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Abstract: In this paper, authors propose an auditory feature extraction algorithm in order to improve the performance of the 

speaker recognition system in noisy environments. In this auditory feature extraction algorithm, the Gammachirp filter bank is 

adapted to simulate the auditory model of human cochlea. In addition, the following three techniques are applied: cube-root 

compression method, Relative Spectral Filtering Technique (RASTA), and Cepstral Mean and Variance Normalization 

algorithm (CMVN).Subsequently, based on the theory of Gaussian Mixes Model-Universal Background Model (GMM-UBM), 

the simulated experiment was conducted. The experimental results implied that speaker recognition systems with the new 

auditory feature has better robustness and recognition performance compared to Mel-Frequency Cepstral Coefficients 

(MFCC), Relative Spectral-Perceptual Linear Predictive (RASTA-PLP),Cochlear Filter Cepstral Coefficients (CFCC) and 

gammatone Frequency Cepstral Coefficeints (GFCC). 
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1. Introduction 

Speaker recognition as a typical application of 

biometrics is being gradually applied to various fields. 

Nevertheless, the conditions in real world are not ideal 

and it always differs from those in laboratory, which 

could easily result in mismatches between training and 

testing environments. As a result, the recognition 

performance will be degraded dramatically. In the 

existing literature, there have been four main methods 

to improve the robust speaker recognition [2, 12]: anti-

noise feature extraction (extracting the characteristics 

of speech that are insensitive to the noise), speech 

enhancement (recovering/estimating the clean signal 

from its contaminated version), model 

compensation(m-odifying the parameters of the pure 

speech model according to the characteristics of 

ambient noise to compensate for mismatches between 

training and testing environment) and investigation on 

human auditory (the auditory characteristics of the 

human auditory system have stronger noise 

robustness). In this paper, authors will mainly 

implement the extraction method based on the anti-

noise feature. 

The human auditory system has stronger noise 

robustness and better recognition property under low 

Signal-to-Noise (SNR) conditions. The study of the 

auditory system focused on three aspects: experimental 

studies the auditory system, the auditory system 

modeling, and applications of the auditory system 

modeling [11]. The cochlea is the vital organ of the 

human auditory system and the basement membrane is 

an important structure of the cochlea. The basement  

membrane is generally taken as a set of band pass filter 

bank. The basement membrane as the filter has three 

characteristics [14]: non-uniform filter bandwidths; 

asymmetric frequency response of individual filters; 

level-dependent frequency response of individual 

filters. The prior studies have successfully engaged 

many fine features in the human auditory model. Now, 

the two most common robust features in the speaker 

recognition system are Mel-Frequency Cepstral 

Coefficient (MFCC) [16], Relative Spectral-Perceptual 

Linear Predictive (RASTA-PLP) [8], Cochlear Filter 

Cepstral Coefficients (CFCC) [14] and Gammatoin 

Filter Cepstral Coefficients (GFCC) [20]. In particular, 

MFCC partially considers the auditory characteristics 

of the human auditory system; however under clean 

speech conditions, mismatches between the training 

and testing environments would cause the recognition 

rate to significantly drop from 100% to 15.6% [4]. In 

contrast, under clean speech conditions, the recognition 

rate for MFCC could reach 96%, but when the SNR of 

the input signal is 6dB, the recognition rate drops to 

41.2% [13]. In Tazi et al. [20], Further improved the 

recognition rate by applying the Gammatone auditory 

filter to extract the speech feature parameters. This 

design method achieves good results. However, the 

problem is that the amplitude-frequency response of 

the Gammatone auditory filter is symmetric of the 

center frequency and there is no level-dependent 

characteristic in the Gammatone. Therefore, the 

characteristics of the basement membrane could not be 

illustrated. To fix this problem, Irino and Patterson [9] 

proposed the Gammachirp filter that could improve the 

simulation of the basement membrane characteristics. 
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Based on Irino’s work, Abdallah and Hajaiej [1], Salhi 

et al. [19] and Bouchamekh et al. [3] all successively 

utilized the Gammachirp filter bank to extract the 

auditory feature parameters, and applied it to the 

speaker recognition system. 

On the basis of previous findings from human 

auditory experiments, this paper proposed an auditory 

feature extraction algorithm using Gammachip filter, 

and the following three techniques are applied in the 

feature extraction: cube root compression [6], RASTA 

[7], and Cepstral Mean and Variance Normalization 

Technique (CMVN) [17]. What’s more, author also 

introduced the application of the GMM-UBM 

technique for the speaker recognition system. The 

experimental results have demonstrated that the 

proposed feature could effectively characterize the 

human auditory system and result in the higher 

recognition rate compared to other features. 

The overall structure of the speaker recognition 

system is introduced in section 2. The proposed feature 

extraction method with Gammachirp filter banks is 

presented in section 3. It consists in speech pre-

processing, in cube-root compression, RASTA filter 

techniques and CMVN method. Experiment setup is 

elaborated in section 4, including training set 

preparation, testing set preparation, and three different 

experimental setups. Experimental results reported in 

section 5 show the effectiveness of proposed feature 

extraction algorithm. 

2. Speaker Recognition System 

Architecture 

As the subset of pattern recognition, speaker 

recognition aims to recognize the object based on the 

prior knowledge of the object [15]. In this section, a 

formal description is provided to demonstrate the two 

fundamental components of the speaker recognition 

system: training and testing. At the training stage, the 

speaker’s discriminatory information is extracted via 

processing a set of clean speech signals. After that, the 

discriminative information would be used to construct 

the Gaussian Mixture Model (GMM) of the speaker as 

an input. At the testing stage, the recognition system 

has to extract the features from noisy speech signals 

and compare them against the stored models. 

Subsequently, the recognition results are recorded 

according to the match score. In summary, Figure 1 

illustrates the architecture of the speaker recognition 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Components of a typical speaker recognition system. 

GMM represents a speaker’s feature has become the 

dominant approach for the speaker recognition system. 

Reynolds and Rose [18] firstly presented Gaussian 

Mixture Model-Universal Background Model (GMM-

UBM) for the speaker recognition system and GMM-

UBM widely used in the speaker recognition systems 

over the last decade. The basic idea in the GMM-UBM 

is to derive the hypothesized speaker specific model by 

adapting the parameters of UBM using the speaker’s 

utterances and a form of Bayesian adaptation [5]. A 

formal description is provided to demonstrate the three 

fundamental components of the GMM-UBM based 

speaker recognition system: Universal Background 

Model (UBM) training, Bayesian adaptation of the 

UBM and speaker recognition. Firstly, two speaker 

model groups were built for male speaker and female 

speaker as Figure 2. The UBM is consisting of male 

UBM and female UBM. Then, the GMM speaker 

models are derived by adapting the parameters of the 

UBM using the speaker’s utterances. Also, the testing 

utterances are used to obtain significant mixture from 

the UBM. Lastly, the max score is computed by log-

likelihood [21].  

 

Figure 2. UBM training. 
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Figure 3. Components of a GMM-UBM based speaker recognition 

system. 

The pre-processing includes Optimally Modified 

Log-Spectral Amplitude Estimator (OM-LSA) [5] 

speech enhancement algorithm, pre-emphasis, framing, 

and windowing. Firstly, OM-LSA algorithm is applied 

to the input speech signal and y(n) is obtained. 

Secondly, the pre-emphasis is to enhance high 

frequencies of the signal and it is implemented by a 

Finite Impulse Response (FIR) filter, 

1( ) 1 0.95H z z   

Since the range of the speech signal is from 10 to 30ms 

which is short in time, the signal could be divided into 

several frames, where the ith frame has 256 samples. 

Then, each individual frame is windowed with 

hamming windows (w(n)) in order to minimize the 

number of signal discontinuities at the beginning and 

the end of each frame. x(n) is the result of windowing 

signals. 
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3. Feature Extraction with the Gammachirp 

Filter Banks 

3.1. Gammachirp Auditory Filter 

After collecting the physiological and psychological 

experimental data, Irino found that the auditory 

mechanism of the inner ear has a nonlinear 

characteristic. Based on this founding, he proposed the 

Gammachirp filter bank at first. The time-domain 

impulse response of the Gammachirp filter bank could 

be expressed as: 

1( ) exp( 2 ( ) ) exp( 2 ln( ) ))n

c r rg t t bERB f t j f t jc t j          

Where λ is the filter gain, n is the filter order and when 

n=4, it is a good simulation of the human basement 

membrane, fr is the center frequency and ϕ is the phase 

(usually ϕ=0). ERB(fr) is the equivalent rectangular 

bandwidth of an auditory filter at moderate levels (Hz). 
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In addition, the center frequency of rth filter fr 
can be 

given by the following equation: 
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Where fH 
is the high cutoff frequency of the filter, fL is 

the low cutoff of the filter. N is the number of filters 

and v is the percentage-overlapping factor. Note that v 

is also used to represent the overlapping percentage 

between adjacent filters. 

Moreover, the chirp factor c [10] is a parameter 

which determined the level-dependent frequency 

response of individual filters. 

c=3.38+0.107Ps  

Where ps is the power of the speech signal. Note that 

when c=0, the chirp term, jcln(t), the Gammachirp 

function degenerates to the Gammatone function.  

The Fourier transform of the Gammachirp could be 

derived as following: 
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According to Euler's Equation, 
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0
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         and a  can be 

treated as constants. 

Thus, the amplitude spectrum of the Gammachirp 

filer can be expressed in terms of the Gammatone as: 
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Where │GT(f)│ is the Fourier magnitude spectrum of 

the Gammatone filter , ecѳ(f) is a unit step function. It is 

noted that when c=0, Equation (16) degenerates to the 

amplitude spectrum of the Gammatone function 

│GT(f)│. 

In Figure 4, it shows the relationship between the 

three amplitude spectra. ecѳ(f) is defined as an 

asymmetric function centered at the asymptotic 

frequency. Amplitude-frequency response of 

Gammachirp filter showed a significant asymmetry, 

which is the most obvious difference between 

Gammachirp filter and Gammatone filter. Thus, the 

Gammachirp filter could be expressed as the 

multiplication of the Gammatone filter (GT(f)) and the 

symmetric filter (ecѳ(f)). 

 

Figure 4. Gammatone function and asymmetric function 

synthesized Gammachirp function. 

 

It could be clearly observed from Figure 5 that the 

frequency responses of Gammachirp filter with non-

uniform bandwidths and significant asymmetry over 

the range of frequencies. The characteristics of the 

basement membrane could be illustrated. 
 

  

Figure 5. Example of 24 Gammachirp filterbank. 

3.2. Feature Extraction with Gammachirp 

Filter Banks 

The analysis of speech signals is processed by a Ga-

mmachirp filterbank. In this work, author used 24 

Gammachirp filters in each filterbank, the filterbank is 

applied on the frequency band of  0, / 2fs Hz, (where fs 

is the sampling frequency, 8fs kHz ). The following 

three techniques are applied in the feature extraction: 

cube-root compression, RASTA, and CMVN. An 

illustrative block diagram is presented to demonstrate 

each step of the proposed feature extractor in Figure 6. 

Firstly, the cube-root compression is substituted with 

the output of each gammachirp filter such that the 

nonlinear of human auditory could be imitated.  

1
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Secondly, RASTA filter techniques a method to 

minimize the convolutional noise caused by the 

transmission channels.  
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Finally, the CMVN method is used to compensate for 

the effect of channel convolution noise in the cepstral 

domain.  

Where ym is output of the mth filter. 
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Figure 6. Block diagram of the used GCF method. 

4. Experiment Setup 

All the experimental data are using the Mandarin 

speech database collected by the laboratory where 

author studied in. Firstly, there are 120 speaker 

utterances (60 males and 60 females) as UBM training. 

Secondly, in addition to the above 120 speakers, the 

three experiments were carried out where there were 

total 36 speakers (22 males and 14 females) 

participating. Each speaker participated in two 

different recordings for the training and testing set. It 

should be noted that the training and testing set for 

each person is individual and has nothing to do with 

gender. In the training set, there are one utterance for 

each speaker and a total of 36 utterances. In addition, 

the average speech duration from the training data is 

around 60s for each speaker. Meanwhile, in the testing 

set, there are 5 utterances for each speaker and a total 

of 180 utterances. The duration of each testing 

utterance is approximately 5s of speech. 

 Experiment 1: the performance of the proposed 

Gammachirp Cepstral Frequency (GCF) feature 

under different chip factor c. 

The variation of the filter bandwidth and the spectral 

asymmetry property of the Gammachirp filter were 

considered in experiment 1. Besides, the level-

dependent of signal will also be considered. In 

particular, if the level-dependent was considered in the 

experiment, author would manually adjust the chirp 

factor c to fit the asymmetric degree size of filter 

spectrum. In general, the range of the chirp factor c 

[10] is [-3, 3]. Therefore, the chirp factor in this 

experiment was chosen to be c=1, c=2, c=3 and c=-1, 

c=-2, c=-3 respectively. Followed by the above 

procedures, the performance of the proposed feature 

GCF could be tested. The mixed degree of GMM-

UBM were 128, 256 and 512. The training data and 

testing data were both under clean testing condition. 

 Experiment 2: Test the anti-noise capability for GCF 

based GMM-UBM. 

The author uses NOISEUS database which includes 

three different types of ambient background noise: 

white noise, pink noise and f16 noise. The training data 

was under clean condition. And the testing data were 

collected by mixing clean utterances with four 

different noises at five different SNRs: 10, -5, 0, 5 and 

10dB. During that process, Mel filter bank, 

Gammatone filter bank and Gammachirp filter bank 

were used respectively. In this experiment, 24 channels 

were set for each filterbank. Moreover, MFCC, 

RASTA-PLP, CFCC, GFCC, and GCF were chosen to 

be the feature extractors in this set of experiments. The 

chirp factor c of GCF is assumed to be 2. Lastly, 

GMM-UBM was used for the classifier whose mixed 

degree was 128. 

 Experiment 3: Test the anti-noise capability of 

different chirp factor c. 

The chirp factor in this experiment was chosen to be 

c=1, c=2, c=3 and c=-1, c=-2, c=-3 respectively. 

Followed by the above chirp factor c, the performance 

of the proposed feature GCF could be tested. GMM-

UBM was used for the classifier whose mixed degree 

was 128. 

5. Experiment Results 

The result of experiment I are shown in Figure 7, 8, 

and 9. From Figure 9, it can be observed that the GCF 

feature generates the highest recognition rates while 

the mixture degrees of GMM-UBM were 128, 256 and 

512. In addition, if the chirp factor c is positive, the 

difference of the recognition rate is always less than 

1.11%. Eventually, the recognition rate can reach 

above 98%. However, if the chirp factor c is negative. 

When the mix degree of GMM-UBM is 128, the 

recognition rate of c=-3 is slightly less than that of 256 

and 512. Furthermore, Figure 8 shows that there is not 

much difference of the recognition rates for c=-1, c=-2, 

c=-3. In conclusion, the experimental results below 

imply that the chirp factor c and the mix degree of 

GMM-UBM influence the recognition rates slightly. 
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Figure 7. Recognition rate of different chip factor c (positive) under 

clean speech (%). 

 
Figure 8. Performance comparison of different chip factor c 

(negative) under clean speech (%). 

 
Figure 9. Performance comparison of MFCC, GFCC and proposed 

GCF (chirp factor c is 3) under clean condition (%). 

The results of experiment 2 are summarized and 

shown from Figures 10, 11, and 12. These figures 

recorded the recognition rates obtained from the 

proposed GCF feature, GFCC feature and MFCC 

feature with three different types of ambient 

background noise at SNR of -10, -5, 0, 5 and 10dB 

respectively. In each figure, the effectiveness of 

proposed feature could be compared to other two 

features given the same SNR of a particular ambient 

background noise. For example, assuming that f16 

noise is at 0dB SNR, the recognition rates of MFCC, 

RASTA-PLP, CFCC and GFCC features are 33.33%, 

45.78%, 75.67% and 88.89% respectively, however, 

the GCF feature has the corresponding recognition rate 

of 93.89%. Compared to the MFCC feature, RASTA-

PLP feature and CFCC feature, the GFCC feature has a 

higher recognition rate. However, it is still not as 

efficient as the proposed GCF feature. Moreover, it is 

clear to observe from these figures that when ambient 

background noise has the SNR higher than 5dB, the 

recognition rate of the proposed GCF feature is most 

surely higher than 93%. 
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Figure 10. GMM-UBM (pink noise). 
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Figure 11. GMM-UBM (f16 noise). 
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Figure 12. GMM-UBM (white noise). 

The results of experiment 3 are summarized and 

shown from Table 1 to Table 3. These tables recorded 

the recognition rates obtained from the proposed GCF 

feature with three different types of ambient 

12 25 51
0 

1

2

3

4

5

6

7

8

9

10

Mixtur

R
e
c
o
g
n
it
io

n
 R

a
te

 (
%

) 

  

  
MFC

CFC

GC

12 25 51
0 

1

2

3

4

5

6

7

8

9

10

Mixtur

R
e
c
o
g
n
it
io

n
 R

a
te

(%
) 

  

  
c=-

c=-

c=-

12 25 51
0 

1

2

3

4

5

6

7

8

9

10

Mixtur

R
e
c
o
g
n
it
io

n
 R

a
te

 (
%

) 

  

  
c=-

c=-

c=-



176                                                         The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020 

background noise at SNR of -10, -5, 0, 5 and 10dB 

respectively. In each table, the effectiveness of 

proposed feature could be compared with each other 

given the same SNR of a particular ambient 

background noise. For example, if the chirp factor c is 

positive and the SNR of the ambient background noise 

increases from -10dB to -5dB, the difference of the 

recognition rate is always less than 5%. Eventually, the 

recognition rate can reach above 90% with the SNR 

higher than 5dB. For example, if ambient background 

noise is pink noise and it is at the SNR of 10dB, the 

recognition rates with c=1, c=2, and c=3 are 97.78%, 

99.44%, and 98.33% respectively. However, if the 

chirp factor c is negative and the ambient background 

noise is pink noise, the recognition rate of c=-3 is 

slightly less than that of c=-1, c=-2. Furthermore, 

Table 2 shows that there is not much difference of the 

recognition rates for c=-1, c=-2. In conclusion, the 

experimental results below imply that the chirp factor c 
could influence recognition rates. 

Table 1. Speaker recognition rate with pink noise (%). 

 
SNR 

(10dB) 

SNR 

(-5dB) 

SNR 

(0dB) 

SNR 

(5dB) 

SNR 

(10dB) 

c=-1 46.67 63.68 94.44 97.22 97.78 

c=-2 46.67 68.33 93.89 97.22 97.78 

c=-3 42.68 64.78 88.89 93.89 96.11 

c=1 42.89 64.44 94.44 97.22 97.78 

c=2 46.67 65.56 92.78 97.22 99.44 

c=3 47.44 68.56 93.33 96.67 98.33 

Table 2. Speaker recognition rate with f16 noise (%). 

 
SNR 

(10dB) 

SNR 

(-5dB) 

SNR 

(0dB) 

SNR 

(5dB) 

SNR 

(10dB) 

c=-1 39.36 66.44 91.67 97.68 98.33 

c=-2 39.22 66.00 91.68 97.68 98.78 

c=-3 39.56 67.79 92.22 97.78 98.33 

c=1 40.00 67.26 92.76 97.22 97.78 

c=2 42.78 71.67 93.89 98.89 98.89 

c=3 41.67 68.89 93.89 98.11 98.33 

Table 3. Speaker recognition rate with white noise (%). 

 
SNR 

(10dB) 

SNR 

(5dB) 

SNR 

(0dB) 

SNR 

(5dB) 

SNR 

(10dB) 

c=-1 36.11 54.56 82.33 98.33 97.22 

c=-2 36.89 57.22 82.67 97.78 97.78 

c=-3 40.56 58.56 85.56 93.89 97.78 

c=1 35.63 53.69 84.22 91.67 97.89 

c=2 37.78 57.78 85.56 93.89 97.22 

c=3 40.49 58.22 86.11 93.44 97.78 

6. Conclusions 

In this study, authors proposed a robust feature 

extractor based on the Gammachirp filter and 

characteristics of human auditory system. And the 

authors also demonstrated that GMM-UBM can be 

applied for speaker recognition. The cube-root 

compression method, RASTA and CMVN were 

applied to the robust feature extraction. Two 

experiments were carried out and the results showed 

that the proposed feature extractor outperformed all the 

other feature extractors both under clean testing 

condition and noise testing condition. Moreover, under 

clean condition, the highest recognition rates were 

observed when the chirp factor c=3, which suggests 

that the choice of chirp factor c could significantly 

influence the recognition rate. Nevertheless, the chirp 

factor c is not the only factor that could affect the 

recognition rate, and the number of channels of the 

filter could also affect the recognition rate. Therefore, a 

promising direction for future work is to explore how 

the filter channels affects recognition rate. 
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