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Abstract: Cloud computing becomes the basic alternative platform for the most users application in the recent years. The 

complexity increasing in cloud environment due to the continuous development of resources and applications needs a 

concentrated integrated fault tolerance approach to provide the quality of service. Focusing on reliability enhancement in an 

environment with dynamic changes such as cloud environment, we developed a multi-agent scheduler using Reinforcement 

Learning (RL) algorithm and Neural Fitted Q (NFQ) to effectively schedule the user requests. Our approach considers the 

queue buffer size for each resource by implementing the queue theory to design a queue model in a way that each scheduler 

agent has its own queue which receives the user requests from the global queue. A central learning agent responsible of 

learning the output of the scheduler agents and direct those scheduler agents through the feedback claimed from the previous 

step. The dynamicity problem in cloud environment is managed in our system by employing neural network which supports the 

reinforcement learning algorithm through a specified function. The numerical result demonstrated an efficiency of our 

proposed approach and enhanced the reliability.  
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1. Introduction 

Large amount of data and systems in cloud environment 

are driven by the internet and provide massive 

information which it can be useful for developing 

applications and dictions making. Resources and 

applications in the cloud environment are rather 

heterogeneous and in a dynamic status, these 

heterogeneity and dynamicity management needs 

special care to deal with [20]. Since there are huge 

resources in a dynamic changes environment such as 

cloud environment, multi-agent resources allocation is 

essential and it is one of the most significant issues in 

cloud computing [6]. The resources in cloud computing 

have been developed and increased in the recent 

decades which emerges the decentralization 

management for these resources is essential for the 

reliability enhancement. There are many capabilities 

provided by cloud computing such as sharing various 

king of heterogeneous resources which are distributed 

among different locations on the cloud environment. A 

coordinated job scheduling plays an important role in 

cloud computing where the dynamic changes in the 

resources takes place [31]. The efficient algorithm for 

task scheduling can enhance and boost up the 

performance of system if there is a c suitable policy 

used for the scheduling. Load balancing plays an 

important role in cloud computing which can be defined 

as complementing the all assigned jobs in  

 
appropriate manner and time. An effective scheduling 

method such as adaptive scheduling for heterogeneous 

resource scheduling is required to manage the cloud 

resources efficiently.  

There are many advances have been done in the 

cloud computing in the recent decade. Man 

reinforcement learning-based scheduling approaches 

have been developed for enhancing the performance in 

the cloud environment, the scheduling approaches 

either using a model-free or a mode-based approach. In 

addition, there are many task scheduling algorithms 

have been studied in the distributed system environment 

[5]. On the other hand, the demand of reliability 

enhancement on distributed and cloud system becomes 

more and more as the increases of dynamic changes in a 

complex and massive networked environment such as 

cloud computing. Improving the resources scheduling 

in the network affects positively the reliability and 

decisions taking [23]. The taken decisions are not only 

for resources processing capacity matching of users 

requests or scheduling, but they also need to consider 

the behavior and performance of those resources. In the 

large distributed systems such as cloud systems, 

services should continue working even in the presence 

of unpredictable faults and the user requests should not 

affect the systems performance [20, 28]. The scheduling 

decisions should automatically tolerate the failure in 

order to be reliable, besides, providing high availability 
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On the other hand, centralized schedulers can 

perform efficiently if there is obtainable global 

information. However, lack of the scalability can be one 

of the centralized scheduling problems as well as the 

lack of fault tolerance capability [17]. To overcome this 

problem, several decentralized scheduling approaches 

have been developed but most of them perform as 

individual policies of scheduling which raises many 

synchronization problems [7, 33]. The extensive 

dependency between the resources and schedulers may 

lead to over communicate and network resource 

consumption problems. Therefore, managing 

scheduling with reasonable communication cost in 

decentralized environment is an essential issue. Taking 

in consideration this problem, a research has been 

conducted in [12] where a decentralized dynamic 

scheduling approach was proposed entitled the 

Community-Aware Scheduling Algorithm (CASA). 

To achieve the adaptation of resources scheduling in 

an environment containing heterogeneous resources, 

variation performance, and application diversity 

employing an adaptive scheduling approach is essential 

[16]. The aim of Reinforcement Learning (RL) is to 

provide a mechanism for solving uncertain decision 

making problems through interacting with the 

environment which can use data driven method to 

obtain a near optimal policies [24]. Reinforcement 

Learning is a model-free approach which can solve 

many scheduling problems in a dynamic endowment 

such as cloud computing environment. There are two 

types of learning approaches for resource scheduling in 

Reinforcement Learning. One of those two types is 

based on the gradient learning policy [1, 32] and the 

other type uses value function based learning [27]. 

In this work, we propose a Task Scheduling 

Implementing Multi-Agent NFQ-based Reinforcement 

Learning (TSMRL) approach for distributed resource 

scheduling in cloud environment to solve the problem 

of over communication and single point failure 

problem. In our proposed approach, the reliability 

enhanced by employing a multi-agent method for 

performing the task scheduling and learning the 

scheduled task efficiency by providing rewards to the 

agent after each scheduling action taken by the agent. 

The multi-scheduler in our proposed approach prevents 

the occurrence of whole system failure and solves the 

single point failure problem because if a fault occurred 

in one scheduler, the scheduling system will continue 

working through the other schedulers. The aspect that 

simplifies the decision making mechanism in our 

approach is there is only one learning table used for 

resources estimation. 

2. Problem Definition 

The cloud environment is a dynamic environment 

which can be affected by changes caused by the user 

requests and demanded resources state. In addition, the 

heterogeneity in cloud resources and diversity in the 

applications creates some difficulties in those resources 

management. Moreover, traditional approaches for 

resource scheduling in cloud computing cannot solve 

those problem in a satisfaction level because of the 

addition overhead that could come from over 

communication and network resources consumption. 

Therefore, to overcome those problems, an adaptive 

scheduling method is required in order to achieve a 

smooth and reliable task execution in an environment 

with dynamicity and heterogeneity.  

3. Related Work 

In the recent decade several researches have been 

conducted implementing Reinforcement Learning 

algorithm to solve cloud computing problems. Tesauro 

et al. [26] proposed a hybrid approach combining 

reinforcement learning algorithm and queuing theory in 

an open and closed traffic loop. Their proposed 

approach employed the queue theory for controlling the 

system while keeping the offline data for reinforcement 

learning to train on. In their system they used non-linear 

function for approximation instead of using lookup 

tables. Farahnakian et al. [8] used reinforcement 

learning for consolidation the virtual machines in cloud 

environment. The aim of their approach (RL based 

dynamic approach consolidation) is to minimize the 

active energy consumption. Bahrpeyma et al. [3] 

developed a model benefits from the prediction of 

demand and workload in term of discreteness and 

cumulative load. Their method also uses a knowledge-

based engine employing the Ink Drop Spread which 

implemented in [2] to design an adaptive controller 

based on reinforcement learning. Guo et al. [11] used 

reinforcement learning to minimize the response time of 

multi-tier applications by using parameters such as trial-

and-error. Their approach uses neural network to 

control fuzzy working which provides a fast method to 

reconstruct the neural system using reinforcement 

learning. Vengerov [27] proposed a general framework 

in to provide a dynamic allocation for the cloud 

resource. Their model uses reinforcement learning 

algorithm integrated with fuzzy rules to allocate in 

demand resources. They developed their model to be 

working without considering the existence of a resource 

allocation policy in the environment. In Zhang et al. 

[32] prosed a multi-agent method to optimize the online 

resources allocation. The methodology of taking the 

decision to allocate the resources in their method 

depends on two connected problems. The first problem 

is about taking the right decision for allocating the task 

locally. The second problem in their method is about 

task routing and how to take a decision for where to 

forward the task. In their model they employed heuristic 

strategies to speed up the learning approach and avoid 

the unwanted weak policies. In Hussin et al. [13] prosed 

a reliability aware model to improve the reliability in 
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cloud environment. They implanted reinforcement 

learning along with neural network to develop a task 

scheduler which considers the dynamicity in the cloud 

environment. Their system benefits from their previous 

neural network system [9] which they proposed for task 

scheduling in the grid network. To develop the task 

scheduling in their grid scheduling they utilizes a fuzzy 

rules which employ swarm intelligence for knowledge 

acquisition. Bu et al. [4], the authors developed an 

approach for define an exploration and exploitation 

method shows the capabilities of agents. The agents 

collaborate with the environment to increase the 

learning exploration, and they estimate the state using 

the applications’ information. In the meantime, the 

utility or Q table (which is updated by the agent) is 

ordinal and iteratively shared in the state to view and 

evaluate the efficiency of resources. However, the 

authors did not cover decisions regarding the dynamic 

environment of distributed resources. In our proposed 

system, we adopted RL, which deploys a highly 

dynamic environment in a distributed structure. Our 

proposed system can adapt with the changes in the 

dynamic environment and take the decision regarding 

these changes. To measure the indicators of 

performance, such as completion time and waiting time, 

the Liu et al. [19] deployed a Markov request queue 

model, which was achieved by considering the shared 

resources among Virtual Machines (VMs) and several 

failure types. Using RL as a framework, Wu  et al. [30] 

proposed a distributed learning algorithm named as 

Ordinal Sharing Learning (OSL). In their algorithm, 

each scheduler has a utility table, and this table must be 

updated in two steps. First, their algorithm uses local 

rewards to update the table. Second, their approach to 

update the table, the scheduler uses the utility table of 

its adjacent [21]. The scheduler drives its table to the 

neighbor scheduler after updating the utility table in 

cooperation with other schedulers, and the neighbouring 

agent completes the update and delivery of the utility 

table. Vengerov [27] Proposed a general framework and 

employed RL to perform dynamic resource allocation 

between multiple entities. This method uses RL 

combined with fuzzy rule bases and is flexible in that it 

can be employed in an environment with and without 

existing resource allocation policies. Compared to 

aformentioned methods, our appraoches uses 

tequniques to reduce the communication and network 

consuption such as a single Q-table for the learning 

agent. In our method we use a referee scheduler that can 

conroll the task scheduling thruogh the gained feedbak 

from all other schedulers in a central Q-table. We also 

consider the single point failure in our system by 

allowing all the agents to benifit from the central utility 

table (Q-table) and send and get the reward from this 

table. Therefore, our proposed system can takle the 

single-point failure and reduce the communication cost 

at the same time. 

4. Background and Motivation 

In this section we provide a motivation for using RL 

algorithm and some preliminaries for the implemented 

techniques in this work. 

4.1. Reinforcement Learning 

The main idea behind the RL algorithm is learning 

through the interaction with the environment [24]. 

There are three main components of RL algorithm 

which are the state, and the reward. The state produced 

from the environment where RL is working in, while 

the agent can be represented by the brain of the 

algorithm and the decision maker which takes its 

decision based on the received response from the 

environment. The response produced from the previous 

taken action and called the reward which express the 

value of (state, action) pair [24]. The agent in 

reinforcement learning technique trying to maximize 

the reward in every step [15]. 

The adaptive control approach usually requires a 

system model. However, the explicit model for 

resources in the cloud environment is hard to afford 

because of many factors and domain problems. 

Therefore, the proposed adaptive control system 

requires a model-free mechanism such as Q-learning 

[18]. In the Q-learning method, the system does not 

require a model for the environment in the decision 

making process. Moreover, the only required object for 

agents to take the decision is the current pair of (state, 

action). Q-learning is one of RL methods that can be 

employed when there is no condition of domain 

knowledge need to be provided for the agents initially 

[29]. Figure 1 shows the basic structure of RL. As 

shown in the figure, the agent in RL approach learns 

through the interaction with the environment. The agent 

perform the action at when it is in the state st then 

receive a reward (response) rt for the pair (st, at) and 

repeat with incremental value rt+1 and st+1 in a continue 

snow balling way. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The reinforcement learning basic architecture. 

The goal of the learning process in Q-learning is to 

achieve an optimal policy that can be reflected on the 

expected cumulative reward named Q-value then 

followed by taking an action in the current state. This 

Q-value can be calculated as: 

Environment 

Agent 

st+1 

rt+1 
st at 
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Where rt+1 is the immediate reward delivered to the 

agent by taken action at from the state st, α is the 

learning rate and γ is the discount factor.  

Equation (1) shows the Temporal Difference (TD) 

approach [25] which is proven to convergence to 

approximate the function of action-value to an 

acceptable value taken in account the probability 1 for 

the target policy. Algorithm 1 shows Q-learning 

working mechanism by observing the state, obtaining 

the feedback and update the cumulative reward. 

Algorithm 1: Q-learning policy 

1. Initialize the Q-value table for the pairs (s, a) 

2. Repeat for each episode 

3. Repeat for each step 

4. Observe the current state s 

5. Select an action using an exploratory function 

6. Obtain action a then get a feedback reward r to reach new 

state s’ 

7. Update cumulative reward (the Q-value) using equation (1) 

8. s = s’ 

9. End 

4.2. Reinforcement Learning 

The Q-learning rule in the previuos section can be 

directly implemented in a neural network. In this 

impelentation (Q-learning with neural network) an error 

function plays an important rule which aims to measure 

the error by caculating the difference between the 

curren Q-value and the previouse one [22]. The 

approximation function in the continuous domains is 

essential to estimate the observed experiences in the 

unseen cases because of the state domain infiniteness. 

Therefore, artificial neural network is regularly 

employed to provide support and knowledge base for 

RL [14]. This kind of approaches that uses the artificial 

neural network to provide the knowledge support for 

RL is called as Neural Fitted Q (NFQ) [10]. 

5. RL-based Task scheduling 

The main reasons behind implementing Reinforcement 

Learning with Neural Fitted Q (NFQ-based RL) in our 

proposed approach can be defined as follows: 

1. The model-based approaches in the scheduling 

mechanism (which we avoided in our system) 

depend on the grid information system which delays 

the resources information acquisition.  

2. The dynamicity of the cloud environment produces 

some difficulties in the cloud resources management, 

because of that an adaptive method (such as RL) is 

required. 

3. To minimize network communication overhead and 

reduce the network consumption using a central 

coordination by NFQ-based reinforcement learning. 

4. Q-learning is a flexible and practical for uncertainty 

and generalization problem solution. 

5. We implemented Q-learning because Q-learning is a 

value iteration method not policy iteration. Policy 

iteration methods need to train the agent in every 

episode taking the same policies which not 

applicable in a dynamic environment such as cloud 

environment. 

In our approach, all of the schedulers can obtain an 

accurate view of the resources state. To overcome the 

single point failure problem in our method, all 

schedulers can undertake the task which allow learning 

the task by other scheduler if the scheduler in charge 

failed to schedule the task. The main idea of our 

proposed approach is to learn the plant function by 

interaction between the agents and the environment. We 

need to set a goal to be achieved by the adopted 

learning mechanism. The goal of the implemented 

learning method is to achieve better results in task 

scheduling and resources management (maximize the 

accepted Q-values) which benefits from the used 

knowledge based approach. The knowledge based 

approach exquisite the information from the past 

experiences to establish a suitable decision. Therefore, 

more experiences can enrich the knowledge and 

enhance the decision making. The metrics of our system 

performance are the successful jobs execution number, 

response time for jobs execution and resources 

utilization which are somewhere relevant to our goal. A 

general structure of our proposed approach is shown in 

Figure 2. 

 
Figure 2. The basic structure of the proposed multi-agent approach. 

5.1. Learning Method 

The learning method in our appraoch is based on using 

multiple independing learning agents to accelerate the 

learning method. There is no need for explicit 

communications between agents in the independant 

learning, ulternatively, based on the local reard and 

state each agent learns independantly. However, this 

may rise an anomalous resources allocation problem 

due to the lack of communication between the agents. 
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To overcome this problem, we implemented nueral 

ntwork mechanism to work together in a coperative way 

with reinforcement learning as NFQ-based 

reinforcement learning. The idea of employing NFQ-

based reinforcement learning is to learn the local 

rewards that submitted by the schedulers agent after 

collecting those rewards and update the global utility 

table by the central learner agent. 

The learner in our method is responsible of 

information acquiring and the relation between the pair 

(state, action). We can classify the learning procosess in 

our system as a supurvised learning to formulate the 

model of the system response based on (state, action) 

thruogh the interaction with the environment. The 

formulation of task scheduling problem in our system 

as a supervised learning has a closed relation with the 

concept of reinforcement learning in which the 

supervised learning estimate the parameters in adaptive 

way. We implemented Q-learning for the reinforcement 

learning process in our system which based on dedicate 

the reward value to make the decision acording to the 

pair (state, action). The learnning system recieves a 

reward in each step and after every action it take, that 

how the learner learns how to choose the right action to 

make better results. 

5.2. The Environment and State 

In our proposed appraoch, the environment under scope 

is a dynamic envronment (cloud envronment) which 

rquire special care to deal with. In our system, the state 

space can be represented as the total number of the 

nodes available for serving the assigned tasks. Since 

queuing modeling is one of the important issues in task 

scheduling, we consider the buffer size queue for each 

node in the environment. In the dynamic and large 

system such as cloud systems, it is hard to obtain an 

accurate information about the resources due to the 

contiues changes in the resources attributes. Those 

changes can be rabidly occured and no chance to be 

adapted by the scheduler and results to incomplete the 

task within its deadline. 

To vercome this problem we impelemneted a 

queuing theory to control the queue buffer size and the 

load for each node as a sub queue for each computing 

serevr or virtual machine and a global queue for users 

input and output. In our method, we consider the load-

aware of nodes represent as rectional to support the 

knowledge base for the scheduler and accelerate the 

processing speed. The load of nodes can defined by a 

function f: Qu→Li qu ϵ Qu , the abstract f(qu) ϵ Li . The 

definition of this function can be represented as: 

2M
( 1, 1)

3

M 2M
( 1,

3 3

(1, )
3

0

t i

s i

m i

o i

f i

Qu if qu M
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Where M is the full lenght of buffer size, the 

remainder buffer size memorey is trivial for Qut, 

semi-trivial for Qus, middile for Qum, over-middile 

for Quo, and full for Quf. The periority of requests 

assigning will be given to the user requests with full 

remaining queue buffer size, then over-middile and so 

on. The total load for each node is a compination of the 

the remainder queue buffer size in addition to toatal 

usage of CPU, Bandwidth, RAM and storage in the ith 

node at a designated moment of time. Based on those 

node’s attributes and jobs expexcted execution time, the 

scheduler with the aid of NFQ-based reinforcement 

learning schedule the user requests to the nominated 

nodes. 

5.3. Local Reward 

The local rewards in our system are used to reflect the 

efficiency of job scheduling and the running state. 

There are differences in job scheduling as the 

heterogeneity in the virtual machines or nodes. We can 

represent the jobs need to be scheduled as Job=[job1, 

job2 , … , jobn ] and the nominated nodes as VM=[vm , 

vm2 , ... , vmm ], where n is the number of jobs and m is 

the number of virtual machines. As mentioned, the job 

can be successfully scheduled only if it meets the 

specified constrains which are the expected execution 

time for each job is less than the deadline and load of 

each node or virtual machine attributes is suitable and it 

illustrated by following function: 

1 ( , ) ( , )
( , )

0 ( , ) ( , )

load

i j

load

if C i j VM E i j
f J VM

if C i j VM E i j

 
 

 

  

Where C(i, j) is the completion time for each job Ji in a 

virtual machine VMj, and VMload is the load for each 

virtual machine which can be represented by the queue 

remainder buffer size and the total usage of CPU, 

RAM, Storage and Bandwidth for each VM, E(i, j) is 

the expected execution time for each job Ji in a virtual 

machine VMj . 

Using markov decision process for the job 

scheduling, the system’s current state at the scheduling 

moment is simply relevant to the previous state. The 

action set is represented as ‘reject’ or ‘receive’ the job 

by the virtual machine. As mentioned above, ‘receive’ 

is represented by 1 and it is true only if the constraints 

are met using Equation (4); otherwise, ‘reject’ and it is 

represented by 0. The local reward is employed for each 

scheduler to return the system’s running state and the 

running efficiency of the job scheduling scheme. The 

local reward in our approach can be represented as the 

above mentioned function f(Ji, VMj) as: 

1 ( , ) ( , )
( , )

0 ( , ) ( , )

i j load i j

i j

i j load i j

if C Job VM VM E Job VM
r Job VM

if C Job VM VM E Job VM

 
 

 

   

The job expected execution time can be calculated as: 

(2) 

(3) 

(4) 
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job ininstructions job size

VM pro
,  

cessing time VM bandwidth
i jE Job VM  

   

The completion time for each job Ji in a virtual machine 

VMj can be calculated as: 

( , ) ( , )i j i j iC Job VM E Job VM VM availability     

In each step a scheduler receives number of user 

requests or jobs for scheduling. A record for each job 

submission is created by the neural network (more 

details in next section) for the entry of each submitted 

job and saved in a scheduled job list. The job 

submission record contains the information extracted 

from Equation (5) by the neural network. The agent 

searches the scheduled job list and acquires the relevant 

information for each successfully completed job then 

performs a positive reward for the related resource. 

5.4. Neural Network and Action Performing 

As we mentioned, one of our system goals is control 

scheduling tasks in an environment with dynamic 

changes such as cloud environment. Thus, the control 

action can be represented as: 

( , )a S V     

Where a is the action control, ∆S is the resources 

dynamic changes and V is the virtual machines 

placement vision and the resources fitness for the 

current job scheduling. 

The fitness of the resource fitness can be donated by 

using the Li extracted from Equation (3) and the 

resource total usage Resource Total Usage (RTU) 

which is the utilization of Centeral Processing Unint 

(CPU), Read Acces Memory (RAM), Storage and 

Bandwidth at a designated time. The vision of situation 

to schedule the requests is a combination of resource 

weight which can be driven from the current VM status 

and the scheduling policy. Figure 3 shows the 

implementation of the neural network in our system as 

NFQ-based reinforcement learning. 

 
Figure 3. The neural network implementation in the proposed 

system as NFQ-based reinforcement learning. 

Each scheduling agent interact with the environment 

by obtaining the pair (state, action) at designated 

moment of time (st, at). The scheduler agent uses the 

above neural network (Figure 3) to acquire the (state, 

action) pairs. The state elements are VM queue 

remainder buffer size (Li) and the RTU while the action 

elements are the resources dynamic changes ∆S, weight 

and estimated sub-optimal policy. The scheduler agent 

obtains a sub-optimal policy by employing the Q-

learning algorithm and updates the utility table. The 

proposed system deploys a task scheduling method 

created by a global task queue with a limited buffer-size 

and NFQ-based reinforcement-learning task schedulers. 

In our proposed model, the arrival of the user’s requests 

at the system is modelled as a Poisson process with a 

mean arrival rate of λ. In a cloud computing 

environment, one or more servers VMs may be 

available with mean service rate of the requests µ. 

In order to achieve perfect results, the queuing 

system in our model is structured into three sub-models. 

The proposed queue model is designed using [9] as a 

reference. 

However, we redesigned the model to have sub-

models that interact with each other so that the output of 

one of them is the input of the other at the same time 

(Figure 4). 

 

Figure 4. Queuing structure in our proposed model. 

The first sub-model of our queue system is 

represented by the global queue (global receiving) with 

a task dispatcher. This part of queue is responsible of 

receiving user’s requests and arranging them in a finite 

queue using Equation (2). As mentioned above, the task 

arrival is modelled as a Poisson process with a mean 

arrival λglob for the first global queue (global receiving). 

The global queue in our system is modelled as M/M/1 

queue model. The mean response time, MRglob, for the 

first global queue (global receiving) in our model is 

calculated taking in account the condition λglob < µglob as 

follows: 
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The second sub-model (connection) is a set of parallel 

connections combined with a set of scheduler agents, 

and each scheduler agent has a sub-buffer queue and a 
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VM. The scenario of each scheduler agent is as follows: 

the dispatcher in the first sub-queue dispatches the 

user’s request to the nominated buffer queue. After that, 

the scheduler picks the user’s request from the buffer 

queue and delivers it to the computing server. Finally, 

the VM delivers the results after execution to the third 

part of the queue system (global transition) and then to 

the central utility Q-table. The second sub-queue of our 

system (connection) is modelled as M/M/1/m with a 

buffer size m. The probability of assigning a user’s 

request to the ith buffer queue is represented by pi. The 

mean response time for the user’s request to be 

executed in the ith buffer queue is calculated as follows: 

 



  



 1

1 

1/
|

1- /
conn glob

i

N

ii

glob
conn

glob glob and pp
i

MR
 

The conditions λconn = pi λglob and 1
1

N
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  are used to 

ensure the stability of the queue. The stability response 

time for the user’s request to be allocated to any of the 

buffer queue is given as follows: 

 


  
  1 1

1/

1- /

glob
n nconn conn

i i i glob globi i
i
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The third part of our queue system (global transition) is 

responsible for receiving the executed results from the 

second sub-queue (connection) and transmit those 

results to the central learning scheduler as a feedback 

and then to the cloud user. Similar to the first part of 

our queue system (global receiving), the third part 

(global transition) can be also represented as a global 

queue but with a task transmitter instead of a task 

dispatcher. Thus, all the tasks involved a global queue 

twice, once at the arrival and once after the execution. 

The transmitter receipts the outcome results and 

transfers them back to the users. The mean of arrival 

rate at the transition queue (global transition) and at the 

receiving queue (global receiving) is equal if there are 

no dropped tasks. The mean service rate for the 

transmitter is represented by the µtrans conditioning that 

λglob < µglob. This part of the queue system (global 

transition) is modelled as M/M/1, and the mean 

response time is denoted as: 



 


1/

1- /

trans
trans

trans trans
MR    

The total response time in our cloud environment is 

calculated as follows: 

   total glob conn transMR MR MR MR    

As a general scenario for task scheduling, the task 

dispatcher transfers the user’s requests from the main or 

global queue to the sub-queue. The task dispatching at 

the designated moment of time executed following 

specific steps. First, the scheduler agent creates a 

scheduling policy based on the following parameters: 

 The execution of pre-task conditions in VMs. 

 The allocation remainder capacity Li of every VM. 

 The resource total usage RTU.  

 The resources dynamic changes ∆S and weight. 

 The prediction of the execution time of the present 

task.  

Second, the ith user request is assigned to the nominated 

sub-queue. Third, each finished and successfully 

scheduled job produces a positive reward represented 

by value 1, alternatively each unfinished job produces a 

negative value represented by 0. Fourth, if there are 

more than one job submitted by an scheduling agent to 

the same VM, then the sum of the positive and negative 

rewards will be calculated and produce a single reward. 

Finally, each scheduler agent delver its local reward to 

the central learning agent through the global queue and 

add it to the cumulative reward then all stored as a 

knowledge base for NFQ-based Reinforcement learning 

algorithm. 

NFQ-based Reinforcement learning algorithm is 

responsible for executing the aforementioned steps. 

According to the state of resources, each scheduler 

agent takes an action after receiving the reward from 

the previous action. 

5.5. Decision Making 

The knowledge base provides information to the agent 

as we mentioned, this information aid the agent in the 

decision making processing which is selecting a proper 

action in each step. The learning agent take an action 

based on the exploitation (aquired) information, 

however, the learner also need to execute explorative 

policies to enhance the performance. There is a tradeoff 

beteween the couple exploration and exploitation in the 

propsed NFQ-based Reinforcement learning algorithm 

because without doing so, the agent will continue in 

unlimited exploration. In decision making process, the 

gent searches for the most desirable action which has 

the most weighted value and high cumulative reward. 

The action weight can be determined by the status of 

task which depends on several factors such as the 

virtual machine queue remainder buffer size, resource 

total usage and the cumulative reward. 

There are three components which are considered in 

each taken action (dynamicity or resources status 

change, policy and weight) as shown in Figure 3. In our 

proposed system, the weight of nominated resource can 

be affected by the queue remainder buffer size for each 

VM, expected job execution time and the resource total 

usage (CPU, RAM, Bandwidth, and Storage). The 

suboptimal policy is obtained after each episode by the 

leaning agent which employing a Q-learning then 

update the Q-value table. The sub optimal policy for 

each scheduler agent is estimated by the neural network 

model and then obtains the optimal policy for the whole 

situation which created by the global reward (central 

(9) 

(10) 

(11) 

(12) 
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learner agent’s reward) and local rewards vector. The 

learning agent continue update the Q-value table until 

the leaning process is finished which can balances the 

process of exploration and exploitation efficiently. 

 

Figure 5. The decision making in the proposed system. 

Each scheduler agent places its local rewards in a 

vector and sends it to the learner agent (Figure 5). As 

mentioned, the leaner agent receives a set of local 

rewards produced by the scheduler agents in each step. 

The dynamic changes can be represented by a function 

of the relation between this vector of local rewards and 

the current resource total usage as: 

( , )locS f R RTU   

Where ∆S is the resource change (dynamicity), Rloc is 

the local rewards, and RTU is the resource total usage 

(including the queue remainder buffer size). 

The policy estimation in decision making can be 

represented by the following scenario: 

a) The global leaner agent (after receiving the local 

rewards) is responsible of sending the new Q-table 

after been updated to the all scheduler agents.  

b) The global Q-table can be represented by a vector 

that its size created by the number of all scheduler 

agents. 

c) The central learning agent (global agent) uses the 

local rewards vector to updates the Q-table as: 

( ) (1 )* ( ) * ( )ii
G q G q RV q      

Where G(q) is the global Q-value, α is the learning 

factor, RVi (q) is the ith Q-value in the local rewards 

vector created by the ith scheduler agent for the ith 

resource. The ith resource efficiency is evaluated by the 

summation of all related rewards. 

The decision making process is built on choosing the 

best action to schedule the current job based on the 

aforementioned parameters. Therefore, the best action 

would be taken by the learning agent according to the 

highest estimated value for ∆S function. Each 

scheduling agent takes a job from its queue and selects 

the suitable resource which has the highest estimated 

value in the global Q-table and submits the job to it. As 

mentioned, only the global learning agent is responsible 

of collecting the local rewards, updates the global Q-

table and sends the new Q-value to the scheduler 

agents. However, to avoid the single-point failure 

occurrence in our system, we designed flexibility in 

holding the global learning agent job position. Any one 

of the scheduler agents can hold the global learning 

agent position and hold its role in case of failure 

occurrence. 

6. Experimental Results 

To evaluate our proposed approach TSMRL 

performance we conducted several experiments through 

a developed simulation. We compared the performance 

of our approach with other scheduling algorithms such 

as First In First Serve (FIFS), Greedy and Random 

scheduling algorithms in terms of successful job 

execution, response time, utilization and Average Load 

of Resources (AloR). In the FIFS scheduling method, 

the scheduler agent selects resource in a fair way and 

the resources selection is not considered under any rules 

unless the priority of resource allocation FIFS. In the 

Greedy method, the scheduler agent schedules the jobs 

in greedy approach which is actually similar to the 

reinforcement learning in some concepts. In which the 

scheduler in Greedy algorithm search for optimum 

scheduling locally then decide which next step of 

scheduling will maximize the benefits. In Random 

method, the scheduler agent randomly selects the 

resources and schedules the jobs without any 

consideration for load or resource total usage. The 

experiments setup and parameters are stated in Table 1.  

Table 1. Parameters and values. 

Parameter Value 

VM buffer 10-50 

PEs 5 

Jobs total number 100-1000 

VM memory (RAM) mega byte 512-2048 

VMs total number 10 

VM frequency (Million Instructions Per Second) 1-30 

Job length (million instructions) 100-2000 

Bandwidth (Million Bits Per Second) 1-2 

In Figure 6 we conducted a comparison between our 

approach TSMRL and the other methods in terms of 

response time under different arrival rate (from 10 to 20 

user requests per second). As we can see in the figure, 

the proposed approach demonstrated a lowest response 

time which indicate to the efficiency and reliability 

enhancement by using the proposed approach.  

In Figure 7 a comparison between the proposed 

approach and the other approach in term of successfully 

scheduled jobs is plotted under different deadlines 

varies from 10 to 60 minutes. In the figure we can 

notice that the successful jobs are increase with the 

dead line incremental which is obvious in the proposed 

approach the successful jobs incremental rate is higher 

compared with the other approach. 

(13) 

(14) 
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Figure 6. The response time under different arrival rate (request/per 

second). 

 

Figure 7. The successful jobs number under varies deadline.  

The evaluation metric AloR has been used for 

perfomance evaluation in grid and cloud computing job 

scheduling because AloR can efficiency assess the job 

scheduling performance in grid and cloud environment 

[30]. As we consider the resources heterogeneity in our 

proposed model, the processing power (capacity) for 

each resouce is different from the other. The processing 

capacity for each resource is defined as the inverse of 

the required CPU time to perform a unit of a job length 

[30]. Taking the above scheduling methods (Greedy, 

FIFS, Random, and TSMRL) in consideration, each 

resource or VM has a queue to receive the arriving user 

requests in it which perform only one job at a time 

based on the adopted scheduling method. In addition, 

each job has its own length which needs to be 

performed in a given interval. Taking those 

assumptions in consideration, we can calculate ALoR as 

follows: 

1
( )*

N

1
( )* ( )

N C

r

r

r

rr

ALoR LoR

L









 

Where |N| is the number of resources, LoRr is the load 

of rth resouce. Lr is the queue total jobs length for the rth 

resouce, Cr is the capacity of rth resouce. 

The lower evaluation value of metric ALoR is means 

better performance because it is indecate to beter load 

balancing among the resources. Alternatively, higher 

evaluation value for ALoR means unsatisfied 

performance for the same reason of lower load 

balancing level. Evaluation of our proposed approach 

has been done in two different scales (small and 

medium) and two levels of loads (medium and heavy). 

The number of resources and schedulers defines the 

system scale while the load of the system is driven from 

the proportion of total jobs length in the queue buffer to 

the capacity of related resource. 

In all figures, the performance of our proposed 

approach TSMRL is lower (higher ALoR) in the initial 

steps as the learner system needs to acquire history 

from the past experiences. Alternatively, our proposed 

method performs better (lower ALoR) as there is 

incremental in the steps because of the gained 

information from the past experiments. The parameters 

of scales and load for the experiments have been plotted 

as follows: Figure 8 small scale (30 schedulers) and 

medium load (60%); Figure 9 large scale (60 

schedulers) and medium load (60%); Figure 10 small 

scale (30 schedulers) and heavy load (90%); Figure 11 

large scale (60 schedulers) and heavy load (90%). 

 
Figure 8. ALoR small scale and medium load. 

 

Figure 9. Large scale and medium load. 

 

Figure 10. ALoR small scale and heavy load. 

 

Figure 11. Large scale and heavy load. 

(15) 



Reliability-Aware: Task Scheduling in Cloud Computing Using Multi-Agent ...                                                                          45 

 

Figure 12. The utilization rate for 10 virtual machines. 

In Figure 12, utilization rate of 10 virtual machines is 

plotted. As we can noticed from the figure, our 

proposed approach TSMRL achieved the best 

utilization rate among the other approaches which is 

shoes the efficiency of our proposed approach.  

7. Conclusions 

In this paper, we developed a multi-agent task 

scheduler to enhance the reliability in cloud 

environmment. In our proposed model, we 

impmelemnted NFQ-based Reinforcement learning 

algorithm to efficiently schedule the task and utilize the 

resources in a proper way. The proposed model 

contains several scheduler agents which are responsible 

of task scheduling with resource total usage and queue 

buffer size consideration. In our approach we 

implemented neural network as a support for 

reinforcement learning algorithm to learn and solve the 

problem of the dynamicity in cloud environment. Each 

scheduler agent reserve the user requests and schedules 

it based on the resources status in the designated 

moment then sends the reward as a Q-value to the 

global learning agent. The global learning agent 

evaluate the taken action through the past experience 

and sends a Q-value back to the scheduler agents to 

take the next action in the next step. 
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