
The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015 635

The Fuzzy Logic Based ECA Rule Processing for

XML Databases

Thomson Fredrick
1
and Govindaraju Radhamani

2

1
R&D Centre, Bharathiar University, India

2
School of IT and Science, Dr.G.R.D College of Science, India

Abstract: Current needs of E-Commerce transactions require the development of XML database system like relational database

systems. Fuzzy concepts are adapted to the field of XML Databases (DB) in order to deal with ambiguous and uncertain data.

Incorporating fuzziness into Event Condition Action (ECA) rules would improve the effectiveness of XML DB as it provides

much flexibility in defining rules for the supported application. An architecture that specifies how the fuzzy logic based rules

are processed in the context of XML database transactions is presented in this paper. The algorithm for implementing fuzzy

active rule based triggers for XML is proposed in this paper. The proposed architecture provides new forms of interaction, in

support of fuzzy ECA rules between any application programs and the XML database. This paper presents a motivating example

that illustrates the use of fuzzy trigger in stock market brokering agency. The testing has been done to compare the performance

of fuzzy XML triggers and normal XML triggers. Our testing results show that Fuzzy ECA rule based triggers are providing

better output than Normal ECA rule based triggers.

Keywords: XML DB, ECA rules, fuzzy eca rules, fuzzy xquery, fuzzy trigger.

Received August 30, 2012; accepted March 20, 2014; published online August 16, 2015

1. Introduction

Traditional XML Databases (DB) were designed for

efficient storage, safe modification and correct

recuperation of large samples of precisely defined data.

XML DB try to model real world data using few and

precise structures, but unfortunately we are surrounded

by uncertainty and imprecise information. Human

beings manipulate very well that kind of information

and in fact, frequently we take decisions based on these

pieces of information. We reason with vague terms

such as “The price is high” or “The car is going too

fast”. These facts are true (or false) only to some extent

and computers may not process them. The fuzzy set

theory introduced by Zadeh [24] has been utilized in

many areas of research, from control to DB and expert

systems [2, 3, 4]. Fuzzy rules in expert systems and

control that make use of the concepts in fuzzy sets

were proven to increase the flexibility and

effectiveness of the systems. Special inference

mechanisms have been developed for fuzzy control to

be used to infer a fuzzy conclusion from a set of fuzzy

rules [2]. So, we need fuzzy logic based XML database

model to deal with uncertainty and vague information.
In XML database research, there are several

proposals to develop models that support handling
fuzziness, uncertainty and imprecision of real-world.
The research area of fuzziness in XML Data Base
Management Systems (DBMS) has resulted in a
number of models aimed at the representation of
imperfect information in DB and flexible fuzzy
XQueries and fuzzy triggers on traditional XML DB.
native XML DBSs are passive, in the sense that they

only manipulate data in response to explicit requests
from applications. An active XML DB is a DB that
allows users to specify actions to be taken
automatically, without user intervention, when certain
conditions arise. Fuzzy Event Condition Action (ECA)
rules provide active DB capabilities beyond what is
found in a conventional, passive XML DB. This paper
proposes architecture and algorithm for fuzzy logic
based ECA rule processing in XML DB that
implements our knowledge model and execution
model.

2. Related Works

Applying fuzzy concepts to DBSs has been an active
research topic over years. There are many research
projects in the past to incorporate fuzzy concepts into
relational DB. Bosc and Pivert [7] did the research on
extending DB management systems functionalities
with fuzzy querying called SQLf. Galindo et al. [11]
developed a FSQL server that allows writing flexible
conditions in queries. Limited research has been done
so far on incorporating fuzziness into triggers. Bouaziz
et al. [8] proposed a fuzzy trigger named C-Fuzzy
Trigger to embed fuzzy rules within a Boolean Valued
trigger condition. Montesi and Torlone [16] introduced
a formal approach to active rule processing that relies
on a method for rewriting user-defined transactions to
reflect the behavior of a set of active rules. Anton and
Tarik [2] did the research on fuzzy action and the
reasoning mechanism with the purpose of selecting the
actual action.
In [2, 8] the researchers focused their research on

their special control systems, which cannot be easily

636 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

applied to other systems or application contexts.

Bonifati et al. [5] presented Active XQuery an active
language for XML repositories presented as an

extension of XQuery. They proposed the syntax of

Active XQuery and its semantics by describing an

algorithm for support triggers and sketchy system

architecture. Ferraz et al. [9] present a non-intrusive
approach to store and manage Active XML documents.

They also define a methodology to materialize Active

XML documents at query time. Their storage approach

is based on plain relational tables and user-defined

functions of Object-Relational DBMS to trigger the

service calls. Bonifati et al. [6] proposed the active

XML rules for pushing reactive services to XML-

enabled repositories. Their proposed active rules

operate on XML documents and deliver information to

interested remote E-Commerce users in reaction to

update events occurring at the XML repository site.

Their proposed active rule mechanism used an

XQuery, standard DOM events and SOAP interchange

standard for deliver information. Bailey et al. [3]
presented a language for event-condition-action rules

on XML repositories. They investigated the methods

for analysing the behaviour of a set of ECA rules and

examined more deeply the triggering and activation

relationships in XML ECA rules. Prabha et al. [18]
provided an efficient way of querying among many

distributed and heterogeneous data sources. They

introduced an XML oriented common data model and

an XML Parser (XP) for accepting the SQL statement

in distributed DB. The proposed XML based optimized

query processor fastens the query processing time.

Liu and Goh [15], introduces an approach to define

XML triggers through XML schema in order to realize

various active functions in XML database. Bernauer et

al. [4] explored composite event detection in XML
documents. They explained composite event detection

using event algebra snoop, as it is extensible and well

defined for XML. In another research by Xu et al. [22]
a XML-based composite event model that consists of

the temporal logical model and the event composite

pattern was presented. Swamynathan et al. [20]

presented a system that handles complex events

include simple, temporal, and composite events. The

system they used a specially designed language called

Generic Composite Event Rule Markup Language

(GCERML) to implement a system. Their proposed

system used an inference engine called Java Expert

System Shell (JESS), to monitor the complex events in

an easy and efficient manner. Jin and Bhavsar [12] did

the research on investigating the use of fuzzy

expressions in triggers in relational DBSs.
Anders et al. [1] introduce path-level granularity in

combination with the novel concept of XML DB
trigger to implement the validation of complex
constraints. They propose XML DB trigger
methodology to support both traditional data integrity

constraints and advanced semantic constraints
effectively and efficiently.
In our earlier work [21], we have introduced a fuzzy

constraint-based framework for XML schema in our
earlier work. Our approach is able to handle
uncertainty in schema matching and data inconsistency
in native XML DBSs by exploiting fuzzy constraints
and it will restrict invalid XML data into XML DB by
using fuzzy domain integrity constraints.
Jin and Bhavsar [13] presented a trigger language,

named FZ-Trigger, to allow fuzziness in relational DB
triggers. Their proposed FZ-Triggers will handle
temporal events generated at a given time interval.
They implemented temporal event triggers using oracle
DB using Java as a front end. Ozgun et al. [17]
proposed a system that is capable of automating the
transformation of relational bitemporal DB into XML
regardless of the underlying DB management system.
They have implemented a fuzzy query model as part of
the proposed framework in order to provide flexibility
to a wide range of end users willing to access the
database. Farnaz et al. [9] propose the fuzzy ECA rule-
based negotiation agents in E-Commerce to negotiate
between sellers and buyers in order to get the best deal.
They use a fuzzy decision tree to understand and adapt
other agents’ behavior in order to produce the best
contracts. In this paper, we propose an algorithm to
implement fuzzy active rule based triggers and an
architecture of fuzzy ECA rule processing system. The
performance and output of fuzzy active rule based
XML triggers and normal triggers is compared and
analysed.

3. Technical Background

This section introduces basic concepts of fuzzy sets
and fuzzy inference required to define fuzzy active rule
based triggers. Informally, a fuzzy set is a set with
imprecise boundaries in which the transition from
membership to non-membership is gradual rather than
crisp. In this way, a fuzzy set F in a universe of
discourse U is characterized by a membership function
µF, which associates each element uU with a grade of
membership µF(u)[0, 1] in the fuzzy set F. Note that,
a classical set A in U is a special case of a fuzzy set
with all membership values µA(u){0, 1}.

3.1. Linguistic Variable

The basic concept underlying fuzzy logic is a linguistic
variable, which is a variable whose values are words
rather than numbers. A linguistic variable is
characterized by a quintuple (x, T(x), U, G, M) in
which x is the name of the linguistic variable; T(x) is
the term set of x, that is, the set of names of linguistic
values of x defined on U; G is a syntactic rule for
generating the names of values of x; and M is a
semantic rule for associating with each value its
meaning.
Let us consider the linguistic variable Temperature.

Its term set T(Temperature) could be T (Temperature)

The Fuzzy Logic Based ECA Rule Processing for XML Databases 637

= {low, normal, hot} where each term is characterized
by a fuzzy set in a universe of discourse U= [0, 300].
We might interpret “low” as “a temperature below
100

˚
C,” “normal” as “a temperature close to 120

˚
C,”

and “hot” as “a temperature above about 130
˚
C”. These

terms can be characterized as fuzzy sets whose
membership functions are formulated. For example, if
the current temperature is 90

˚
C then the membership

degree to the fuzzy subset low is equal to 0.6.

()
()

()

0, 0, 80,100

90,120,120,140

130,160, 300, 300

low

normal

hot

Trapezoidal

Trapezoidal

Trapezoidal

µ

µ

µ

=

=

=

3.2 Fuzzy Inference

A fuzzy implication is viewed as describing a fuzzy
relation between fuzzy sets forming the implication. A

fuzzy rule, such as “if X is A then Y is B” is a fuzzy
implication which has a membership

function (), 0,1B x yµ ∈ → .

Note that (),B x yµ → measures the degree of truth

of the implication relation between x and y. The if part
of an implication is called the antecedent (premise),

where as the then part is called the consequent. Using
the Mamdani’s (minimum) implication, the

membership function of the fuzzy implication is

defined as:

 () () (), min ,
A B

B x y x xµ µ µ→ =

It is easy to see this is not a correct extension of a

traditional propositional logic implication, because

0→0 yields zero. However, this interpretation of the
fuzzy implication is more useful for some applications.

In fuzzy logic, Modus Ponens is extended to

generalized modus ponens in the following manner:
given the input “X is A*” and the fuzzy rule “if X is A

then Y is B” then the consequence is “Y is B*”. The
membership function of the conclusion, the fuzzy set

B*, is defined in [14, 16] as follows:

 () () ()* * *max ,
A BB xeA A

y x x yµ µ µ
→

= ∧

Generalized modus ponens has been adapted and used
widely in control applications; the mechanism is called
interpolative reasoning. This mechanism is needed for
applications for which the input-output relationship is
described by a collection of fuzzy if-then rules. A
fuzzy logic system, using the interpolative reasoning,
is characterized by the following steps:

3.2.1 Fuzzification

The process of converting a crisp input data

0
,x x U′ = ∈ to a fuzzy set A, is called fuzzification. It

maps the inputs into their membership functions and
truth values, these mappings are then fed into the rules.
The most widely used fuzzifier is a fuzzy singleton
defined by:

 ()* 1
A

xµ = if ,x x x U′= ∀ ∈

 ()* 0
A

xµ = if x x ′≠

The fuzzy input set A* only contains a crisp

element 'x . In this case, the formula (2) becomes a
fuzzy implication:

 () () ()* 1 , ,
A B A BB

y x y x yµ µ µ
→ →

′ ′= ∧ =

Let us now consider a rule base (where X, Y and Z are
linguistic variables defined on the universe of
discourse U, V and W respectively):
Ri : if X is Ai and Y is Bi then Z is Ci where i=1, ..., n
and given the input crisp fact (x0, y0), the goal is to
determine the output “Z is C*”.
The second step is to find the output, C*i of each of

the rules using the inference:

 () () ()* 0 0
, ,

iAi and BC i i
w C x y w w Wµ µ= → ∀ ∈

In the Min inferencing, which uses the Mamdani’s
implication rule, the implication is interpreted as a
fuzzy and operator:

() () ()

() ()()
* 0 0

0 0

,

min , ,

c i Ai and Bi ci

Ai and Bi ci

w x y and w

x y w

µ µ µ

µ µ

=

=

3.2.2. Composition

All fuzzy subsets assigned to each output variable are
combined together to form a single fuzzy subset for
each output variable. The purpose is to aggregate all
the individual rule outputs to obtain the overall system
output. In the Max composition, the combined output
fuzzy subset C* is constructed by taking the maximum
over all of the fuzzy subsets assigned to the output
variable by the inference rule, yields a crisp value
which can be used in a regular comparison predicate
evaluating, in turn, to true or false.

 () ()
() ()

*1

*

*2 *

max
, ...,

c

c

c c n

w
w w W

w w

µ
µ

µ µ
= ∀ ∈

3.2.3. Defuzzification

The result of the fuzzy inference system is a fuzzy set.
The defuzzification step produces a representative
crisp value as the final output of the system. There are
several defuzzification methods. The most commonly
used is the Centroid (Center-of-gravity) defuzzifier
which provides a crisp value based on the center-of-
gravity of the result (the output fuzzy set graph).

4. Architecture of a Fuzzy ECA Rule

Processing System

User will give input of fuzzy active rule in the user
interface module. Then, fuzzy parser module parses
and checks the syntactic validity of a new rule. The
JavaCClexer-parser generator is used for the

(1)

(2)

(8)

(7)

(6)

(5)

(3)

(4)

638 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

construction of the fuzzy parser. Fuzzy parser module
identifies the linguistic variable using “%” symbol. It
identifies the binding element between the event and
condition action using the symbol “#”. Fuzzy integrity
constraints module will provide the interval values for
the linguistic variables. All the fuzzy ECA rules are
stored in the fuzzy rule base repository. All the valid
fuzzy ECA rules are converted to crisp rules. All the
crisp rules are stored in the crisp rule base repository
module. After storage of crisp rules, even handler
module will be invoked. Event handler module will
identify the temporal event, composite event or
primitive event for specific crisp rule. After identifying
the event for the specific rule, Condition evaluator
module will execute the condition for the specific crisp
rule. After evaluating condition, Action executor
module will perform the suitable DB action.
Temporal event module will handle all temporal

events using execution schedule module. Temporal
event module adds all temporal event rules into the
temporal rules XML repository. Moreover, the
temporal event module assigns a status of the rules. It
will assign three types of status “new”, ”cancel”, and
”active”. All the event actions are executed one by one
by the execution schedule module. This execution
schedule module arranges an execution order of
scheduling the fuzzy ECA rules. The entire schedule
action of ECA rule processing is carried out by
execution schedule module. This module runs in a time
interval to identify rules which have been newly added
to the crisp rules xml repository and performs the
needed action. If the status of the temporal event rule is
“new”, the timer is scheduled based on the rule
parameters and its status is made active. If the temporal
event rule is with status “cancel”, then this module will
cancel the temporal event rule from the execution
module. The temporal rule with a status “active” runs
uninterrupted. If there are many rules for to be
executed, the execution module checks the priority for
the rules from crisp rules repository. The highest
priority for the rule is 1. Depends upon the priority, the
execution module will execute all the rules one by one.
Composite event module will identify all the

composite event rules and stores all the composite
event rules in its repository. Since, composite event
can trigger multiple rules composite event processing
is more complicated than primitive event processing.
composite event rules are not executed immediately
like other events. One composite event rule depends on
the occurrence of other events. This module uses an
event log file to keep track of event occurrence. Based
on the event history provided by the event log, the
rules of the composite event can be triggered. The
output of all the ECA rules will be updated and stored
in the XML DB.

5. Algorithm for implementing Fuzzy Logic

based Active XML DB

Algorithm 1 for executing fuzzy ECA rule deals with
execution steps of fuzzy ECA XQuery statement. First

of all, it will check fuzzy ECA XQuery rule or normal
XQuery rule. If it is a fuzzy ECA XQuery rule, it will
find out the corresponding fuzzy constraints from
XML schema file. Then, it will invoke fuzzy parser
algorithm for converting linguistic expression to crisp
XQuery Boolean expression.
The fuzzy parser Algorithm 2 will take the input of

fuzzy linguistic variables. Fuzzy parser will break the
input into series of tokens. If ‘#’ symbol is found, it
identifies as binding character. It will bind the event
and condition using the XML files following ‘#’
character. If ‘%’ symbol is found, it will check whether
‘~’ symbol is available in the linguistic expression. If
‘~’ symbol is found, it will assign triangular
distribution for linguistic variable. If ‘~’ symbol is not
found, it will assign trapezoidal distribution for
linguistic variable. After that this algorithm will
calculate Min and Max values for triangular and
trapezoidal distribution using the respective formulae.
Finally this algorithm converts fuzzy linguistic
expressions into XQuery Boolean expressions.
Then, the event handler Algorithm 3 will be invoked

to find out whether the event is primitive, temporal or
composite. If the event is temporal, the timer event
scheduler will execute the timer XML rule in the
corresponding time intervals. If the event is composite,
the sequence of events to be executed is followed.
Finally the output of fuzzy ECA XQuery rule is stored
in the XML DB. If it is an ECA XQuery rule, then it
will find out the corresponding integrity constraints
from XML schema file. Then, it will invoke the event
handler algorithm to find out whether the event is
primitive, temporal or composite. Finally it will
execute the specific condition for the XQuery
expression. Finally, the output of ECA XQuery rule is
stored in the XML DB.

Algorithm 1: Executing fuzzy ECA rule.

Input: Fuzzy ECA XQuery.

Output: XML Document.

Begin

Step 1: Execute XQuery Statement

Step 2: If Fuzzy Trigger Exists Then

Step 2.1.a: Find out XML Schema based Fuzzy Constraints

Step 2.2.a: Execute Fuzzy Active Rule

Step 2.3.a: Invoke Fuzzy parser to convert Fuzzy rule to Crisp Rule

Step 2.4.a: Invoke Event Handler process to find out the type of

event

Step 2.5.a: Execute the condition and perform the action

Step 2.6.a: Store the result in XML Database

Step 2.7.a: Generate XQuery Output

 Else

Step 2.1.b: Find out XML Schema based Constraints

Step 2.2.b: Execute Active Rule

Step 2.3.b: Invoke Event Handler process to find out the type of

event

Step 2.5.b: Execute the condition and perform the action

Step 2.6.b: Store the result in XML Database

Step 2.7.b: Generate XQuery Output

 End If

End

Algorithm 2: Fuzzy parser.

Input: Fuzzy Linguistic variables.

The Fuzzy Logic Based ECA Rule Processing for XML Databases 639

Output: Crisp Condition.

Begin

Step 1: Break the Input into series of tokens

Step 2: If ‘#’ character is found then

 Step 2.1.a: Bind the event and condition using the XML

 document following ‘#’ character

End If

Step 3: If ‘%’ character is found then

 Step 3:1a:If ‘~’ Symbol is found then

 Identify Triangular Distribution

 else

 Identify Trapezoidal Distribution

 End If

Step 4: Identify the linguistic terms on LHS and RHS

Step 5: Calculate MIN value and MAX value

 Step 5.1.a: If Distribution is Trapezoidal then

 Calculate Min and Max Value using the following formula

Min=(β-α)*THOLD+α

 Max=[(δ-γ)*(1-THOLD)]+γ

End If

 Step 5.1.b: If Distribution is Triangular then

 Calculate Min and Max Value using the following formula

 Min=d-(margin*(1-THOLD))

 Max= d+(margin*(1-THOLD))

 End If

End

Algorithm 3: Event handler.

Input : Fuzzy ECA XQuery

Output: Invoke the corresponding Routine for Fuzzy ECA Rule

Begin

Step 1. Check whether the event is Primitive, Composite Or

Temporal

Step 1.1: If Event Is Primitive Then

Invoke The Primitive Event Handler Process

 End If

Step 1.2: If Event is Temporal Event Then

Invoke The Condition In The Corresponding Time Intervals

 End If

Step 1.3: If Event is Composite Event

 Find out the sequence of Events to be executed

End If

End

6. Results and Discussion

Testing is carried out to compare the performance and

output of Fuzzy triggers and normal triggers.

6.1. Performance Analysis of Normal Trigger

and Fuzzy Trigger

In order to analyse the performance of a fuzzy trigger

and a normal trigger, a temporal fuzzy trigger coding

and the normal trigger coding is taken. The fuzzy

trigger coding to find out the good performing

company stocks every day is given below.

<rule>

 <rulename>Listing Good Performed Companies in Stock

Market</rulename>

<event_type>temporal_event</event_type> <event_frequency

>daily

</event_ frequency>

<start_time>18:00</start_time> <condaction>

 let $a := collection('StockMarket.dbxml')/StockBroker return

for $b in ($a/Company_Share) return

 if ($b/%(Close_NAV-Yesterday_NAV)/text()=VERY HIGH with

threshold 0.8 and $b/%Stock_Performance/text()=~good with

threshold 0.8) then

 insert nodes

<Top Performance Companies Stocks>

<Company_ID>{$b/StockMarket/Company_ID/text()}</Company

_ID>

<CompanyName>{$b/StockMarket/CompanyName/text()}

</CompanyName>

<CompanyType>{$b/StockMarket/CompanyType/ text()}

</CompanyType>

<NAV>{$b/StockMarket/NAV/ text()}</NAV>

 else()

 </condaction>

</rule>

The Normal Trigger coding to find out good performing company

stocks every day is given below.

<rule>

 <rulename>Listing Good Performed Companies in Stock

Market</rulename>

<event_type>temporal_event</event_type> <event_frequency

>daily</event_ frequency>

<start_time>18:00</start_time> <condaction>

 let $a := collection('StockMarket.dbxml')/StockBroker return

 for $b in ($a/Company_Share) return

 if ($b/(Close_NAV-Yesterday_NAV)/text() >=20 and

$b/(Close_NAV- Yesterday_NAV)/text() <=40) and

($b/Stock_Performance_min/text()>=72 and

$b/Stock_Performance_min/text() <=86) then

 insert nodes

<Top Performance Companies Stocks>

<Company_ID>{$b/StockMarket/Company_ID/text()}</Company

_ID>

<CompanyName>{$b/StockMarket/CompanyName/text()}

</CompanyName>

<CompanyType>{$b/StockMarket/CompanyType/ text()}

</CompanyType>

<NAV>{$b/StockMarket/NAV/ text()}</NAV>

 else()

 </condaction>

 </rule>

If the closing NAV of the company share is very high

and STOCK PERFORMANCE of the company share

is good and then insert the company details into the top

performance company stocks XML file. The NAV

values of 500 Companies are updated for 10 days. The

output for the Normal Trigger and Fuzzy Trigger is

graphically represented in the Figure 2.

The tests were run in a 2.20 GHz I3 Processor PC

with 2 GB RAM memory. The operating system was

Windows 7 Ultimate. In the first test, the output

produced by the Fuzzy Trigger and Normal Trigger are

evaluated continuously for 10 days. The number of

relevant records returned by both the Fuzzy Trigger

and Normal Trigger are considered for output

performance evaluation. The result for this testing is

graphically represented in the Figure 1. It is clearly

understood from the Figure 1 that Fuzzy triggers are

returning more XML records than Normal triggers. We

can conclude that the Fuzzy triggers are producing

20% to 30% better output than Normal Triggers. In the

second test, the execution time for Fuzzy Triggers and

Normal Triggers are evaluated. In the first time, the

execution time of Normal Trigger with one rule and

640 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

Fuzzy Trigger with one rule is compared. In the second

time, the execution time of Normal Trigger with two

rules and fuzzy trigger with two rules is compared.

This test is carried out until the normal trigger with 10

rules and fuzzy trigger with 10 rules. Java program is

used to calculate the execution time in Milliseconds of

both the triggers. The execution time comparison is

graphically represented in the Figure 2. Normal

triggers are 10% to 20% performing faster than fuzzy

triggers. It is clearly understood that the average

overhead involved in fuzzy trigger translation is only

10-20% when compared to normal triggers.

N
o
 o
f
re
co
rd
s

 Days

Figure 1. The output performance of fuzzy trigger and normal

trigger.

E
x
ec
u
ti
o
n
 T
im
e
(M
il
i
se
co
n
d
s)

 Trigger with no of Rules

Figure 2. Execution time analysis of fuzzy trigger and normal

trigger.

7. Conclusions

Fuzzy trigger for XML DB which focuses on

combining two important areas: Fuzzy reasoning and

active rules is proposed. In this paper, we extend the

basic semantics of event-condition action rules with

fuzzy rules and fuzzy inference. An algorithm to

implement fuzzy active rule based triggers is presented

in this paper. The architecture for a fuzzy ECA rule

processing is proposed in this paper. The proposed

fuzzy trigger system was implemented using Java and

Oracle Berkeley DB XML. Testing is carried out to

analyze the performance and output of normal XML

triggers and fuzzy XML trigger. Our test results show

that fuzzy XML triggers are providing better output

than normal XML triggers. But the performance wise,

fuzzy triggers are 10% to 25% slower than normal

triggers. The proposed system lacks intelligent error

handling functionality and GUI based user friendly

interface. We will do research to introduce the

intelligent error handling mechanism in fuzzy trigger

system.

References

[1] Anders H., Wenny R., and Eric P., “XTrigger:
XML Database Trigger,” Springer Journal:
Computer Science-Research and Development,
vol. 25, no. 1, pp. 1-19, 2010.

[2] Anton W. and Tarik B., “Fuzzy Triggers:
Incorporating Imprecise Reasoning into Active
Databases,” in Proceedings of the 14th
International Conference on Data Engineering,
Orlando, Florida, pp. 108-115, 1998.

[3] Bailey J., Poulovassilis A., and Peter W., “An
Event-Condition-Action Language for XML,”
avalible at: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.127.301&rep=rep1&type=
pdf, last visited 2002.

[4] Bernauer M., Bonifati A., Braga D., Campi A.,
and Ceri S., “Active XQuery,” in Proceedings of
the 18th IEEE International Conference on Data
Engineering, 2002.

[5] Bonifati A., Braga D., Campi A., and Ceri S.,
“Active XQuery,” in Proceedings of the 18th
International Conference on Data Engineering,
San Jose, California, pp. 403-412, 2002.

[6] Bonifati A., Ceri S., and Paraboschi S., “Pushing
Reactive Services to XML Repositories using
Active Rules,” Computer Networks, vol. 39, no.
5, pp. 645-660, 2002.

[7] Bosc P. and Pivert O., “SQLf: A Relational
Database Language for Fuzzy Querying,” Fuzzy
Systems, vol. 3, no. 1, pp 1-17, 1995.

[8] Bouaziz T., Karvonen J., Pesonen A., and Wolski
A., “Design and Implementation of TEMPO
Fuzzy Triggers,” in Proceedings of 8th
International Conference on Database and
Expert Systems Applications, Toulouse, France,
pp. 91-100, 1997.

[9] Farnaz M., Ayaz I., and Leili M., “Using an
Active Fuzzy ECA Rule-Based Negotiation
Agent IN E-Commerce,” International Journal of
Electronic Commerce Studies, vol. 2, no. 2, pp.
127-148, 2011

[10] Ferraz C., Braganholo V., and Mattoso M.,
”ARAXA: Storing and Managing Active XML
Documents,” Web Semantics, vol. 8, no. 2-3, pp.
209-224, 2010.

[11] Galindo J., Medina M., Pons O., and Cubero C.,
“A Server for Fuzzy SQL Queries,” in
Proceedings of the 3rd International Conference
on Flexible Query Answering Systems, Roskilde,
Denmark, pp. 164-174, 1998.

[12] Jin Y. and Bhavsar T., “A Fuzzy Trigger
Language for Relational Database Systems,” in
Proceedings of the 20th International Conference
on Software Engineering and Knowledge
Engineering, USA, pp 367-370, 2008.

[13] Jin Y. and Bhavsar T., “Incorporating Fuzziness
into Timer Triggers for Temporal Event

The Fuzzy Logic Based ECA Rule Processing for XML Databases 641

Handling,” in Proceedings of the IEEE
International Conference on Information Reuse
and Integration, USA, pp. 325-329, 2008.

[14] Kappel G. and Kramler G., “Composite Events
for XML,” in Proceedings of the 13th World Wide
Web Conference, New York, USA, 2004.

[15] Liu T. and Goh A., “XML Schema-Based
Triggers,” in Proceedings of International
Conference on World Wide Web, pp. 937-940,

2003
[16] Montesi M. and Torlone R., “Analysis and

Optimization of Active Databases,” Data and
Knowledge Engineering, vol. 40, no. 3, PP 1-39,
2002.

[17] Ozgun O., Ozyer T., Zarour O., Alhajj R., and
Polat F., “TempoXML: Nested Bitemporal
Relationship Modeling and Conversion Tool for
Fuzzy XML,” Information Sciences: An
International Journal, vol. 193, pp. 247-274,
2012.

[18] Prabha S., Kannan A., and Kumar P., “An
Optimizing Query Processor with an Efficient
Caching Mechanism for Distributed Databases,”
the International Arab Journal of Information
Technology, vol. 3, no. 3, pp. 231-236, 2006.

[19] Rodrigues R., Cruz A., Cavalcante R., “Alianca:
A Proposal for Fuzzy Database Architecture
Incorporating XML,” Fuzzy Sets and Systems,
vol. 160, no. 2, pp 269-279, 2009.

[20] Swamynathan S., Kannan A., and Geetha V.,
”Composite Event Monitoring in XML
Repositories using Generic Rule Framework for
Providing Reactive E-Services,” Decision
Support Systems, vol. 42, no. 1, pp. 79-88, 2006.

[21] Thomson J. and Radhamani G., “Fuzzy Integrity
Constraints for Native XML Database,”
International Journal of Computer Science
Issues, vol. 9, no. 3, pp. 466-471, 2012.

[22] Xu G., Ma J., and Huang T., “A XML-Based
Composite Event Approach,” in Proceedings of
the 4th International Conference, Beijing, China,
pp. 436-442, 2005.

[23] Zadeh A., “Knowledge Representation in Fuzzy
Logic,” IEEE Transactioons on Knowledge and
Data Engineering, vol 1, no. 1, pp. 89-100, 1989.

[24] Zadeh A., “The Role of Fuzzy Logic in the
Management of Uncertainty in Expert Systems,”
ACM Journal of Fuzzy Sets and Systems, vol. 11,
no. 1-3, pp 197-198,1983.

Thomson Fredrick received his Bs

and MS degrees from Bharathidasan

University, India. Currently, he is a

research scholor at R&D centre of

Bharathiar University, India. He has

published several papers in

International Journal and

Conferences. His research interests include: XML

databases, web technology and artificial intelligence.

Govindaraju Radhamani is

working as a Director in the School

of IT and Science in

Dr.G.R.Damodaran College of

Science, Coimbatore. She received

her PhD degree from Multimedia

University, Malaysia and MSc,

MPhil degrees from PSG College of Technology,

India. She has published several papers in International

Journal and Conferences. She is a Senior Member of

IEEE and CSI. Her research interests are: Computer

security, databases and mobile computing.

