
688 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

Adaptability Metric for Adaptation of the

Dynamic Changes

Subbian Suganthi
1

and Rethanaswamy Nadarajan
2

1
Department of Computer Technology and Applications, Coimbatore Institute of Technology, India
2
Department of Applied Mathematics and Computational Sciences, PSG College of Technology,

India

Abstract: Adapting dynamic changes in the user needs or in the environment is considered as one of the important quality

attributes of a system in the pervasive or ubiquitous environment. An aspect-oriented framework to modularize the dynamic

changes using aspects is considered as a solution for creating dynamic adaptable systems. This framework allows the system

to reflect the dynamic changes on the associated components through aspects without altering the structure of the components.

For evaluating the adaptability of this framework, a new adaptability metric has been proposed using the principles of

coupling. In this work, coupling is defined as a Conceptual coupling between Aspects and Classes (CBAC), which represents

the semantic association between the aspects that are used to represent dynamic changes and the components that are

associated with the dynamic changes at the architecture level. The adaptable efficiency of the system that is the ability of

reflecting the dynamic changes on the components associated with those changes is measured using the proposed conceptual

coupling metric. Based on the measures it is concluded that adaptability efficiency of the system is increased with increasing

the coupling between the aspect and the components. The proposed CBAC metric is evaluated and demonstrated by measuring

the adaptability of the dynamic changes in the requirements of the various software systems.

Keywords: Software adaptability, modularization, aspect-oriented approach, dynamic changes, adaptability metric, coupling

metric.

Received February 11, 2013; accepted May 6, 2013; published online August 9, 2015

1. Introduction

Software maintenance is one of the crucial activities in
the software development, which requires 60% of the
total efforts expended towards other activities.
Adaptability is an important quality attribute that plays
a vital role in the maintenance. Providing adaptability
feature at the architecture level will reduce the effort
expended towards the maintenance. Software
architecture for adaptive systems should be flexible to
allow components to change their behavior. The
Separation of Concerns (SOC) principle stated in
aspect-oriented approach is used for implementing
adaptability in a software system. An adaptable
middleware framework proposed in [12] uses the SOC
principles stated in aspect-oriented approach, to
provide a solution for adaptability at the architecture
level. This framework modularizes the dynamic
changes and representing them as aspects. Here
adaptability metric is proposed to evaluate this
adaptable middleware framework. The work described
in this paper refers the dynamic adaptable solution
stated in this adaptable middleware framework as an
aspect-oriented solution for dynamic adaptability.

Evaluating the adaptability at the architectural level
is performed using the following approaches:
developing adaptability scenario profile for the
architecture based on the system adaptability goals;
performing an impact analysis under the scenario
profile; and applying the metric and calculating the

value of adaptability degree [13]. Among these
approaches, the impact analysis is used to define the
metric for evaluating the adaptability efficiency of the
adaptable middleware framework. The adaptable
efficiency of the framework is defined by measuring
the ability of the component to adapt the dynamic
changes in their functions. Measuring the adaptability
of the component is realized by its structure such as
provider and required interfaces. It also includes
evaluating the complexity of the classes defined within
the component. The complexity of a class is evaluated
with respect to the number of public methods in a
class, number of external services requested from other
classes and number of attributes. Hence, it is concluded
that measuring the adaptability of the software at the
architecture level is a complex task. In this work the
above strategy is refined and the evaluation of the
adaptability of dynamic changes is performed by
measuring the impact of the changes on the component
functions. Here, the change impact is specified using
the number of classes/components accessing the
service associated with the change, which is termed as
coupling between the service and classes/components.
It implies coupling metrics are appropriate for
measuring the adaptability.

In this work, the metric for evaluating the

adaptability of an adaptable middleware framework is

proposed using coupling principle. Based on the

dynamic quantification of the system behavior feature

Adaptability Metric for Adaptation of the Dynamic Changes 689

of an aspect-oriented approach [3] and aspect-oriented

design principles stated in [14], it is derived that the

coupling principle is appropriate to evaluate the

adaptability of the aspect-oriented framework. In

general, coupling metric is used to measure the level of

interdependency between modules/components/classes

in a system [8, 9]. In this way, coupling between the

dynamic changes represented as aspects and the

component/classes associated with those changes is

used measure the adaptability of an adaptable

middleware framework. This coupling measure is

named as Conceptual binding between Aspects and

Classes (CBAC).

2. Related Works

The following are the discussions on the various

research works carried out on determining the

measures for evaluating the modularity and

Adaptability of the System (AOS).

The cohesion and coupling of a class can be

measured using method signatures at design level were

proposed by Kuljit and Hardeep [5]. The paper [7]

presented a comparative study on modularizing the

systems using object-oriented and aspect-oriented

approaches. In that work, the systems were evaluated

using the Coupling between Object classes (CBO) and

Lack of Cohesion in Methods (LCOM), which are the

general metrics used for assessing modularity of the

object-oriented systems. These general metrics were

refined and proposed as the metrics for assessing the

modularity of the aspect-oriented system. The CBO

metric principles stated in the above work are

redefined and specified as conceptual binding between

aspects and classes in our approach. The semantic

information shared between the elements of the source

code of the classes was defined as the conceptual

coupling between the classes and proposed as the

coupling measure for object-oriented systems in [6].

But in our work, the semantic information sharing

stated above is redefined as number of classes sharing

an aspect using point-cut specification at the

architectural level.

The metrics for adaptability described below were

proposed in [11].

• Element Adaptability Index (EAI), where EAI=1 for

an adaptable element and EAI=0 for a non-

adaptable element.

• Architecture Adaptability Index (AAI)=EAI for all

elements of architecture/total number of elements.

• Software Adaptability Index (SAI)=AAI for all

architecture of the software/total number of

architectures for that software.

These metrics were used to evaluate the adaptability at

the architectural level. In the above metrics, the

semantic coherence existing between the methods

across the classes was not included whereas in our

work the semantic coherence between the aspects and

the methods of different classes is measured to

evaluate the adaptability at the architectural level.

Making use of object-oriented metrics suite stated in

[2], for evaluating the aspect-oriented system is

analyzed in the work proposed in [15]. The Chidamber

and Kemerer (C and K) metric suite includes Weighted

Methods Per Class (WMC), Depth of Inheritance Tree

(DIT), Number of Children (NOC), Lack of Cohesion

of Methods (LOCM), CBO and Response for a Class

(RFC). The analysis shown that the concepts used in C

and K metrics were appropriate to evaluate an aspect-

oriented system. Based on this analysis result, concept

of CBO is used to design adaptability metric.
Measuring the impact of the aspect-oriented

approach in maintainability using coupling metrics was
proposed by Rachel et al. [8]. The coupling metrics
stated in that work are coupling on advice execution
and number of degree diffusion point-cuts. These
metrics can be used to measure the adaptability at the
code level not at the architectural level.

The work described by Haupt and Mezini [4]
proposed micro measurements for dynamic AOP
systems, which includes cost of dynamic (un)weaving,
cost of executing the method along with the advice and
cost of passing the advised method’s parameters to an
advice. It implies that the performance measure of the
dynamism involved in an AOP system at the execution
level.

AOP framework to encapsulate the software
measurement process without affecting the software
under analysis was proposed by Cazzola and
Marchetto [1]. This framework could be extended to
measure the adaptability efficiency of the system.

3. Adaptability Metric

Using aspect-oriented paradigm, coupling between the
classes can be reduced by modularizing the cross-
cutting concerns [10], which improve the AOS. This
leads to propose the technique of representing the
dynamic changes using aspects in the adaptable
middleware framework [12]. As coupling is considered
as the primary property that influences the
maintenance task [6], the AOS can be measured using
coupling metrics. Since, aspect-oriented approach is an
extension of object-oriented approach, CBO metric
stated for object-oriented systems can be used to
measure aspect-oriented systems [15]. A new
dimension for measuring the AOS through redefining
CBO metric is proposed here. According to the
proposed adaptable middleware framework, system
adapts to the dynamic changes by representing them as
aspects and weaving those aspects with the
corresponding functions of the classes/components.
Hence, adapting the dynamic change by a system is
based on the number of components/classes associated
with that change, which is represented as aspect or the
reflections of dynamic changes specified in the aspect
over the classes. This measure is referred as the CBAC

690 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

or the distribution of aspects among the classes. Hence,
adaptability achieved using the adaptable middleware
framework is measured using the distribution factor of
an aspect or the conceptual binding between the aspect
and the classes. Conceptual binding between the aspect
and classes is measured with the Conceptual binding
between the Aspect and Methods (CBAM) in the
classes.

Let us denote the set of classes C={c1, c2, ..., cn},

where ‘n’ is the number of classes in a software system

and set of methods in each class ciεC is represented as

M(ci)={mi1, mi2, ..., mik}, where 1≤ i≤ n and k is the

number of methods in a class ci (|M(ci)|.

Initially, the association between the methods of a

class with dynamic changes is to be measured, which is

referred as CBAM. The changes in the functions of the

software system can be interpreted as changes in the

requirements specification of the system. Since, the

methods of the classes are considered as the realization

units of the requirements in the software system,

CBAM is measured as the number of methods of the

classes realized the requirements associated with the

changes.

The association between the requirements and the

classes is represented using Requirements Class

Association Matrix (RCAM) as shown in the Table 1.

RCAM (p, q), (1≤ p≤ n and 1≤ q≤ h, where

h 1 ()n
i i

M c=∑= takes value 1, if Req#p is defined in the

method M(ci); otherwise, it takes value 0. Expression of

CBAM using RCAM is shown in the Equation 1.

()() ()()
1

, ,
k

i jk j
j

CBAM a M c w a m c
=

∑=

Where ciC, mikM(ci) and ‘a’ denotes the aspect

defined for representing dynamic changes in the

requirement; and w(a, mi, k (ci))= RCAM(p, q), where

aspect ‘a’ is associated with the Req#p.

CBAC is specified as the average of CBAM of each

class in the system, which is expressed in the Equation

2.

()
()()

()

1 1

(,

,

M cn i

ij i
i j

CBAM a m c

CBAC a c
c

= =

∑ ∑

=

Where ‘C’ represents the set of classes in the system,

mijM(c) and ‘a‘ denotes the aspect implementing the

dynamic changes.

Table 1. Requirements class association matrix.

c1 c2 .. cn

m11 m12 … m1n m11 m12 … m1n … m11 m12 .. m1n

Req#1 0/1 0/1 … 0/1 0/1 0/1 … 0/1 … 0/1 0/1 0/1

Req#2 0/1 0/1 … 0/1 0/1 0/1 … 0/1 … 0/1 0/1 0/1

 … … …

Req#n 0/1 0/1 … 0/1 0/1 0/1 … 0/1 … 0/1 0/1 0/1

Assume that there are ‘n’ aspects say A={a1, a2, ...,

an,}, then the conceptual binding between the set of

aspect ‘A’ with the set of classes ‘C’ is represented as

CBAC(A, C), which is also expressed as distribution of

aspects in the set ‘A’ over the system (DOF(A)) that is

shown in the Equation 3.

()
()

1

,
n

i
i

CBAC a C

DOF A
A

=

∑

=

From the above discussion, it is clearly stated that the

adaptability efficiency of an aspect-oriented system or

AOS is measured with the number of functions into

which the aspects are to be weaved or the distribution

of the aspects over the methods in the classes, which is

expressed in the Equation 4. It leads to derive a lemma

stated below:

 AOSdynamic requirements change=DOF(Aspects)

•••• Lemma: The AOS is increased with increasing the

CBAC factor.

The adaptable middleware framework [12] provides

the facility of adapt to changes by defining those

changes as aspects and weaving them with

corresponding methods in the classes. While changing

the requirements, it is sufficient to define an aspect

through which the changes will get reflected on all the

functions associated with that change. This implies that

all classes associated with a dynamic change can adapt

it through single weaving without altering the existing

structure of the system, which automatically reduces

the effort to be expended on adapting to the changes.

Hence, if the number of classes associated with the

aspects is more and then possibility of adapting the

changes implemented in those aspects will be high.

This discussion concludes that increasing the CBAC

will increase the AOS.

4. Adaptable Metric Evaluation and

Application

The validity of the proposed metric is to be proved by

assessing it towards the general properties of the

metric. In this work the properties proposed to validate

the object-oriented metrics [2] are used for validating

the proposed CBAC metric. Also the CBAC metric

was used to measure the adaptability efficiency of the

banking transaction system. The work done on metric

validation and its applicability for measuring the

adaptability efficiency are described in the following

sections.

4.1. Metric Evaluation

The CBAC is evaluated based on the properties stated
in [2]. The property list includes non-coarseness, non-
uniqueness, permutation is significant, function
implementation is important, monotonicity, non-
equivalence interaction and Interaction complexity.

Non-Coarseness: The CBAC metric of two different
aspects are not same. CBAC (a1, C)≠CBAC (a2, C),

(1)

(2)

(3)

(4)

Adaptability Metric for Adaptation of the Dynamic Changes 691

where a1, a2 are two different aspects. Hence CBAC
satisfies this property.

Non-Uniqueness: CBAC possesses non-uniqueness
based on the conceptual closeness of the aspects,
CBAC (a1, C)=CBAC (a2, C).

Permutation is Significant: If the aspect a1 is the
permutation of a2, which does not change the coupling
between the aspect with the classes. Hence, CBAC (a1,
C)=CBAC(a2, C). Hence, it does not satisfy this
property.

Function Implementation is important: If the
functions of aspects a1 and a2 are similar and are
having different implementation then CBAC (a1, C)≠
CBAC(a2, C). This implies that coupling is determined
based on the implementation of the aspects not on the
type of the operation.

Monotonicity: Let a1 and a2 are the aspects and
CBAC (a1, C)=n1, CBAC(a2, C)=n2. CBAC ((a1+a2),
C)=n1+n2-α, where ‘α’ is the number of reduction in the
coupling after combining a1 and a2, n1-α≥ 0 and n2-α≥0.
Hence, CBAC (a1+a2)≥ CBAC(a1) and CBAC(a1+a2)≥

CBAC(a2), which implies CBAC metric satisfies
monotonicity.

Non-equivalence interaction: Let a1, a2 and a3 are
the aspects and CBAC (a1, C)=n1, CBAC (a2, C)=n2,

CBAC(a3, C)=n3. CBAC ((a1+a3), C)=n1+n3-α, where ‘α’
is the number of reduction in the coupling after
combining a1 and a3, n1-α≥ 0 and n3-α≥0.

CBAC ((a2+a3), C)=n2+n3-λ, where ‘α’ is the number
of reduction in the coupling after combining a2 and a3,
n2-λ≥ 0 and n3-λ≥0. Since, α, λ are not equal, CBAC
((a1+a3), C) is not equal to CBAC ((a2+a3), C). It implies
the coupling between the aspects (a1+a3) with the
system is not equal to the coupling between the aspects
(a2+a3) with the system.

According to the above discussion it is concluded
that the proposed CBAC metric satisfies all the
properties except permutation significant and non-
equivalence of interactions. This shows the validity of
the metric.

2.2. Metric Application

In this work, the conceptual binding between the set of
aspects ‘A’ with the classes ciεC (CBAC (A, C))
represents the AOS that is designed using the aspect-
oriented solution proposed in an adaptable middleware
framework. The CBAC metric is also considered as the
measure shows association between the requirements
that are to be changed dynamically and the methods
associated with those requirements. Here the proposed
adaptability metric is demonstrated to show the
adaptability efficiency of the Banking Transaction and
Sales Processing systems.

4.2.1. Banking Transaction System

The requirements for banking transaction system are
stated as follows:

• Req#BT1: Authenticate the user.
• Req#BT2: Allowing the user to perform deposit.

• Req#BT3: Perform withdrawal transaction.

• Req#BT4: Perform fund transfer transaction.

• Req#BT5: Maintain the account details.

• Req#BT6: Retrieve the account details.

These requirements are realized in the system

through the methods defined in the classes specified

in the class set C and detailed descriptions regarding

the class design is given below:

C={Authentication, SBAccTransaction,

CurrentAccTransaction, LoanAccTransaction, Account}

• User authentication process is implemented in the

validate method of the Authentication class.

• Deposit, Withdrawal and Fund transfer processes

are implemented in the deposit, withdrawal and

fundtransfer methods of SBAccTransaction,

CurrentAccTransaction and LoanAccTransaction

classes.

• Account maintenance related operations are

implemented in Account class through

setAccountdetails and getAccountdetails methods.

Above mentioned information are specified in the

Requirements Class Association Matrix for Banking

System as shown in Table 2.

Table 2. Requirements Class Association Matrix for Banking

System.

Auth SBAccTr CAccTr LAccTr Account

v() d() w() f() d() w() f() d() w() f() g() s()

Req#BT1 1 0 0 0 0 0 0 0 0 0 0 0

Req#BT2 0 1 0 0 1 0 0 1 0 0 0 0

Req#BT3 0 0 1 0 0 1 0 0 1 0 0 0

Req#BT4 0 0 0 1 0 0 1 0 0 1 0 0

Req#BT5 0 0 0 0 0 0 0 0 0 0 1 0

Req#BT6 0 0 0 0 0 0 0 0 0 0 0 1

Notation Description: Auth denotes Authentication

class, SBAccTr denotes SBAccTransaction class,

CAccTr denotes CurrentAccTransaction class, LAccTr

denotes LoanAccTransaction class, d() denotes

deposit(), w() denotes withdrawal(), f() denotes

fundtransfer(), g() denotes getAccountdetails() and s()

denotes setAccountdetails().

The changes in the authentication strategy,

procedure for depositing the money and account

maintenance procedure are posted dynamically to the

banking transaction system. Adapting these changes by

the system is measured using the CBAC metric, which

is calculated using the data specified in the Table 2.

Adaptability of an authentication strategy change is

represented with the number of classes associated with

authentication requirements, which is determined as 1

from Table 2 and the corresponding CBAC is 1/5.

Similarly, CBAC value for change in the deposit

policy is observed as 3/5, where 3 represents the

number of classes associated with the deposit process

and CBAC value for change in account maintenance

process is derived as 1/5. The dynamic changes

proposed in the banking system and the corresponding

CBAC values are shown in Table 3.

692

Table 3. CBAC factor for banking system.

Dynamic Changes

Authentication Strategy Change (Single Reflection)

Deposit Policy Change (Multiple Reflection)

Account Maintenance Process Change (Single Reflection)

4.2.2 Sales Processing System

Following are the requirements stated for the sales
processing system:

• Req # SO1: Check the validity of the sales order
• Req# SO2: Order confirmation

scheduling.
• Req # SO3: Update order status to the customer
• Req # SO4: Bill generation and Payment
• Req# SO5: Shipment process.

These requirements are specified in the software

system through Order Processor, Order Status

Publisher, Bill Generator, Payment Handler and

Shipment Processor classes and the set C is defined

with these classes. Methods defined in each class and

their association with the requirements is shown in the

Table 4. Requirement #SO1 is realized in the order

Validation() method of Order Processor class. Hence

changes in the order validation should get reflected

only on that method and the corresponding CBAC

value is 1/5, where 5 is the number of classes. T

changes in the order confirmation and notification to

refection on the order Confirmation () method of Order

Processor class and eMail() and sMs() methods of

Order Status Publisher class. Hence,

between process of order confirmation

derived as 3 and adaptability of changes in this process

is specified as 3/5. Similarly order status notification

process is realized in the methods of

publisher and shipment process classes and CBAC

value of adapting changes in this process is 3/5. The

coupling between the Requirement#

classes in the system is measured as 3 that is

salesInvoice(), cash() and credit() methods define this

requirement. Hence, adapting the changes in the bill

generation and payment process is measured as 3/5.

The adaptability measures determined for

incorporating the dynamic changes stated in the sales

processing system is shown in Table 5.

Table 4. Requirements class association matrix for sales processing

system.

 OP OSP BG
oV() oC() em() sMs() sIv()

Req#SO1 1 0 0 0 0

Req#SO2 0 1 1 1 0

Req#SO3 0 0 1 1 0

Req#SO4 0 0 0 0 1

Req#SO5 0 0 0 0 0

Notation Description: Order Processor class
(OP), Order Status Publisher class denotes (OSP)
Generator class denotes (BG), Payment Handler
denotes (PH), Shipment Processor class
order Validation()denotes (oV()), order Confirmation()
denotes (oC()), email() denotes (em()),

 The International Arab Journal of Information Technology,

factor for banking system.

CBAC Value

0.2

0.6

0.2

Following are the requirements stated for the sales

Check the validity of the sales order.
 and delivery

Update order status to the customer.
Req # SO4: Bill generation and Payment.

These requirements are specified in the software

system through Order Processor, Order Status

rator, Payment Handler and

ment Processor classes and the set C is defined

Methods defined in each class and

the requirements is shown in the

Requirement #SO1 is realized in the order

method of Order Processor class. Hence,

in the order validation should get reflected

n that method and the corresponding CBAC

the number of classes. The

changes in the order confirmation and notification to

() method of Order

and eMail() and sMs() methods of

 the association

order confirmation and system is

derived as 3 and adaptability of changes in this process

is specified as 3/5. Similarly order status notification

process is realized in the methods of order status

s classes and CBAC

value of adapting changes in this process is 3/5. The

oupling between the Requirement#SO4 with the

classes in the system is measured as 3 that is

salesInvoice(), cash() and credit() methods define this

adapting the changes in the bill

generation and payment process is measured as 3/5.

The adaptability measures determined for

ating the dynamic changes stated in the sales

processing system is shown in Table 5.

class association matrix for sales processing

PH SP

ch() cr() ny()

0 0 0

0 0 0

0 0 1

1 1 0

0 0 1

Order Processor class denotes
denotes (OSP), Bill

, Payment Handler class
, Shipment Processor class denotes (SP)

order Confirmation()
), salesInvoice()

denotes (sIv()), cash() denotes (ch())
(cr()) and notify denotes (nv

Table 5. CBAC factor for sales processing system.

Dynamic Changes

Order Validation Strategy Changes (Single Reflection)

Order Confirmation Policy Changes (Multiple Reflection)

Changes in the Format/ Mode of Order Status Notification

Reflection)

Payment Process Changes (Multiple Reflection)

Changes in the Shipment Procedure (Single Reflection)

The above discussion show

adaptability of changes in the requirements

measured using the number of methods/classes in the

system involved in the realization of those

requirements. Also, it is derived that the value of

CBAC associated with the changes

is high when more number of methods and classes are

used to implement that requirement.

requirements are classified in to two types namely,

changes to be reflected on one method/class

Reflection) and changes to b

methods/classes (Multiple Reflection).

values observed for adapting these categories of

changes shown in Table 3 and Table 4

observation, it is concluded that the CBAC value for

single reflection is 1/5, where ‘5’ represents number of

classes in the system; CBAC value for two

is 2/5; CBAC value for three reflection is 3/5; and

CBAC value for ‘n’ number of r

Adaptability values observed for the changes stated in

the above case studies clearly justify the lemma of

AOS is increased with increasing the CBAC factor’.

This result is clearly shown in the adaptability chart

depicted in Figure 1.

C
B

A
C

 V
al

u
e

 Single

 Reflection
 Multiple

 Reflection (2)

 Dynamic changes category

 Figure 1. Adaptability

5. Conclusions

The work described in this paper proposed a metric for

measuring the adaptability efficiency of the system

designed using the adaptable middleware framework

An aspect-oriented solution for adapting

changes was implemented

proposed metric was designed using

principle stated for an object

The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

() denotes (ch()), credit() denotes
nv).

factor for sales processing system.

Dynamic Changes CBAC Value

(Single Reflection) 0.2

(Multiple Reflection) 0.6

Changes in the Format/ Mode of Order Status Notification (Multiple 0.6

(Multiple Reflection) 0.6

(Single Reflection) 0.2

The above discussion shows the ways in which the

adaptability of changes in the requirements is

measured using the number of methods/classes in the

system involved in the realization of those

it is derived that the value of

CBAC associated with the changes in the requirement

is high when more number of methods and classes are

used to implement that requirement. Changes in the

requirements are classified in to two types namely,

changes to be reflected on one method/class (Single

Reflection) and changes to be reflected on multiple

classes (Multiple Reflection). The CBAC

values observed for adapting these categories of

shown in Table 3 and Table 4. From this

observation, it is concluded that the CBAC value for

single reflection is 1/5, where ‘5’ represents number of

classes in the system; CBAC value for two reflections

is 2/5; CBAC value for three reflection is 3/5; and

CBAC value for ‘n’ number of reflection is n/5.

Adaptability values observed for the changes stated in

clearly justify the lemma of The

AOS is increased with increasing the CBAC factor’.

This result is clearly shown in the adaptability chart

 Multiple

 Reflection (3)
 Multiple

 Reflection (4)
 Multiple

 Reflection (5)

Dynamic changes category

Adaptability chart.

described in this paper proposed a metric for

measuring the adaptability efficiency of the system

designed using the adaptable middleware framework.

oriented solution for adapting the dynamic

implemented in that framework. The

designed using the coupling

principle stated for an object-oriented system. Here this

Adaptability Metric for Adaptation of the Dynamic Changes 693

coupling principle was redefined based on aspect

weaving mechanism stated in aspect-oriented paradigm

and named as CBAC. Requirements realization

mechanism was used to determine the association

between the classes with the aspect, which is

represented as an implementation unit of dynamic

changes. This metric was evaluated using the

properties stated for the software metrics. The validity

of the metric was also shown by measuring the

adaptability efficiency of the various systems designed

with dynamic adaptability feature using that metric. It

is also derived that the adaptability efficiency of an

adaptable middleware framework based system

increases with increasing the value of CBAC. Hence,

this metric was considered to measure the adaptability

of any system designed with aspects to represent the

dynamic changes. In future work, it is proposed to

automate the process of measuring the CBAC.

References

[1] Cazzola W. and Marchetto A., “AOP-Hidden
Metrics: Separation, Extensibility and
Adaptability in SW Measurement,” Journal of
Object Technology, vol. 7, no. 2, pp. 53-68, 2008.

[2] Chidamber S. and Kemerer C., “Towards A
Metrics Suite for Object Oriented Design,” in
Proceedings of the 6

th
 Annual Conference on

Object-Oriented Programming Systems,
Languages, and Applications, Arizona, USA. pp.
197-211, 1991.

[3] Filman R. and Friedman P., “Aspect-Oriented
Programming is Quantification and
Obliviousness,” in Proceedings of Workshop on
Advanced Separation of Concerns, Minnesota,
USA, 2000.

[4] Haupt M. and Mezini M., “Micro-Measurements
for Dynamic Aspect-Oriented Systems,” Lecture
Notes in Computer Science, vol. 3263, pp. 81-96,
2004.

[5] Kuljit K. and Hardeep S., “An Investigation of
Design Level Class Cohesion Metrics,” the
International Arab Journal of Information
Technology, vol. 9, no. 1, pp. 66-73, 2012.

[6] Poshyvanyk D. and Marcus A., “The Conceptual
Coupling Metrics for Object-Oriented Systems,”
in Proceedings of the 22

nd
 IEEE International

Conference on Software Maintenance,
Philadelphia, Pennsylvania, USA, pp. 469-478,
2006.

[7] Przybylek A., “An Empirical Assessment of the
Impact of Aspect-Oriented Programming on
Software Modularity,” in Proceedings of
International Conference on Evaluation of Novel
Approaches to Software Engineering, Athens,
Greece, pp. 139-148, 2010.

[8] Rachel B., Fabiano F., Alessandro G., and
Francois T., “An Empirical Evaluation of

Coupling Metrics on Aspect-Oriented Programs,”
in Proceedings of the ICDSE Workshop on
Emerging Trends in Software Metrics, Cape
Town, South Africa. pp. 53-58, 2010.

[9] Rachel B., Fabiano F., Alessandro G., and
Francois T., “Coupling Metrics for Aspect-
Oriented Programming: A systematic Review of
Maintainability Studies,” in Proceedings of the
4

th
International Conference on the Evaluation of

Novel Approaches in Software Engineering,
Italy, pp. 277-290, 2010.

[10] Steimann F., “The Paradoxical Success of
Aspect-Oriented Programming,” in Proceedings
of the 21

st
 Annual ACM SIGPLAN Conference on

Object-Oriented Programming Languages,
Systems and Applications, Portland, USA, pp.
481-497, 2006.

[11] Subramanian N. and Chung L., “Metrics for
Software Adaptability”, available at:
www.utdallas.edu/~chung/ftp/sqm.pdf, last
visited 1999.

[12] Suganthi S. and Nadarajan R., “Middleware
Model for Adapting Dynamic Requirements,”
Journal of Digital Information Management, vol.
10, no. 1, pp. 20-29, 2012.

[13] Tarvainen P., “Adaptability Evaluation at
Software Architectural Level,” Open Software
Engineering Journal, vol. 2, pp.1-30, 2008.

[14] Wampler D., “Aspect-Oriented Design
Principles: Lessons from Object-Oriented
Design,” in Proceedings of the 6

th
 International

Conference on Aspect-Oriented Software
Development, Vancouver, pp. 1-10, 2007.

[15] Zakaria A. and Hosny H., “Metrics for Aspect-
Oriented Software Design,” in Proceedings of the
6

th
 Workshop on Aspect-Oriented Modeling with

UML, San Francisco, California, USA, pp. 1-6,
2003.

Subbian Suganthi

recived her Bs

degree in 1991 at PSG College of

Arts and Science, Bharathiar

University, India; and MSc in

1993, MPhil in 1994 at PSG

College of Technology, Bharathiar

University, India. she is pursuing

her PhD degree. in Faculty of Science and

Humanities, Anna University, India. Currently, she

is an Assistant Professor in the Department of

Computer Technology and Applications,

Coimbatore Institute of Technology, India. Her

research interest is in the area of software

architecture, design patterns, component technology

and object-oriented analysis and design.

694 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

Rethanaswamy Nadarajan

is the

Professor and Head of the

Department of Applied

Mathematics and Computational

Sciences, PSG College of

Technology, India. His research

areas include object-oriented

computing, software engineering, data mining and

database management systems. He published many

research papers in International Referred Journals.

