward as a Q-value to the

global learning agent. The global learning agent

evaluate the taken action through the past experience

and sends a Q-value back to the scheduler agents to

take the next action in the next step.

References

[1] Abdallah S. and Lesser V., “Learning the Task

Allocation Game,” in Proceedings of the 5th

International Joint Conference on Autonomous

Agents and Multiagent Systems, Hakodate, pp.

850-857, 2006.

[2] Bahrpeyma F., Golchin B., and Cranganu C.,

“Fast Fuzzy Modeling Method to Estimate

Missing Logsin Hydrocarbon Reservoirs,”

Journal of Petroleum Science and Engineering,

vol. 112, pp. 310-321, 2013.

[3] Bahrpeyma F., Zakerolhoseini A., and Haghighi

H., “Using IDS Fitted Q to Develop A Real-Time

Adaptive Controller for Dynamic Resource

Provisioning in Cloud’s Virtualized

Environment,” Applied Soft Computing, vol. 26,

pp. 285-298, 2015.

[4] Bu X., Rao J., and Xu C., “A Reinforcement

Learning Approach to Online Web Systems Auto-

Configuration,” in Proceedings of International

Conference on Distributed Computing Systems,

Montreal, pp. 2-11, 2009.

[5] Chang R., Chang J., and Lin P., “An Ant

Algorithm for Balanced Job Scheduling in Grids,”

Future Generation Computer Systems, vol. 25, no.

1, pp. 20-27, 2009.

[6] Ayyapazham R. and Velautham K., “Proficient

Decision Making on Virtual Machine Creation in

IaaS Cloud Environment,” The International Arab

Journal of Information Technology, vol. 14, no. 3,

pp. 314-323, 2017.

[7] Cirne W. and Berman F., “When the Herd is

Smart: Aggregate Behavior in the Selection of Job

Request,” IEEE Transactions on Parallel and

Distributed Systems, vol. 14, no. 2, pp. 181-192,

2003.

[8] Farahnakian F., Liljeberg P., and Plosila J.,

“Energy-Efficient Virtual Machines Consolidation

in Cloud Data Centers Using Reinforcement

Learning,” in Proceedings of 22nd Euromicro

International Conference on Parallel, Distributed,

and Network-Based Processing, Torino, pp. 500-

507, 2014.

[9] García S., Prado R., and Expósito J., “Fuzzy

Scheduling With Swarm Intelligence-Based

Knowledge Acquisition for Grid Computing,”

Engineering Applications of Artificial

Intelligence, vol. 25, no. 2, pp. 359-375, 2012.

[10] Gabel T., Lutz C., and Riedmiller M., “Improved

Neural Fitted Q Iteration Applied to A Novel

Computer Gaming and Learning Benchmark,” in

Proceedings of Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, Paris,

pp. 279-286, 2011.

[11] Guo Y., Lama P., Jiang C., and Zhou X.,

“Automated and Agile Server Parametertuning by

Coordinated Learning and Control,” Transactions

on Parallel and Distributed Systems, vol. 25, no.

4, pp. 876-886, 2014.

[12] Huang Y., Bessis N., Norrington P., Kuonen P.,

and Hirsbrunner B., “Exploring Decentralized

Dynamic Scheduling for Grids and Clouds Using

The Community-Aware Scheduling Algorithm,”

Future Generation Computer Systems, vol. 29, no.

1, pp. 402-415, 2013.

[13] Hussin M., Hamid N., and Kasmiran K.,

“Improving Reliability in Resource Management

through Adaptive Reinforcement Learning for

Distributed Systems,” Journal of parallel and

Distributed Computing, vol. 75, pp. 93-100, 2015.

[14] Ilg W., Berns K., Mühlfriedel T., and Dillmann

R., “Hybrid Learning Concepts Based on Self-

Organizing Neural Networks for Adaptive Control

of Walking Machines,” Robotics and Autonomous

46 The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021

Systems, vol. 22, no. 3-4, pp. 317-327, 1997.

[15] Khan S., Herrmann G., Lewis F., Pipe T., and

Melhuish C., “Reinforcement Learning and

Optimal Adaptive Control: An Overview and

Implementation Examples,” Annual Reviews in

Control, vol. 36, no. 1, pp. 42-59, 2012.

[16] Khazaei H., Misic J., and Misic V., “A Fine-

Grained Performance Model of Cloud Computing

Centers,” Transactions on parallel and distributed

systems, vol. 24, no. 11, pp. 2138-2147, 2013.

[17] Krauter K., Buyya R., and Maheswaran M., “A

Taxonomy and Survey of Grid Resource

Management Systems for Distributed

Computing,” Software: Practice and Experience,

vol. 32, no. 2, pp. 135-164, 2002.

[18] Lin Y. and Li X., “Reinforcement Learning Based

on Local State Feature Learning and Policy

Adjustment,” Information Sciences, vol. 154, no.

1-2, pp. 59-70, 2003.

[19] Liu X., Tong W., Zhi X., ZhiRen F., and

WenZhao L., “Performance Analysis of Cloud

Computing Services Considering Resources

Sharing Among Virtual Machines,” The Journal

of Supercomputing, vol. 69, no. 1, pp. 357-374,

2014.

[20] Llorente I., Moreno R., and Montero R., “Cloud

Computing for On-Demand Grid Resource

Provisioning,” Advances in Parallel Computing,

vol. 18, pp. 177-191, 2009.

[21] Pauli S., Kohler M., and Arbenz P., “A fault

tolerant implementation of Multi-Level Monte

Carlo methods,” Parallel computing: Accelerating

computational science and Engineering, vol. 25,

pp. 471-480, 2014.

[22] Riedmiller M., “Neural Fitted Q Iteration-First

Experiences with A Data Efficient Neural

Reinforcement Learning Method,” in Proceedings

of European Conference on Machine Learning,
Porto, pp. 317-328, 2005.

[23] Rizvandi N., Taheri J., Moraveji R., and Zomaya

A., “A Study on Using Uncertain Time Series

Matching Algorithms for Mapreduce

Applications,” Concurrency and Computation:

Practice and Experience, vol. 25, no. 12, pp.

1699-1718, 2013.

[24] Sutton R. and Barto A., Reinforcement Learning:

An introduction, MIT press, 2018.

[25] Tesauro G., “Practical Issues in Temporal

Difference Learning,” Machine Learning, vol. 8,

pp. 257-277, 1992.

[26] Tesauro G., Jong N., Das R., and Bennani M., “A

Hybrid Reinforcement Learning Approach to

Autonomic Resource Allocation,” in Proceedings

of the 3rd International Conference on Autonomic

Computing, Dublin, pp. 65-73, 2006.

[27] Vengerov D., “A Reinforcement Learning

Approach to Dynamic Resource Allocation,”

Engineering Applications of Artificial

Intelligence, vol. 20, no. 3, pp. 383-390, 2007.

[28] Vishkin U., Caragea G., and Lee B., Models,

Algorithms and Applications, Chapter Models for

Advancing PRAM and Other Algorithms Into

Parallel Programs for A PRAM-On-Chip

Platform, Handbook of Parallel Computing CRC

Press, 2006.

[29] Watkins C., “Learning from Delayed Rewards,”

PhD Thesis, King’s College, 1989.

[30] Wu J., Xu X., Zhang P., and Liu C., “A Novel

Multi-Agent Reinforcement Learning Approach

for Job Scheduling in Grid Computing,” Future

Generation Computer Systems, vol. 27, no. 5, pp.

430-439, 2011.

[31] Xhafa F. and Abraham A., “Computational

Models and Heuristic Methods for Grid

Scheduling Problems,” Future Generation

Computer Systems, vol. 26, no. 4, pp. 608-621,

2010.

[32] Zhang C., Lesser V., and Shenoy P., “A Multi-

Agent Learning Approach to Resource Sharing

Across Computing Clusters,” UMass Computer

Science Technical Report, University of

Massachusetts Amherst, 2008.

[33] Zheng Q., Yang H., and Sun Y., “How to Avoid

Herd: A Novel Stochastic Algorithm in Grid

Scheduling,” in Proceedings of 15th IEEE

International Conference on High Performance

Distributed Computing, Paris, pp. 267-278, 2006.

Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ... 47

Husamelddin Balla Received his

MSc in Computer Science from

Harbin Institute of Technology. He is

a research scholar at Northeast

Forestry University. His research

interests include cloud computing,

machine learning and natural

language processing.

Chen Sheng is currently a Doctoral

Supervisor and a Professor with

Northeast Forestry University, China.

He is also a member of the National

Innovation Methods Research

Institute and the Executive Director

of the Education Information

Technology Council of Education Ministry. He has

published over 30 academic papers and one monograph.

His research interests include biomass material

prediction, intelligent detection of new composite

materials, and big data on forestry.

Jing Weipeng received the Ph.D.

degree from the Harbin Institute of

Technology, China. He is currently

an Associate Professor with

Northeast Forestry University, China.

He has published over 50 research

articles in refereed journals and

conference proceedings, such as CPC, PUC, and FGCS.

His research interests include modeling and scheduling

for distributed computing systems, fault tolerant

computing and system reliability, cloud computing, and

spatial data mining.

