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1. Introduction 

The inception of the Deoxyribonucleic Acid (DNA) 

sequencing by Sanger sequencing and maxam-gilbert 

sequencing in mid 1970s has pulled a lot attention of 

researchers from numerous applied fields such 

as medical diagnosis, biotechnology, forensic biology, 

virology and biological systematics like European 

Bioinformatics Institute (EBI), National Center for 

Biotechnology Information (NCBI), National Institutes 

of Health (NIH) Genetic Sequence Database 

(GENBANK) and many more are making genome 

sequences publicly available to attract more 

researchers in the field of Bioinformatics. In 2005, 

with the genome analyzer, a single sequencing run 

could produce roughly one gigabase of data [5] with 

cost of 3 billion dollars in early days. By 2014, the rate 

increased by 1000 times to a 1.8 terabases of data in a 

single sequencing run. In contrast, the HiSeq 

Enterprise Translation Management System (XTM) 

Ten, released in 2014, can sequence over 45 human 

genomes in a single day for approximately $1000 each. 

Demand of DNA sequences and reducing cost of DNA 

sequencing techniques is more, a very large amount of 

genomic data is produced in the molecular biology 

databases.  

 Human DNA consists of about 3 billion bases, and 

more than 99 percent of those bases are common in all 

people. This fact has made researchers to exploit 

similarity between sequences of same species and 

focus on reference based sequence compression 

technique in which one sequence is selected as 

reference and all the other sequences of the same 

species are encoded with respect to the reference. It has 

been found that referential DNA sequence compression  

has achieved better results compared to other 

compression techniques such as Bit Encoding 

Techniques, Dictionary based compression and 

Statistical Compression. DNA sequences for future 

analysis efficiently in terms of space and time. It has 

been found that most of the DNA-compression 

techniques focus mostly on  

Compression ratio rather than compression and 

decompression time or speed during the compression 

process. Those techniques have not capitalized on the 

emergence of various parallel data processing 

techniques in distributed environment. In this paper we 

have proposed Referential DNA data compression 

using map reduce framework which has achieved a 

better balance between compression ratio and 

compression time. Our method has achieved similar 

compression ratio but has reduced the compression 

time by considerable margin using distributed 

processing. 

In this paper we have mentioned four methods for 

referential DNA data compression which we have 

followed from Referential Compression of Highly 

Similar Sequences (FRESCO) [11] method with 

capability of running them on high performance 

compute clusters using map reduce framework. The 

terms and sequence representations are mentioned in it. 

We have created and tested our own mapreduce 

algorithms for referential first order compression, 

Second order compression, reference rewriting and 

reference selection to make them suitable to use in 

distributed environment for big genomic data.  

This paper is organized as follows. In section 2 we 

discussed about related work. Map Reduce methods 

are proposed in section 3, experimental results are 

https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Virology
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presented in section 4 and conclusion and future 

scopeis discussed in sections 5 and 6 

2. Related Work 

Bit encoding technique uses two bits to represent each 

character: 00 for ‘A’, 01 for ‘C’, 10 for ‘G’ and 11 for 

‘T’. It achieves a fixed compression ratio of 4:1. 

Dictionary Based Algorithms create dictionary of 

frequently occurring substrings. It makes use of 

Lempel-Ziv compression algorithms [8] like LZ77, 

LZ78. Based on frequency of repeats and their 

distribution, this method achieves compression ratio of 

up to 6:1. In Statistical compression algorithms, the 

input is scanned and probability distribution of the 

symbols and repeats is determined from previous 

occurrences and matches in the subsets of the input.  

High probability of predicting next symbol or 

repeat, results in high compression ratios. Wang and 

Zhang [12] used widely known statistical DNA 

compression algorithm which makes use of both 

statistical properties and repetition within the 

sequences. This technique achieves compression ratio 

of 4:1 to 8:1 depending on the probability distribution. 

Referential compression algorithms recently have 

gained popularity in genome compression. Similarity 

between reference sequence and input sequence, in the 

form sequence matches, is encoded with various 

representations. The reference selected in the process 

must be preserved and should not be changed. Genome 

Resequencing (GRS) [6], Relative Lempel-Ziv (RLZ) 

[6], Relative Lempel-Ziv Optimization (RLZOpt) [9], 

Genome Resequencing Encoding (GReEn) [2], 

Thousands Genomes Compressor (TGC) [1], Genome 

Differential Compressor 2 (GDC2) [4], and FRESCO 

[3] are some of the known referential genome 

compression models. Arafat [1] multilayer model-

based approach for text compression.  

RLZ [7] can represent individual human genomes in 

around 0.1 bits per base supporting rapid access. 

RLZopt [8] technique shows 50% improvement in 

compression ratio of RLZ method. GReEn [3] has 

faster running time and compression gains of over 100 

folds for some sequences. GDC2 [3] presents an LZ77-

style compression scheme for relative compression of 

multiple genomes of the same species. GDC2 [4] uses 

effective search structure with two level compression 

algorithm. It applies Ziv-Lampel factoring of all 

sequences from the collection. It has achieved a very 

impressive compression ratio and compression speed 

of nearly 200MB/s. A Framework for Referential 

Sequence Compression (FRESCO) uses Single 

Nucleotide Polymorphisms (SNPs) which follows 

exact match preceding it, for more compact 

representation. FRESCO enhances compression ratio 

by applying second order compression. GDC and 

FRESCO also allow selection and modification of a 

reference sequence for achieving better compression. 

The intention of improving speed of compression 

algorithm, we process multiple DNA sequences in 

parallel manner over a big data compute clusters. 

3. Overview of Mapreduce Framework 

MapReduce supports parallel computations on vast 

amounts of data in-parallel on large clusters of 

commodity hardware in reliable, Fault-tolerant 

manner. It groups together all intermediate values 

associated with the same intermediate key and passes 

them to the Reduce function. The Reduce function, 

accepts an intermediate key and a set of values for that 

key. It merges together these values to form a possibly 

smaller set of values. Typically just zero or one output 

value is produced per Reduce invocation. The 

intermediate values are supplied to the user’s reduce 

function via an iterator. Combiner can be viewed as 

mini-reducers in the map phase. Partitioner comes into 

the picture when we are working on more than one 

reducer. So, the partitioner decides which reducer is 

responsible for a particular key. Both the input and 

output of the job is stored in a file-system. 

4. Referential DNA Data Compression 

Using Mapreduce Framework 

4.1. Referential Compression: First Order 

Compression 

In the following part, we have prepared an algorithm 

for first order referential dna data compression using 

hadoop mapreduce framework. In first order 

compression, we select one sequence as reference and 

encode the rest with respect to reference in distributed 

environment. Referentially Matched Entry (RME) [10] 

is a triplet <start, length, mismatch>, where start is a 

number indicating the start of match within the 

reference, length denotes the match length and 

mismatch denotes the first character after the match. It 

is used to encode input DNA sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Referential compression: first level compression. 

4.2. Proposed Mapreduce Method 

As the size of human DNA sequence is very large, we 

can split the input DNA sequence into multiple 
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partitions and compress each split in parallel in the 

distributed environment. The result of each split will 

be gathered in single file for the given input sequence. 

At the same time for processing enormous amount of 

data, we can compress multiple DNA sequences of 

same species simultaneously in distributed 

environment using big data processing clusters. 

In Figure 1 Pi is ith partition of given input 

sequence, Mij is the Mapper processing jth split of ith 

file, Partitioner i is ith partitioner and Ri is ith 

Reducer.In the above Map Reduce Job, the number of 

partitioners is equal to number of reducers. The input 

dataset to the Map Reduce job is the collection of all to 

be compressed input files. The proposed Map Reduce 

method requires one MapReduce job to complete the 

first order compression.  

 Example1: Reference Sequence: 

ACCTGTCACTGGATT ACTAATTCCAATTTA, 

length=30 

 Input Sequence: 

ACCTATCACTGGGTTACTATTTCCA GTTT, 

length = 29 Split Size: 10 

 Mapper 1: key= (sequence1,0), input value= 

ACCTGTCACT, After Compression= 

<0,4,A><5,5,-> 

 Mapper 2: key= (sequence1,1),input value= 

GATTACTAA AfterCompression: <10,2,G> 

<13,6,T> 

 Mapper 3: key= (sequence1,2),input value= 

TTCCAATTT After Compression: 

<20,5,G><26,3,-> 

 Reducer: key=Sequece1,Value={[<0,4,A><5,5,->],[ 
<10,2,G><13,6,T>],[<20,5,G><26,3,->]}Output= 
<0,4,A><5,7,G><13,6,T><20,5,G><26,3,-> 

As Reducer checks last RME of ith compressed 

sequence and first RME of (i+1)th compressed 

sequence, here reducer will check last RME <5,5,-> of 

0th partition and first RME <10,2,G> of 1st partition. 

These RME’s are merged as start1+length1= start 2 

and mischar is ‘-‘for <5,5,->.Similarly for subsequent 

partitions the above condition is tested.  

Algorithm 1: First Order Compression Map Task 

Input: Keyin=<FileName,PartitionNo>, Valuein= 

SplitSequence 

Output: Keyin=<FileName,PartitionNo>, 

Valueout=CompressedSequence 

1.Class RefComMapper 

2.   method  map(<FileName,PartitionNumber> 

       ,SplitSequence) 

3.        Reference = DistributedCache.getCacheFile() 

4.        Compressed_Seq= Referential_Compression   

             (SplitSequence,Reference) 

5.        Emit(<FileName,PartitionNumber>,  

              CompressedSequence) 

6.    method map close 

 

Algorithm 2: First Order Compression Reduce Task 

Input: Keyin=<FileName,PartitionNo>,Valuein=  

SplitSequence Output: Keyin=<FileName>,Valueout= 

CompressedSequence 

1.ClassRefComReducer 

2.    methodReduce(<FileName,PartitionNumber>,   

          CompressedSequence) 

3.      Iterator it = CompressedSequence.getIterator(); 

4.      prev = null; 

5.      while it.hasnext() do 

6.          cur = it.next();   

7.          start1 = prev.getLastRMEStart(); 

8.          start2 = cur.getCurRMEStart(); 

9.          matchLen1 = prev.getMatchLen(); 

10         if(start1+matchLen1 == start2) then 

11              Merge Last RME of prev and First RME of cur  

12     prev = cur; 

13     Emit(FileName, modifiedRME) 

14      end while 

15   method close 

To find the location of the match in reference 

sequence, we created K-mer based Hash table on 

reference sequence. It hashes every K length string in 

reference and attaches a list of locations to that k-mer 

in the Hash table where it can be found in reference 

sequence. We stored the reference in the form of Hash 

table in distributed cache before map reduce job starts. 

So I/O overhead to load this reference in every slave 

node from Distributed Cache is less as compared to 

loading it from HDFS. 

4.3. Second Order Compression 

DNA sequences of similar species are highly similar. 

The similarity between the sequences is in the form 

long matches interrupted by SNP’s and Insertion and 

Deletion (INDEL’s) mostly [17]. Due to the high 

similarity between the sequences, the SNP’s or 

INDEL’s and their positions are same in multiple 

sequences. So the result of the referential compression 

shows that compressed sequences have some similarity 

in terms of referentially matched entry and their order. 

This fact helps to compress the DNA sequences to 

further levels. Second order compression is also a 

referential compression method in which some 

compressed sequences are selected as reference and 

encode other sequences with respect to reference 

sequences (Figure 2).  

 Example 1. 

rc1=[<0,10,A><12,17,C><32,15,A><48,24,G> 

<74,20,T><94,30,C><130,15,T><146,31,G>] 

rc2=[<0,11,C><12,17,C><32,15,A><48,24,G><73,20,

T><94,30,C> <130,15,T><147,31,G>] 

If we make rc1 as reference and compress rc2 with 

respect to rc1, rc2 will be compressed to SOrc2 

=[<0,11,C>{1,3,0}<73,20,T>{5,2,0}<147,31,G>]. 

Where {si, ml, fi} denotes second order referentially 

matched entry with si as start index of RME in 

reference sequence, ml as number of matched RME’s 
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in same first order compressed sequence and fi is the 

file index of the matched reference file represented as 

the integer. We have mapped reference filenames to 

integer index starting from 0. The reason for mapping 

integer value to filename is to reduce the size second 

order referentially matched entry. 

RME Number is the RME index in reference from 

the start and Reference File Index is nothing but 

compressed reference file name mapped to integer 

value. This integer valued File Index not only reduces 

size of referentially match entry but also reduces the 

size of Hash Map created. The Hash Map is serialized 

and stored on Hadoop Distributed File System 

(HDFS). At the time of second order compression, 

each slave node performing Map and Reduce tasks 

load this serialized Hash Map from HDFS and 

deserialize it to Hash Map object. 

 

Figure 2. Second order compression using map reduce framework. 

4.3.1. Second Order Compression using Map 

Reduce Framework 

Proposed algorithm uses one map reduce job to 

perform second order compression. The input dataset 

used is the collection of referentially compressed files 

obtained from first order compression. We used nline 

input format to partition the data in input dataset. 

 Map Phase: in map phase, each mapper reads 

multiple lines from compressed sequences which 

are the compressed result of multiple splits in the 

first order compression. Mapper finds the similarity 

of input sequence with reference sequences and 

replaces consecutive matched RME’s across 

sequences by new entry{Start RME Number, NoOf 

Matched RME’s, RefFileIndex}. If a particular 

RME has been found that second order compression 

improves the compression ratios by considerable 

margin.  

Algorithm 3: Second Order Compression Map Task  

Input: Keyin=(FileName, LineOffset),            Valuein= 

(NCompressedLines) Output:Keyout=  (FileName, 

LineOffset), Valueout = (SOCompressedLines) 
1. Class SOCompMapper 

2.   Method Map(<FileName,LineOffset>,       

        NCompressedLines) 

3.      Reference = LoadHashMap(RefSequences);  

4.      for rmei in N CompressedLines do 

5.        if(rmei € Reference) then 

6.  match_length = 1;  

7 Get RME_Index in Reference File and   

             FileIndex of Reference File 

8. Set Start-index to RME_Index 

9. while next rmei in input and Reference matches     

                 do 

10.     Increment Match_length and RME_Index 

11. end while 

12. if (match_length>1) then 

13.   Append {start_index,match_length,FileIndex}  

                to SOComp; 

14.  else 

15.    Append rmeito SOComp;  

16.  end if 

17.      else 

18. Append rmeito SOComp; 

19.     end if 

20    end for  

21.  Emit ((<FileName,LineOffset>,SoCompSequence); 

22.  Method Map Close  

 Partitioner: partitioner helps for partitioning the 

intermediate keys generated by mappers. We have 

used filename from output key of mapper to send it 

to a particular reducer. The second order 

compressed results of same input file are sent to one 

reducer.  

 Reduce Phase: each Reducer gets results of multiple 

mappers grouped by file name of first order 

compressed files in sorted order of their line offset. 

Reducer only merges the result of mappers in single 

file in sorted order as shown in Figure 3. 

 
Figure 3. Partitioning and sorting on composite key.   

Algorithm 4: Second Order Compression Reduce Task 

Input: Keyin=FileName , LineOffset),Valuein=   

(SOCompressedLines) Output: Keyout= (FileName, 

LineOffset),Valueout=  (SOCompressedSeq) 

1. Class SOCompReducer 

2     MethodReduce(<FileName, LineOffset>,  

          SOCompressedLines) 

3.       Iterator it = SoCompSequence.getIterator(); 

4.       while it.hasNext() do 

5. SOCompressedSeq.append(it.next()) 

6.       end while 

7.    Method Close 
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To get better compression ratios, we should obtain 

RME’s with longer matches from reference and less 

number of RME’s as a result of first order 

compression. 

4.4. Reference Rewriting 

 The best reference selected in reference selection 

algorithm may produce same SNP’s in multiple input 

sequences with respect to reference.  So modifying 

reference by Replacement, Insertion or deletion of 

reference base character will result in less number of 

RME’s with longer matches. The necessary condition 

for rewriting reference base is that the two RME’s 

must be consecutive in the compressed sequence with 

respect to their location in reference sequence. If <s1, 

l1, c1> and <s2, l2, c2> are consecutive RME’s then 

reference base rewriting criteria are given as follows: 
INSERT Candidate: If s1+l1=s2 and rewrite location, 

l=s1+l1, Update Candidate: If s1+l1+1=s2 and rewrite 

location, l=s1+l1, Delete Candidate: If s1+l1+2=s2 and 

rewrite location, l=s1+l1. 

 MapReduce Method: The input to our Map Reduce 

job is the set of referential compressed sequences 

after first order compression. The input sequence is 

the collection of RME’s. We have used NLine Input 

Format to give N lines of input file to different 

mapper nodes. 

 Map Phase: In the map phase, we analyze two 

consecutive RME’s and check whether they satisfy 

criteria for Insert/Update/Delete base character 

rewrite.  

If they satisfy the criteria we emit first RME’s 

<start,length> as the key and <base character, 

INS/UPD/DEL> as value.  

 Reduce Phase: At each reducer, from how many 

compressed sequences the key<start,length> is 

emitted, is calculated. If frequency of counted base 

character for INS/UPD/DEL is greater than the 

threshold, we emit (start+length) as key and rewrite 

character as value. The rewrite results are 

accumulated in file, which are further used to 

modify reference file (Figure 4).  

 

Figure 4. Flowchart of reference rewriting mapreduce algorithm. 

Algorithm 5: Reference Rewriting Map Task 

Input: Keyin=<FileName,LineOffset>Valuein= 

<CompressedNLines> Output: Keyout= 

<start,matchLength>Valueout=  <MisChar,Criteria> 

1.Class RefRewMapper 

2.   Method Map(<FileName ,lineOffset>, CompSeq) 

3.       for all RME r(i) and r(i+1) ∈CompSeqcsdo 

4.        start1 = r(i).getStart(), start2 = r(i+1).getStart();  

5.        matchLength = r(i).getMLen(),  

           mischar= r(i).getMischar(); 

6         if(start1+matchLength == start2) then 

7.          Emit(<start,matchLength>,<mischar,INS>) 

8.        else if(start1+matchLength+1 == start2) then 

9. Emit(<start,matchLength>,<mischar,UPD>) 

10.      else if(start1+matchLength+2 == start2) then 

11. Emit(<start,matchLength>,<mischar,DEL>) 

12.      end for 

13.   close method Map 

Algorithm 6: Reference Rewriting Reduce Task 

Input: Keyin=<start,matchLength>, Valuein=  <MisChar 

,Criteria> Output: Keyout=<RewriteLocation> ,Valueout=  

 <MisChar> 

1.  classRefRewReducer 

2.    method Reduce(<start,mLen>,<Mischars,Criteria>) 

3.       sum ← 0, Asum ← 0, Csum ← 0, Gsum ← 0, 

         Tsum ← 0, loc = start+mLen 

4.      Identify whether criteria is INS/UPD/DEL  

5.      Find Mischar(A/C/T/G) and their counts in         

         valuein array 

6. if Asum> threshold then 

7.  Emit(loc, ‘A’) 

8. else if Csum> threshold then 

9.  Emit(loc, ‘C’) 

10. else if Gsum> threshold then 

11.  Emit(loc, ‘G’) 

12. else if Tsum> threshold then 

13.  Emit(loc, ‘T’) 

14. end if 

15.      close method Reduce 

The reference rewriting using map reduce framework 

is implemented and tested in distributed environment. 

The results after Reference rewriting have shown 

improvement in referential compression. Also the time 

required for reference rewriting in distributed environ 

has improved compared to FRESCO method.  

4.5. Reference Rewriting 

 To achieve better referential compression, selection of 

reference sequence plays a very important role. Best 

reference sequence selected will always result in less 

number of RME’s in compressed sequence, for 

majority of the input sequences, compared to other 

candidate reference sequences. To select the best 

reference sequence we have followed the heuristic in 

(Wandelt et al., [11]). If rc1 and rc2 are two 

referentially compressed sequences after first order 

compression, rsim is given as follows rsim (rc1, rc2)= | 

rc1 U rc2| - | rc1 ∩ rc2. 

As per the method mentioned in FRESCO, we 

require to find the candidate sequence which results in 

lowest rsim value. Each input sequence si is divided 
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into ‘P’ equal blocks and depending on K value, only 

every Kth block is considered for compression 

 Reference Selection using MapReduce Paradigm: 

Algorithm 7: Reference Selection Map Task 

Input:  Keyin = FileName,Valuein =SequencePart 

Output: Keyout= 1 ,Valueout= Rsim[] 

1.ClassRefSelectionMapper 

2.     method Map(<Filename>,<SequencePart>) 

3. Rsim[n] = {0} 

4. RMESet[] = Invoke First Order Compression  

               Job for SequencePart 

5. for every RMEi in RMESetdo 

6.     if RMEi ∈ HashedRME then 

7.        get indexes of filenames containing RMEi 

8.        Increment value Rsim[index] for all file  

                      indexes 

9.      end if 

10.  end for 

11.         Emit(1,Rsim[]) 

12.    close method Map 

Algorithm 8: Reference Selection Reduce Task 

Input : Keyin= 1 , Valuein= collection of Rsim[]  

Output:Keyout = Null, Valueout = BestCandidateRefName 

1.ClassRefSelReducer 

2. method Reduce(1,{Rsim1[],Rsim2[],…,Rsimm[]) 

3.          min = 0, index = -1 

4. Add ith index of every Rsimk[] in FRsim[]  

5. for every val i in FRsim[] do 

6.       if vali< min then 

7.  min =Vali 

8.  index = i 

9.      end if 

10. end for 

11. Emit(null,FileName[i]) 

12.   close method Reduce 

5. Experimental Results 

We performed experiments on (1+8 nodes) cluster 

machine having front node with 2 X Intel® xeon® E5-

2640 (2.5 GHz / 6-core/15MB/95w) processor, 64 GB 

RAM, 3 X 600GB HDD and remaining 8 nodes with 1 

X Intel® xeon® E5-2640 (2.5 GHz/6-core/15MB/95w) 

processor, 16GB RAM, 2 X 300GB HDD. We 

considered two datasets for experiments: Human 

Genome and Arabidopsis Thaliana as shown in Table 

2. Human DNA sequences are taken from phase 1 of 

1000 Genome project and AT sequences are taken 

from 1001 Genome Project. The input given to 

MapReduce Job is in the form of FASTA files. GDC 

has also given documentation and scripts to convert 

VCF files of individual chromosomes to FASTA files. 

We compared GDC, FRESCO and proposed method 

on MapReduce framework in terms of Compression 

Ratio and Compression Time for human chromosomes 

(H.chr) as shown in Table 1. 

 

 

 

Table 1. 1+8 Node cluster machine, results for 50 input samples. 

Sample Name. 
Compression Ratio Compression Time(in sec) 

GDC FRESCO Proposed GDC FRESCO Proposed 

H.chr-15 704 648 481 230 36.4 24.1 

H. chr-17 626 549 367 560 27.4 22.9 

H.chr-18 572 487 318 189 28.2 21.6 

H.chr-19 554 472 428 430.4 22.3 17.5 

H. chr-20 603 526 403 197.7 17 19.2 

H.chr-21 672 525 394 53.4 17 17.6 

H.chr-22 830 752 579 81.2 17.3 17.4 

H.chr-01 652 565 420 520 87 42.3 

AT genome 141 122 104 160 42 21 

It is observed that we have achieved comparable 

compression ratio with GDC and FRESCO but our 

method is superior in terms of compression time in 

most of the cases. The compression time improves 

very well if file size is greater than default HDFS block 

size. In our case, HDFS default block size was 128MB.  

For Analysis, we selected first 50 samples of each 

some Human chromosome and 18 samples of Adenine 

and Thymine (AT) sequences shown in Table 2. 

Table 2. Input dataset for human chromosomes. 

Sample File Size Dataset Size 

Human chr.1 249 MB 12.45 GB 

Human chr.15 101.3 MB 4.83 GB 

Human chr.17 78.2 MB 3.82 GB 

Human chr.18 75.5 MB 3.68 GB 

Human chr.19 57.1 MB 2.85 GB 

Human chr.20 60.9 MB 3.1 GB 

Human chr.21 46.6 MB 2.36 GB 

Human chr.22 49.5 MB 2.4 GB 

AT Genome 119 MB 1.89 GB 

The Table 3 shows size of input dataset of human 

chromosome samples and 18 Arabidopsis Thaliana 

samples before compression and after compression. So 

for Human chromosome 1, each file is divided into two 

splits leading to more parallelism and less book-

keeping information for name node. The variation in 

Compression Ratio and Compression Time can be seen 

in the following Figures 5, 6, and 7. 

Table 3. Compression results in size and compression speed. 

Sample Name 
Input 

Dataset Size 

Size after 

compression 

Compression 

Speed 

Human chr-15 4.83 GB 10.06 MB 201 MB/s 

Human chr-17 3.82 GB 10.61 MB 166 MB/s 

Human chr-18 3.68 GB 11.87 MB 170.4 MB/s 

Human chr-19 2.85 GB 6.7 MB 162 MB/s 

Human chr-20 3.1 GB 7.69 MB 162.4 MB/s 

Human chr-21 2.36 GB 6.05 MB 134.1 MB/s 

Human chr-22 2.4 GB 4.21 MB 137.9 MB/s 

Human chr-01 12.45 GB 29.64 MB 294.5 MB/s 

AT genome 1.89 GB 18.17MB 90.6 MB/s 

 
Figure 5. Chromosome wise analysis of compression ratio. 
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Figure 6. Chromosome wise analysis of compression time. 

More the file size, more compression speed will be 

achieved. Sequences like Human Chromosome 1 gives 

best result in terms of Compression Speed and time.  

 

Figure 7. Chromosome wise analysis of compression speed. 

We performed Second Order Compression on the 

results obtained after first order compression. The 

compression factor further increases based on wise 

selection of reference compressed sequences obtained 

after First order compression. We randomly selected 

five samples from compressed sequences, and prepared 

Hash Index to find the match between input first 

ordered compressed sequences and reference 

compressed sequence. Adding more compressed 

sequences in reference improved compression ratio 

further. For compressed Human chromosome of 

HG00097 sample from 1000 genome project, we 

compressed it further to 191 KB from 214 KB. Results 

for some of the compressed samples after second order 

compression can be analysed in the following diagram. 

Figure 8 shows the chromosome wise variation in the 

compression speed. 

 

Figure 8. Chromosome wise analysis of compression speed. 

6. Conclusions and Future Work 

As per the experiments results it is found that proposed 

method gives efficient results in distributed 

environment in terms of compression ratio and time 

required for compression. The proposed method is 

comparable or near similar to other referential 

compression methods like GDC and FRESCO, but the 

time required for compression has been improved 

considerably when multiple DNA samples are 

considered for compression using MapReduce.  

In future, referential genome compression can be 

implemented on Distributed Parallel Processing 

Frameworks like Apache Spark and finding maximal 

common sub-graphs. Apache Spark has shown better 

results in some cases over MapReduce Framework. 
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