
The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020 207

Referential DNA Data Compression using Hadoop

Map Reduce Framework

Raju Bhukya and Sumit Deshmuk

Department of Computer Science and Engineering, National Institute of Technology, India

Abstract: The indispensable knowledge of Deoxyribonucleic Acid (DNA) sequences and sharply reducing cost of the DNA

sequencing techniques has attracted numerous researchers in the field of Genetics. These sequences are getting available at an

exponential rate leading to the bulging size of molecular biology databases making large disk arrays and compute clusters

inevitable for analysis.In this paper, we proposed referential DNA data compression using hadoop MapReduce Framework to

process humongous amount of genetic data in distributed environment on high performance compute clusters. Our method has

successfully achieved a better balance between compression ratio and the amount of time required for DNA data compression

as compared to other Referential DNA Data Compression methods.

Keywords: Compression, map reduce sequences, dna sequences.

Received August 12, 2017; accepted April 17, 2018

https://doi.org/10.34028/iajit/17/2/8

1. Introduction

The inception of the Deoxyribonucleic Acid (DNA)

sequencing by Sanger sequencing and maxam-gilbert

sequencing in mid 1970s has pulled a lot attention of

researchers from numerous applied fields such

as medical diagnosis, biotechnology, forensic biology,

virology and biological systematics like European

Bioinformatics Institute (EBI), National Center for

Biotechnology Information (NCBI), National Institutes

of Health (NIH) Genetic Sequence Database

(GENBANK) and many more are making genome

sequences publicly available to attract more

researchers in the field of Bioinformatics. In 2005,

with the genome analyzer, a single sequencing run

could produce roughly one gigabase of data [5] with

cost of 3 billion dollars in early days. By 2014, the rate

increased by 1000 times to a 1.8 terabases of data in a

single sequencing run. In contrast, the HiSeq

Enterprise Translation Management System (XTM)

Ten, released in 2014, can sequence over 45 human

genomes in a single day for approximately $1000 each.

Demand of DNA sequences and reducing cost of DNA

sequencing techniques is more, a very large amount of

genomic data is produced in the molecular biology

databases.

 Human DNA consists of about 3 billion bases, and

more than 99 percent of those bases are common in all

people. This fact has made researchers to exploit

similarity between sequences of same species and

focus on reference based sequence compression

technique in which one sequence is selected as

reference and all the other sequences of the same

species are encoded with respect to the reference. It has

been found that referential DNA sequence compression

has achieved better results compared to other

compression techniques such as Bit Encoding

Techniques, Dictionary based compression and

Statistical Compression. DNA sequences for future

analysis efficiently in terms of space and time. It has

been found that most of the DNA-compression

techniques focus mostly on

Compression ratio rather than compression and

decompression time or speed during the compression

process. Those techniques have not capitalized on the

emergence of various parallel data processing

techniques in distributed environment. In this paper we

have proposed Referential DNA data compression

using map reduce framework which has achieved a

better balance between compression ratio and

compression time. Our method has achieved similar

compression ratio but has reduced the compression

time by considerable margin using distributed

processing.

In this paper we have mentioned four methods for

referential DNA data compression which we have

followed from Referential Compression of Highly

Similar Sequences (FRESCO) [11] method with

capability of running them on high performance

compute clusters using map reduce framework. The

terms and sequence representations are mentioned in it.

We have created and tested our own mapreduce

algorithms for referential first order compression,

Second order compression, reference rewriting and

reference selection to make them suitable to use in

distributed environment for big genomic data.

This paper is organized as follows. In section 2 we

discussed about related work. Map Reduce methods

are proposed in section 3, experimental results are

https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Virology

208 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

presented in section 4 and conclusion and future

scopeis discussed in sections 5 and 6

2. Related Work

Bit encoding technique uses two bits to represent each

character: 00 for ‘A’, 01 for ‘C’, 10 for ‘G’ and 11 for

‘T’. It achieves a fixed compression ratio of 4:1.

Dictionary Based Algorithms create dictionary of

frequently occurring substrings. It makes use of

Lempel-Ziv compression algorithms [8] like LZ77,

LZ78. Based on frequency of repeats and their

distribution, this method achieves compression ratio of

up to 6:1. In Statistical compression algorithms, the

input is scanned and probability distribution of the

symbols and repeats is determined from previous

occurrences and matches in the subsets of the input.

High probability of predicting next symbol or

repeat, results in high compression ratios. Wang and

Zhang [12] used widely known statistical DNA

compression algorithm which makes use of both

statistical properties and repetition within the

sequences. This technique achieves compression ratio

of 4:1 to 8:1 depending on the probability distribution.

Referential compression algorithms recently have

gained popularity in genome compression. Similarity

between reference sequence and input sequence, in the

form sequence matches, is encoded with various

representations. The reference selected in the process

must be preserved and should not be changed. Genome

Resequencing (GRS) [6], Relative Lempel-Ziv (RLZ)

[6], Relative Lempel-Ziv Optimization (RLZOpt) [9],

Genome Resequencing Encoding (GReEn) [2],

Thousands Genomes Compressor (TGC) [1], Genome

Differential Compressor 2 (GDC2) [4], and FRESCO

[3] are some of the known referential genome

compression models. Arafat [1] multilayer model-

based approach for text compression.

RLZ [7] can represent individual human genomes in

around 0.1 bits per base supporting rapid access.

RLZopt [8] technique shows 50% improvement in

compression ratio of RLZ method. GReEn [3] has

faster running time and compression gains of over 100

folds for some sequences. GDC2 [3] presents an LZ77-

style compression scheme for relative compression of

multiple genomes of the same species. GDC2 [4] uses

effective search structure with two level compression

algorithm. It applies Ziv-Lampel factoring of all

sequences from the collection. It has achieved a very

impressive compression ratio and compression speed

of nearly 200MB/s. A Framework for Referential

Sequence Compression (FRESCO) uses Single

Nucleotide Polymorphisms (SNPs) which follows

exact match preceding it, for more compact

representation. FRESCO enhances compression ratio

by applying second order compression. GDC and

FRESCO also allow selection and modification of a

reference sequence for achieving better compression.

The intention of improving speed of compression

algorithm, we process multiple DNA sequences in

parallel manner over a big data compute clusters.

3. Overview of Mapreduce Framework

MapReduce supports parallel computations on vast

amounts of data in-parallel on large clusters of

commodity hardware in reliable, Fault-tolerant

manner. It groups together all intermediate values

associated with the same intermediate key and passes

them to the Reduce function. The Reduce function,

accepts an intermediate key and a set of values for that

key. It merges together these values to form a possibly

smaller set of values. Typically just zero or one output

value is produced per Reduce invocation. The

intermediate values are supplied to the user’s reduce

function via an iterator. Combiner can be viewed as

mini-reducers in the map phase. Partitioner comes into

the picture when we are working on more than one

reducer. So, the partitioner decides which reducer is

responsible for a particular key. Both the input and

output of the job is stored in a file-system.

4. Referential DNA Data Compression

Using Mapreduce Framework

4.1. Referential Compression: First Order

Compression

In the following part, we have prepared an algorithm

for first order referential dna data compression using

hadoop mapreduce framework. In first order

compression, we select one sequence as reference and

encode the rest with respect to reference in distributed

environment. Referentially Matched Entry (RME) [10]

is a triplet <start, length, mismatch>, where start is a

number indicating the start of match within the

reference, length denotes the match length and

mismatch denotes the first character after the match. It

is used to encode input DNA sequence.

Figure 1. Referential compression: first level compression.

4.2. Proposed Mapreduce Method

As the size of human DNA sequence is very large, we

can split the input DNA sequence into multiple

Referential DNA Data Compression using Hadoop Map Reduce Framework 209

partitions and compress each split in parallel in the

distributed environment. The result of each split will

be gathered in single file for the given input sequence.

At the same time for processing enormous amount of

data, we can compress multiple DNA sequences of

same species simultaneously in distributed

environment using big data processing clusters.

In Figure 1 Pi is ith partition of given input

sequence, Mij is the Mapper processing jth split of ith

file, Partitioner i is ith partitioner and Ri is ith

Reducer.In the above Map Reduce Job, the number of

partitioners is equal to number of reducers. The input

dataset to the Map Reduce job is the collection of all to

be compressed input files. The proposed Map Reduce

method requires one MapReduce job to complete the

first order compression.

 Example1: Reference Sequence:

ACCTGTCACTGGATT ACTAATTCCAATTTA,

length=30

 Input Sequence:

ACCTATCACTGGGTTACTATTTCCA GTTT,

length = 29 Split Size: 10

 Mapper 1: key= (sequence1,0), input value=

ACCTGTCACT, After Compression=

<0,4,A><5,5,->

 Mapper 2: key= (sequence1,1),input value=

GATTACTAA AfterCompression: <10,2,G>

<13,6,T>

 Mapper 3: key= (sequence1,2),input value=

TTCCAATTT After Compression:

<20,5,G><26,3,->

 Reducer: key=Sequece1,Value={[<0,4,A><5,5,->],[
<10,2,G><13,6,T>],[<20,5,G><26,3,->]}Output=
<0,4,A><5,7,G><13,6,T><20,5,G><26,3,->

As Reducer checks last RME of ith compressed

sequence and first RME of (i+1)th compressed

sequence, here reducer will check last RME <5,5,-> of

0th partition and first RME <10,2,G> of 1st partition.

These RME’s are merged as start1+length1= start 2

and mischar is ‘-‘for <5,5,->.Similarly for subsequent

partitions the above condition is tested.

Algorithm 1: First Order Compression Map Task

Input: Keyin=<FileName,PartitionNo>, Valuein=

SplitSequence

Output: Keyin=<FileName,PartitionNo>,

Valueout=CompressedSequence

1.Class RefComMapper

2. method map(<FileName,PartitionNumber>

 ,SplitSequence)

3. Reference = DistributedCache.getCacheFile()

4. Compressed_Seq= Referential_Compression

 (SplitSequence,Reference)

5. Emit(<FileName,PartitionNumber>,

 CompressedSequence)

6. method map close

Algorithm 2: First Order Compression Reduce Task

Input: Keyin=<FileName,PartitionNo>,Valuein=

SplitSequence Output: Keyin=<FileName>,Valueout=

CompressedSequence

1.ClassRefComReducer

2. methodReduce(<FileName,PartitionNumber>,

 CompressedSequence)

3. Iterator it = CompressedSequence.getIterator();

4. prev = null;

5. while it.hasnext() do

6. cur = it.next();

7. start1 = prev.getLastRMEStart();

8. start2 = cur.getCurRMEStart();

9. matchLen1 = prev.getMatchLen();

10 if(start1+matchLen1 == start2) then

11 Merge Last RME of prev and First RME of cur

12 prev = cur;

13 Emit(FileName, modifiedRME)

14 end while

15 method close

To find the location of the match in reference

sequence, we created K-mer based Hash table on

reference sequence. It hashes every K length string in

reference and attaches a list of locations to that k-mer

in the Hash table where it can be found in reference

sequence. We stored the reference in the form of Hash

table in distributed cache before map reduce job starts.

So I/O overhead to load this reference in every slave

node from Distributed Cache is less as compared to

loading it from HDFS.

4.3. Second Order Compression

DNA sequences of similar species are highly similar.

The similarity between the sequences is in the form

long matches interrupted by SNP’s and Insertion and

Deletion (INDEL’s) mostly [17]. Due to the high

similarity between the sequences, the SNP’s or

INDEL’s and their positions are same in multiple

sequences. So the result of the referential compression

shows that compressed sequences have some similarity

in terms of referentially matched entry and their order.

This fact helps to compress the DNA sequences to

further levels. Second order compression is also a

referential compression method in which some

compressed sequences are selected as reference and

encode other sequences with respect to reference

sequences (Figure 2).

 Example 1.

rc1=[<0,10,A><12,17,C><32,15,A><48,24,G>

<74,20,T><94,30,C><130,15,T><146,31,G>]

rc2=[<0,11,C><12,17,C><32,15,A><48,24,G><73,20,

T><94,30,C> <130,15,T><147,31,G>]

If we make rc1 as reference and compress rc2 with

respect to rc1, rc2 will be compressed to SOrc2

=[<0,11,C>{1,3,0}<73,20,T>{5,2,0}<147,31,G>].

Where {si, ml, fi} denotes second order referentially

matched entry with si as start index of RME in

reference sequence, ml as number of matched RME’s

210 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

in same first order compressed sequence and fi is the

file index of the matched reference file represented as

the integer. We have mapped reference filenames to

integer index starting from 0. The reason for mapping

integer value to filename is to reduce the size second

order referentially matched entry.

RME Number is the RME index in reference from

the start and Reference File Index is nothing but

compressed reference file name mapped to integer

value. This integer valued File Index not only reduces

size of referentially match entry but also reduces the

size of Hash Map created. The Hash Map is serialized

and stored on Hadoop Distributed File System

(HDFS). At the time of second order compression,

each slave node performing Map and Reduce tasks

load this serialized Hash Map from HDFS and

deserialize it to Hash Map object.

Figure 2. Second order compression using map reduce framework.

4.3.1. Second Order Compression using Map

Reduce Framework

Proposed algorithm uses one map reduce job to

perform second order compression. The input dataset

used is the collection of referentially compressed files

obtained from first order compression. We used nline

input format to partition the data in input dataset.

 Map Phase: in map phase, each mapper reads

multiple lines from compressed sequences which

are the compressed result of multiple splits in the

first order compression. Mapper finds the similarity

of input sequence with reference sequences and

replaces consecutive matched RME’s across

sequences by new entry{Start RME Number, NoOf

Matched RME’s, RefFileIndex}. If a particular

RME has been found that second order compression

improves the compression ratios by considerable

margin.

Algorithm 3: Second Order Compression Map Task

Input: Keyin=(FileName, LineOffset), Valuein=

(NCompressedLines) Output:Keyout= (FileName,

LineOffset), Valueout = (SOCompressedLines)
1. Class SOCompMapper

2. Method Map(<FileName,LineOffset>,

 NCompressedLines)

3. Reference = LoadHashMap(RefSequences);

4. for rmei in N CompressedLines do

5. if(rmei € Reference) then

6. match_length = 1;

7 Get RME_Index in Reference File and

 FileIndex of Reference File

8. Set Start-index to RME_Index

9. while next rmei in input and Reference matches

 do

10. Increment Match_length and RME_Index

11. end while

12. if (match_length>1) then

13. Append {start_index,match_length,FileIndex}

 to SOComp;

14. else

15. Append rmeito SOComp;

16. end if

17. else

18. Append rmeito SOComp;

19. end if

20 end for

21. Emit ((<FileName,LineOffset>,SoCompSequence);

22. Method Map Close

 Partitioner: partitioner helps for partitioning the

intermediate keys generated by mappers. We have

used filename from output key of mapper to send it

to a particular reducer. The second order

compressed results of same input file are sent to one

reducer.

 Reduce Phase: each Reducer gets results of multiple

mappers grouped by file name of first order

compressed files in sorted order of their line offset.

Reducer only merges the result of mappers in single

file in sorted order as shown in Figure 3.

Figure 3. Partitioning and sorting on composite key.

Algorithm 4: Second Order Compression Reduce Task

Input: Keyin=FileName , LineOffset),Valuein=

(SOCompressedLines) Output: Keyout= (FileName,

LineOffset),Valueout= (SOCompressedSeq)

1. Class SOCompReducer

2 MethodReduce(<FileName, LineOffset>,

 SOCompressedLines)

3. Iterator it = SoCompSequence.getIterator();

4. while it.hasNext() do

5. SOCompressedSeq.append(it.next())

6. end while

7. Method Close

Referential DNA Data Compression using Hadoop Map Reduce Framework 211

To get better compression ratios, we should obtain

RME’s with longer matches from reference and less

number of RME’s as a result of first order

compression.

4.4. Reference Rewriting

 The best reference selected in reference selection

algorithm may produce same SNP’s in multiple input

sequences with respect to reference. So modifying

reference by Replacement, Insertion or deletion of

reference base character will result in less number of

RME’s with longer matches. The necessary condition

for rewriting reference base is that the two RME’s

must be consecutive in the compressed sequence with

respect to their location in reference sequence. If <s1,

l1, c1> and <s2, l2, c2> are consecutive RME’s then

reference base rewriting criteria are given as follows:
INSERT Candidate: If s1+l1=s2 and rewrite location,

l=s1+l1, Update Candidate: If s1+l1+1=s2 and rewrite

location, l=s1+l1, Delete Candidate: If s1+l1+2=s2 and

rewrite location, l=s1+l1.

 MapReduce Method: The input to our Map Reduce

job is the set of referential compressed sequences

after first order compression. The input sequence is

the collection of RME’s. We have used NLine Input

Format to give N lines of input file to different

mapper nodes.

 Map Phase: In the map phase, we analyze two

consecutive RME’s and check whether they satisfy

criteria for Insert/Update/Delete base character

rewrite.

If they satisfy the criteria we emit first RME’s

<start,length> as the key and <base character,

INS/UPD/DEL> as value.

 Reduce Phase: At each reducer, from how many

compressed sequences the key<start,length> is

emitted, is calculated. If frequency of counted base

character for INS/UPD/DEL is greater than the

threshold, we emit (start+length) as key and rewrite

character as value. The rewrite results are

accumulated in file, which are further used to

modify reference file (Figure 4).

Figure 4. Flowchart of reference rewriting mapreduce algorithm.

Algorithm 5: Reference Rewriting Map Task

Input: Keyin=<FileName,LineOffset>Valuein=

<CompressedNLines> Output: Keyout=

<start,matchLength>Valueout= <MisChar,Criteria>

1.Class RefRewMapper

2. Method Map(<FileName ,lineOffset>, CompSeq)

3. for all RME r(i) and r(i+1) ∈CompSeqcsdo

4. start1 = r(i).getStart(), start2 = r(i+1).getStart();

5. matchLength = r(i).getMLen(),

 mischar= r(i).getMischar();

6 if(start1+matchLength == start2) then

7. Emit(<start,matchLength>,<mischar,INS>)

8. else if(start1+matchLength+1 == start2) then

9. Emit(<start,matchLength>,<mischar,UPD>)

10. else if(start1+matchLength+2 == start2) then

11. Emit(<start,matchLength>,<mischar,DEL>)

12. end for

13. close method Map

Algorithm 6: Reference Rewriting Reduce Task

Input: Keyin=<start,matchLength>, Valuein= <MisChar

,Criteria> Output: Keyout=<RewriteLocation> ,Valueout=

 <MisChar>

1. classRefRewReducer

2. method Reduce(<start,mLen>,<Mischars,Criteria>)

3. sum ← 0, Asum ← 0, Csum ← 0, Gsum ← 0,

 Tsum ← 0, loc = start+mLen

4. Identify whether criteria is INS/UPD/DEL

5. Find Mischar(A/C/T/G) and their counts in

 valuein array

6. if Asum> threshold then

7. Emit(loc, ‘A’)

8. else if Csum> threshold then

9. Emit(loc, ‘C’)

10. else if Gsum> threshold then

11. Emit(loc, ‘G’)

12. else if Tsum> threshold then

13. Emit(loc, ‘T’)

14. end if

15. close method Reduce

The reference rewriting using map reduce framework

is implemented and tested in distributed environment.

The results after Reference rewriting have shown

improvement in referential compression. Also the time

required for reference rewriting in distributed environ

has improved compared to FRESCO method.

4.5. Reference Rewriting

 To achieve better referential compression, selection of

reference sequence plays a very important role. Best

reference sequence selected will always result in less

number of RME’s in compressed sequence, for

majority of the input sequences, compared to other

candidate reference sequences. To select the best

reference sequence we have followed the heuristic in

(Wandelt et al., [11]). If rc1 and rc2 are two

referentially compressed sequences after first order

compression, rsim is given as follows rsim (rc1, rc2)= |

rc1 U rc2| - | rc1 ∩ rc2.

As per the method mentioned in FRESCO, we

require to find the candidate sequence which results in

lowest rsim value. Each input sequence si is divided

212 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

into ‘P’ equal blocks and depending on K value, only

every Kth block is considered for compression

 Reference Selection using MapReduce Paradigm:

Algorithm 7: Reference Selection Map Task

Input: Keyin = FileName,Valuein =SequencePart

Output: Keyout= 1 ,Valueout= Rsim[]

1.ClassRefSelectionMapper

2. method Map(<Filename>,<SequencePart>)

3. Rsim[n] = {0}

4. RMESet[] = Invoke First Order Compression

 Job for SequencePart

5. for every RMEi in RMESetdo

6. if RMEi ∈ HashedRME then

7. get indexes of filenames containing RMEi

8. Increment value Rsim[index] for all file

 indexes

9. end if

10. end for

11. Emit(1,Rsim[])

12. close method Map

Algorithm 8: Reference Selection Reduce Task

Input : Keyin= 1 , Valuein= collection of Rsim[]

Output:Keyout = Null, Valueout = BestCandidateRefName

1.ClassRefSelReducer

2. method Reduce(1,{Rsim1[],Rsim2[],…,Rsimm[])

3. min = 0, index = -1

4. Add ith index of every Rsimk[] in FRsim[]

5. for every val i in FRsim[] do

6. if vali< min then

7. min =Vali

8. index = i

9. end if

10. end for

11. Emit(null,FileName[i])

12. close method Reduce

5. Experimental Results

We performed experiments on (1+8 nodes) cluster

machine having front node with 2 X Intel® xeon® E5-

2640 (2.5 GHz / 6-core/15MB/95w) processor, 64 GB

RAM, 3 X 600GB HDD and remaining 8 nodes with 1

X Intel® xeon® E5-2640 (2.5 GHz/6-core/15MB/95w)

processor, 16GB RAM, 2 X 300GB HDD. We

considered two datasets for experiments: Human

Genome and Arabidopsis Thaliana as shown in Table

2. Human DNA sequences are taken from phase 1 of

1000 Genome project and AT sequences are taken

from 1001 Genome Project. The input given to

MapReduce Job is in the form of FASTA files. GDC

has also given documentation and scripts to convert

VCF files of individual chromosomes to FASTA files.

We compared GDC, FRESCO and proposed method

on MapReduce framework in terms of Compression

Ratio and Compression Time for human chromosomes

(H.chr) as shown in Table 1.

Table 1. 1+8 Node cluster machine, results for 50 input samples.

Sample Name.
Compression Ratio Compression Time(in sec)

GDC FRESCO Proposed GDC FRESCO Proposed

H.chr-15 704 648 481 230 36.4 24.1

H. chr-17 626 549 367 560 27.4 22.9

H.chr-18 572 487 318 189 28.2 21.6

H.chr-19 554 472 428 430.4 22.3 17.5

H. chr-20 603 526 403 197.7 17 19.2

H.chr-21 672 525 394 53.4 17 17.6

H.chr-22 830 752 579 81.2 17.3 17.4

H.chr-01 652 565 420 520 87 42.3

AT genome 141 122 104 160 42 21

It is observed that we have achieved comparable

compression ratio with GDC and FRESCO but our

method is superior in terms of compression time in

most of the cases. The compression time improves

very well if file size is greater than default HDFS block

size. In our case, HDFS default block size was 128MB.

For Analysis, we selected first 50 samples of each

some Human chromosome and 18 samples of Adenine

and Thymine (AT) sequences shown in Table 2.

Table 2. Input dataset for human chromosomes.

Sample File Size Dataset Size

Human chr.1 249 MB 12.45 GB

Human chr.15 101.3 MB 4.83 GB

Human chr.17 78.2 MB 3.82 GB

Human chr.18 75.5 MB 3.68 GB

Human chr.19 57.1 MB 2.85 GB

Human chr.20 60.9 MB 3.1 GB

Human chr.21 46.6 MB 2.36 GB

Human chr.22 49.5 MB 2.4 GB

AT Genome 119 MB 1.89 GB

The Table 3 shows size of input dataset of human

chromosome samples and 18 Arabidopsis Thaliana

samples before compression and after compression. So

for Human chromosome 1, each file is divided into two

splits leading to more parallelism and less book-

keeping information for name node. The variation in

Compression Ratio and Compression Time can be seen

in the following Figures 5, 6, and 7.

Table 3. Compression results in size and compression speed.

Sample Name
Input

Dataset Size

Size after

compression

Compression

Speed

Human chr-15 4.83 GB 10.06 MB 201 MB/s

Human chr-17 3.82 GB 10.61 MB 166 MB/s

Human chr-18 3.68 GB 11.87 MB 170.4 MB/s

Human chr-19 2.85 GB 6.7 MB 162 MB/s

Human chr-20 3.1 GB 7.69 MB 162.4 MB/s

Human chr-21 2.36 GB 6.05 MB 134.1 MB/s

Human chr-22 2.4 GB 4.21 MB 137.9 MB/s

Human chr-01 12.45 GB 29.64 MB 294.5 MB/s

AT genome 1.89 GB 18.17MB 90.6 MB/s

Figure 5. Chromosome wise analysis of compression ratio.

Referential DNA Data Compression using Hadoop Map Reduce Framework 213

Figure 6. Chromosome wise analysis of compression time.

More the file size, more compression speed will be

achieved. Sequences like Human Chromosome 1 gives

best result in terms of Compression Speed and time.

Figure 7. Chromosome wise analysis of compression speed.

We performed Second Order Compression on the

results obtained after first order compression. The

compression factor further increases based on wise

selection of reference compressed sequences obtained

after First order compression. We randomly selected

five samples from compressed sequences, and prepared

Hash Index to find the match between input first

ordered compressed sequences and reference

compressed sequence. Adding more compressed

sequences in reference improved compression ratio

further. For compressed Human chromosome of

HG00097 sample from 1000 genome project, we

compressed it further to 191 KB from 214 KB. Results

for some of the compressed samples after second order

compression can be analysed in the following diagram.

Figure 8 shows the chromosome wise variation in the

compression speed.

Figure 8. Chromosome wise analysis of compression speed.

6. Conclusions and Future Work

As per the experiments results it is found that proposed

method gives efficient results in distributed

environment in terms of compression ratio and time

required for compression. The proposed method is

comparable or near similar to other referential

compression methods like GDC and FRESCO, but the

time required for compression has been improved

considerably when multiple DNA samples are

considered for compression using MapReduce.

In future, referential genome compression can be

implemented on Distributed Parallel Processing

Frameworks like Apache Spark and finding maximal

common sub-graphs. Apache Spark has shown better

results in some cases over MapReduce Framework.

References

[1] Arafat A., “Multilayer Model for Arabic Text

Compression,” The International Arab Journal of

Information Technology, vol. 8, no. 2, pp.188-

196, 2011.

[2] Deorowicz S. and Grabowski S., “Robust

Relative Compression of Genomes with Random

Access,” Bioinformatics, vol. 27, no. 21, pp.

2979-2986 2011.

[3] Deorowicz S., Danek S., and Grabowski S.,

“Genome Compression: A Novel Approach for

Large Collections,” Bioinformatics, vol. 29, no.

20, pp. 2572-2578, 2013.

[4] Deorowicz S., Danek A., and Niemiec M., “GDC

2: Compression of Large Collections of

Genomes,” Technical Report, 2015.

[5] El-Metwally S., Ouda O., and Helmy M., An

Introduction to Next Generation Sequencing

Technologies and Challenges in Sequence

Assembly, Springer Science and Business, 2014.

[6] Kuruppu S., Puglisi S., and Zobel J., “Relative

Lempel-Ziv Compression of Genomes for Large-

Scale Storage and Retrieval,” in Proceedings of

the 17th International Conference on String

Processing and Information Retrieval, Los

Cabos, pp. 201-206, 2010.

[7] Kuruppu S., Puglisi S., and Zobel J., “Optimized

Relative LempelZiv Compression of Genomes,”

in Proceedings of the 34th Australasian Computer

Science Conference, Australia, pp. 91-98, 2011.

[8] Kuruppu S., Smith B., Conway T., and Zobel J.,

“Iterative Dictionary Construction for

Compression of Large DNA Data Sets,”

IEEE/ACM Transactions on Computational

Biology and Bioinformatics, vol. 9, no. 1, pp.
137-149, 2012.

[9] Pinho A., Pratas D., and Garcia S., “GReEn: A

Tool for Efficient Compression of Genome

Resequencing Data,” Nucleic Acids Research,

vol. 40, no. 4, pp. 1-16, 2011.

https://dl.acm.org/doi/proceedings/10.5555/1928328
https://dl.acm.org/doi/proceedings/10.5555/1928328
https://dl.acm.org/doi/proceedings/10.5555/1928328
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8857

214 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

[10] Wandelt S. and Leser U., Adaptive Efficient

Compression of Genomes, Algorithms for

Molecular Biology, 2012.

[11] Wandelt S. and Leser U., “FRESCO: Referential

Compression of Highly Similar Sequences,”

IEEE/ACM Transactions on Computational

Biology and Bioinformatics, vol. 10, no. 5, pp.

1275-1288, 2013.

[12] Wang C. and Zhang D., “A Novel Compression

Tool for Efficient Storage of Genome

Resequencing Data,” Nucleic Acids Research,

vol. 39, no. 7, pp .1-6, 2011.

Raju Bhukya has received his P.hD

in Computer Science and

Engineering (CSE) from National

Institute of Technology (NIT)

Warangal in the year 2014. He is

currently working as an Assistant

Professor in the Department of CSE

NIT Warangal, Telangana, India. He is currently

working in the areas of Bio-Informatics and Data

Mining.

Sumit Deshmuk is M.Tech student

of CSE department at NIT

Warangal. He has interest in

analyzing information contained in

genome sequences using distributed

computing and Big Data Analytics

framework like Hadoop Map-

Reduce and Apache Spark to reduce cost and time

involved in DNA Sequence Analysis.

