A Vision Approach for Expiry Date Recognition using Stretched Gabor Features

Ahmed Zaafouri, Mounir Sayadi and Farhat Fnaiech
Department of Electrical Engineering, University of Tunis, Tunisia

Abstract: Product-expiry date represent important information for products consumption. They must contain clear information in the label. The expiry date information stamped on the cover of product faced some challenges due to their writing in pencil and distorted characters. In this paper, an automated vision approach for recognizing expiry date numerals of industrial product was presented. The system consists of four stages namely, numeral string pre-processing, numerals string segmentation, features extraction and numeral recognition. In preprocessing module, we convert the image to binary image based on threshold. Vertical projection process is adopted to isolate numerals, in the segmentation module. In the features extraction module, Fourier Magnitude (FM), Local Energy (LE) and Complex Moments (CM) derived from Stretched Gabor (S-Gabor) filters outputs are extracted at various filter orientations. Also, the mean and the variance of each feature map are extracted. The recognition process is achieved by classifying the extracted features, which represent the numeral image, with trained Multilayer Neural Network (MNN) using k-fold cross validation procedure. Through experiments, we demonstrate the richness of the S-Gabor features of information is highlighted. Consequently, the set of features shows its usefulness for practical usage.


Received March 21, 2013; accepted December 24, 2013

1. Introduction

In machine vision inspection application, the system must be able to perform successfully label verification [15]. In computer vision inspection system, character verification and recognition is an important research field. There are also many control applications where the products should be identified via numeral codes such as: Product reference, batch number and expiry-date.

In recent years, many researchers related to industrial applications have been developed like: Vehicle license plate recognition [6, 18, 23, 26] and product code inspection as quality control of the label of medical product [24], control of the numeral on pulp bales [10], visa card numeral code reading [7] and check amount recognition [16] and container-code recognition [25]. The product codes are often printed somewhere on the product and presents some difficulties to recognize them. Expiry date of the product is important information for consumer. This information appears such numerical or alphanumerical characters as shown in Figure 1.

In the production line, expiry date faces some difficulties due to the pencil stamping method, packaging phase and many others constrains. Also, depending to the storage duration of the product expiry date may be appearing distorted and presenting holes, and the characters can be warped. Too, the character image may be skewed; the thickness and the shape of characters are incoherent. Despite the importance of this information in our daily use, it is not treated before in literature. This paper presents an automated vision approach for product Expiry Date Recognition (EDR). It can be established by a digit series stamped on the cover of the product with different form Figure 1. As in previous works [25], the proposed EDR system is divided into four main modules: Expiry date image preprocessing, expiry date code segmentation, features extraction and finally numerals classification. In the first stage, the input image is binarized using morphological operator. Then, the segmentation is performed using vertical projection. Then, a set of features are extracted from Stretched Gabor (S-Gabor) filters output like Fourier magnitude, local energy and complex moment with statistical features. Finally, multilayer neural network is used to classify the expiry date numeral into ten classes.

The rest of the paper is organized as follows: Section 2 is devoted to present an overview of the proposed method. This section is divide into:

1. The input image binarization.
2. The segmentation of the numeral string.
4. The features extraction steps.
5. The multilayer neural network classifier.

Section 3 presents simulation results and discussion demonstrating the performance of the automatic method for numeral classification and recognition. Finally, conclusion is drawn in the last section.
2. Overview of the Proposed Method

After image binarization, the segmentation of digits string is carried out. Then, each normalized digit image is convolved with a bank of S-Gabor filter at some orientations and at specified frequency (filter \(1 \ldots \text{filter 'o'}\); with 'o' is the number of orientations). According to the number of orientation of the filter, many feature maps are determined. For instance, if 'o=3' we have three features map of local energy and likewise for Fourier magnitude and complex moment. In each stage of the filtering algorithm, the norm of the difference between feature maps at subsequent orientation channels is calculated and considered. Finally, a vector consisting of many features, depending on the number of orientation, of each numeral is obtained. The feature vector is considered as an input of a MNN for numeral recognition. Figure 2 illustrates the flowchart of the proposed algorithm. In the sequel, let us explain each bloc separately, as drawn in Figure 2.

2.1. Preprocessing of The Expiry Date Images

The preprocessing stage comprises two modules: The binarization of the input image followed by expiry date image thinning. Firstly, the obtained expiry date image is converted to a grayscale \(GS\) image with the following Equation:

\[
GS\text{ image} = 0.2990 R + 0.5870 G + 0.1140 B
\]  

R, G and B are, respectively, three color components of red, green and blue.

Now, everything is ready for binarization of image, thresholding is employed for binarization of the gray level image and thus to separate the object of interest from the background. After the binarization, the morphological algorithm is employed in the thinning module. The result of the binarization and thinning modules of expiration code without duplication is shown in Figure 3.

In the others words, some shortcomings could corrupt the expiration code such as connected characters, overlapping and skewed code. The touching numerals problem is in general due to the digit thickness and skewed code is due to the positioning of the product towards the camera and so captured image requires skew correction. The two problems are considered in the following.

In our paper connected numerals and skewed code are considered. For the skewed code Figure 4-a, the gradient based algorithm [21] is applied for skew correction. This approach performs as follows: The gradient of the input image is estimated using Sobel operator and the orientation histogram is smoothed using median filter. The maximum of the histogram represents the initial skew angle. Also, the skew angle is determined by the difference between \(\pi/2\) and the initial skew angle. After skew correction, the image is binarized and digits are extracted.

The second problem treated in our paper is given by touching numerals due to their thickness see Figure 5. The input image is binarized using specified thresholding value and in order to reduce connected component, the binary image is convolved with the filter kernel \(h\) given by:
The result of the convolution $I_c(x, y)$ is binarized again and thinned and the numerals are segmented by vertical projection technique. Figure 5 shows the process of numerals separation.

\[
\begin{vmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{vmatrix}
\] (2)

The cosine function in Equation 3 is replaced by the sine function in order to obtain odd symmetric S-Gabor filter. The filter given by Equation 3 suffers some drawbacks as the blurred effect introduced in the local energy map and the false response to 1D features [17]. To reduce the blurred effect of the local energy and the false response to 1D image features, the angular component given in Equation 3 by a power of cosine function is replaced. And the S-Gabor filter is expressed by:

\[
g_r(r, \theta) = \frac{1}{2} \times \left[ e^{-r^2/(2\sigma^2)} \cdot \cos \left( 2\pi f_0 |\nabla (r) - \theta| \right) \right] \times \cos^2 \left( \theta_0 - \theta \right) \] (3)

\[
g_r(r, \theta) = \frac{1}{2} \times \left[ e^{-r^2/(2\sigma^2)} \cdot \cos \left( 2\pi f_0 |\nabla (r) - \theta| \right) \right] \times \cos^2 \left( \theta_0 - \theta \right)
\] (4)

Where $\sigma$ determines the width of the Gaussian envelope, $m$ is a constant parameter determining orientation selectivity of the filter, $f_0$ is the frequency at the origin, $\theta_0$ denote the orientation angle of the filter and $\xi (r)$ gives the frequency sweep of the filter, it is expressed by:

\[
\xi (r) = 1/2. \left[ e^{-\lambda (r/\sigma)^2} \right] + 1
\] (5)

Where $\lambda$ is chosen numerically so that the even S-Gabor function integrates to zero and $r$ denote the polar coordinates. In our experiments, the parameters are set to $\sigma = 2$; $m = 2$, the center frequency $f_0$ is chosen equal to 0.1 and $\lambda = 0.5$. These parameters are set in order to give thin feature responses and reduce the blur effect on local energy, Fourier Magnitude (FM) and complex moment response and consequently in order to obtain successfully performance of the proposed algorithm.
The bracketed expression in Equation 4 represents the radial component shown in Figure 7-a and the power of cosine express the angular component as shown in Figure 7-b. The two components are multiplied together to construct the overall S-Gabor filter \( G_{r}(r, \theta) \) as illustrated in Figure 7-c.

2.4. Features Extraction

2.4.1. Fourier Response Features

The convolution of the image with a bank of filters gives a set of features used for texture and image analysis. Gabor filters bank is the well used in this area. The magnitude response has been used for texture classification [3]. Also, only the real components were used for texture segmentation [12]. The imaginary component derived from Gabor filter output is used for handwritten numeral recognition [22]. The magnitude response is used as features in our study.

The input numeral image \( I_{xy} \) is convolved, in the frequency domain, with a bank of S-Gabor filters \( G_{r}(r, \theta) \). The magnitude response at each orientation ‘\( o \)’ is expressed as follows:

\[
A_{o}(x,y) = |F\left[\mathcal{F}(x,y) \times \mathcal{F}(r,\theta)\right]|
\]

Where \( \mathcal{F} \) is the Fourier transform and \( \mathcal{F}^{-1} \) denote the inverse Fourier transform. The FM is computed at each orientation channel. The norm of the difference between subsequent FM \( \Delta A \) is computed giving a first feature used in the recognition process. The mean and the variance of each Fourier magnitude response at orientation channel are calculated.

2.4.2. Local Energy Features

In this work, we exploit the S-Gabor filters properties for local energy computation. The Local Energy (LE) is computed over various orientations. The LE at each orientation ‘\( o \)’ is computed by [14]:

\[
E_{o}^{L}(x,y) = w(x)A_{o}(x,y)\Delta\Phi_{o}(x,y) - T
\]

Where \( w(x) \) is the sigmoid function used to weight LE, \( \Delta\Phi_{o}(x,y) \) is a phase deviation measure, \( A_{o}(x,y) \) is the FM response, the symbols \( \left\lfloor \cdot \right\rfloor \) denote the enclosed quantity is equal to itself when its value is positive and zero. Otherwise, this local energy measure is interesting to takes into account the noise cancelation. According to [14], the noise compensation term is expressed by:

\[
T = \mu_{R} + k\sigma_{R}
\]

Where \( \mu_{R} \) is the mean noise response and \( \sigma_{R} \) is the standard deviation and \( k \) is a constant value chosen between 2 and 3.

![Figure 7. The 3D representation of the three components of 2D Stretched Gabor filters.](image)

In our case the constant \( k \) is equal to 3. The total energy \( E^{T}(x,y) \) is given by taking the summation of the local energy for all orientations. The total energy is given by:

\[
E^{T}(x,y) = \sum_{o}E_{o}^{L}(x,y)
\]

Figure 8 shows the local energy features map at different orientation of two numerals.

The relation between the local power spectrum and the S-Gabor energy features can be defined by:

\[
P_{o}(x,y) = \left| E_{o}^{L}(x,y) \right|^{2}
\]

For a given image, the local energy is evaluated for each pixel and at each orientation. The norm of the difference between two subsequent energy feature maps at orientation channels, \( \Delta E \) is calculated. Equally, we compute at each orientation channel the mean and the variance of the local energy feature map.

2.4.3. Complex Moment Features

The complex moment of a function \( f(x,y) \) is defined by: [4]

\[
I_{mn} = \int\int (x+iy)^{m}(x-iy)^{n}f(x,y)dxdy
\]

Where \( m, n \in \mathbb{N} \)

![Figure 8 shows the local energy features map at different orientation of two numerals.](image)
In image processing applications, the complex moments are used as features descriptors of textured images. Therefore, the real and imaginary parts of the complex moments of the local power spectrum were proposed as features that give information about the presence or absence of dominant texture orientations. The sum \( m+n \) called the order of the complex moments is related to the number of dominant orientations in the texture [19].

The complex moments of the local power spectrum at orientation \( \phi \) may be estimated by:

\[
C_{mn}^{o}(x,y) = \sum_{x=1}^{M} \sum_{y=1}^{N} (x+iy)^{m} (x-iy)^{n} P_{o}(x,y) \quad (12)
\]

With \( P_{o}(x,y) \) denote the local power spectrum given by Equation 8.

In the sequel, we compute the estimated complex moment at each orientation channel and at each pixel, by using Equation 12. The computed complex moments are complex quantities, their magnitudes give information about the presence or absence of dominant orientations while their arguments specify which orientations are dominant [19]. The order of the complex moments is chosen equal to 1 (i.e. \( m+n=1 \)). For \( m=1, n=0 \) and if \( m=0, n=1 \). All cases are taken account.

At each pixel, the magnitude of the complex moment of order 1 at orientation \( \phi \) is given by:

\[
C_{o}^{1}(x,y) = \sqrt{\text{Re}\left(C_{o}^{1}(x,y)\right)^{2} + \text{Im}\left(C_{o}^{1}(x,y)\right)^{2}} \quad (13)
\]

For a given image, the magnitude of the complex moments of order 1 is computed for each orientation. Then, an important features \( \Delta C_{o}^{1} \) representing the norm of the difference between two subsequent \( C_{o}^{1} \) and \( c_{o}^{1} \), orientation channel is calculated. Also the mean and the variance of the complex moment feature map, at each orientation channel \( C_{o}^{1} \) are calculated and used as features.

### 2.4.4. Numeral Straight-Line and Curve Main Features Indexes

After defining, in the previous sections, the Fourier magnitude \( A_{o}(x,y) \), the local energy \( E_{o}^{L}(x,y) \) and the magnitude of the complex moments \( C_{o}^{1}(x,y) \) at each orientation, now these quantities may be used to compute the main digit straight line and curves features such as \( \Delta E_{n} \), \( \Delta A_{n} \) and \( \Delta C_{n} \).

Following [5], the norm of the difference between local energy feature maps, at subsequent orientation channels, is calculated. The first norm of difference between subsequent local energy is given by:

\[
\Delta E_{n} = \| E_{n} - E_{n+1} \| \quad (14)
\]

Also, we compute the norm of the difference between subsequent magnitude responses

\[
\Delta A_{n} = \| A_{n} - A_{n+1} \| \quad (15)
\]

In the same way we compute the norm of the difference between subsequent complex moments magnitude of order 1 as follows:

\[
\Delta C_{n}^{1} = \| C_{n}^{1} - C_{n+1}^{1} \| \quad (16)
\]

Where \( E_{n} \), \( A_{n} \) and \( C_{n}^{1} \) are the local energy, the FM and the first order complex moments magnitude features map at orientation \( \phi \), \( n = 1,...,3 \).

Table 1 illustrates the main local energy, FM and complex moment features indexes of three numerals. The extracted features indexes of FM spectrum and complex moments can be calculated in the same manner using Equation 15 and Equation 16, respectively. It is well shown that features ‘0’ digit ‘6’ and ‘5’ are distributed equally in all orientations channel. For the numeral ‘1’, the FM, LE and complex moments are concentrated in the single orientation channel with some leakage into adjacent neighboring channels [5]. Here of, the numerals can be classified into two classes. The first class is called curved numeral and the second is linear numeral. Figure 10 shows that for numeral ‘1’ the LE features index is concentrated in the first channel, likewise for the complex moment features index in Figure 10-b. While for numerals ‘5’ and ‘6’, the features indexes are distributed equally at orientation channel. Furthermore, for the numerals containing dominant linear features
the value $\Delta E_1$ is far from $\Delta E_2$ and $\Delta E_3$ (‘numeral 1’ in Table 1) while the value $\Delta E_1$ is close to $\Delta E_2$ and $\Delta E_3$ for the digits composed by curve features (‘numeral 5 and 6’ in Table 1). Likewise the same interpretations of local energy features indexes can be extended for complex moments and FM feature indexes as shown in Table 1.

<table>
<thead>
<tr>
<th>Feature indexes</th>
<th>Numeral ‘1’</th>
<th>Numeral ‘5’</th>
<th>Numeral ‘6’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_1$</td>
<td>404.82</td>
<td>242.36</td>
<td>332.41</td>
</tr>
<tr>
<td>$\Delta E_2$</td>
<td>128.25</td>
<td>299.88</td>
<td>289.83</td>
</tr>
<tr>
<td>$\Delta E_3$</td>
<td>125.74</td>
<td>313.87</td>
<td>334.42</td>
</tr>
<tr>
<td>$\Delta A_1$</td>
<td>7.08</td>
<td>257.05</td>
<td>352.50</td>
</tr>
<tr>
<td>$\Delta A_2$</td>
<td>149.49</td>
<td>276.45</td>
<td>304.07</td>
</tr>
<tr>
<td>$\Delta A_3$</td>
<td>148.07</td>
<td>276.45</td>
<td>304.07</td>
</tr>
<tr>
<td>$\Delta C_1$</td>
<td>7.07e+005</td>
<td>4.30e+005</td>
<td>5.34e+005</td>
</tr>
<tr>
<td>$\Delta C_2$</td>
<td>5.34e+005</td>
<td>3.40e+005</td>
<td>4.94e+005</td>
</tr>
<tr>
<td>$\Delta C_3$</td>
<td>0.60e+005</td>
<td>3.53e+005</td>
<td>5.03e+005</td>
</tr>
</tbody>
</table>

Several iterations are required to train the network, but once it is trained, it is fit for classifying unknown vectors and assigns each one to a specific numerals class [22]. Figure 11 illustrates the general multilayer neural network architecture used for numeral recognition.

### 3. Experimental Results

In this section, we demonstrate the importance of the features derived from S-Gabor filter output for expiry date numeral recognition. The database used in our experiments consists of 2000 photos of product label under different illumination and various numerical formats of expiry date. Only numerical expiry date images are considered, in our study. The segmented and normalized numeral images with size 50x30 are used. We have 500 samples for each digit class so in total 1000 samples. To obtain uniformity in generating the recognition accuracy, input data are divided into 5-folds.

In order to measure the performance of our algorithm on the numerals recognition problem, 5-fold cross validation procedure is used. The principle of this method consists to divide the dataset in 5 disjoint sets. The main advantage of using k-fold cross validation is that all examples in the dataset are eventually used for both training and testing. In our experiments, 5-fold cross validation technique is used and the performance of the algorithm of each fold is determined. The overall performance is determined by the average of the five folds accuracy.

The set of features used in our experiments are given by a variable numbers of features indexes (Table 1) with the mean and the standard deviation of each feature map. For instance, for four filter orientations ($\theta = 0, \pi/4, \pi/2, 3\pi/4$), 9 feature indexes for each numeral are extracted as demonstrated in Table 1. In addition, the mean and the standard deviation at each orientation channel gives 24 features (8 for LE, 8 for CM and 8 for FM) for each numeral image. The
The feature vector is composed by 33 features in total, in our experiments. Also, the performance of the recognition system is tested over various filter orientations as shown in Table 2. The extracted features are used as input of multilayer NN having better configuration.

The constructed NN has one hidden layer with 50 neurons and the learning rate is set to 0.1. These parameters are reached by try and error and also by trade-off between two parameters of consuming time and the recognition accuracy. The number of the input nodes is variable according to the number of orientation of the filter. The number of the output of the network is equal to 10 corresponding to the number of the numeral (0-9). In order to train the MNN classifier we adopted the back propagation algorithm. Learning was terminated when the mean square error is lower. Here, the maximum number of iterations was set to 5000. Table 2 illustrates the average recognition rate of the proposed algorithm using different number of input features using five folds cross validation. We show that for four orientations, the proposed algorithm gives a higher recognition rate. Also, if we use 8 orientations the angular bandwidth between successive orientation channels is well small and the norm of the difference (see Table 2) between feature indexes is not well distinguished.

The performance of the stretched Gabor features depends typically on parameters of the filter $m$, $\lambda$, and $\sigma$. The parameter $m$ defines the orientation selectivity of the filter. The parameter $\sigma$ determines the width of the Gaussian envelope and $\lambda$ determines the frequency spread of the filter. Also, if $\sigma$ increases all features response are thicker. So, the difference between subsequent feature maps presents leakages and the recognition rate of the proposed algorithm decreases. The parameter $m$ defining the orientation selectivity of the filter must be chosen small in order to guaranties high recognition rate. This parameter does not a large influence in the output results by using new angular component of the S-Gabor filter. An appropriate selection of the parameter $\lambda$ in the sweep function (5) can make the filter narrow enough that will yield better feature maps.

The set of features used in this paper are compared to the set of features presented in [5] derived only from the local energy measure. The features are given by the mean and the maximum value of the local energy feature indexes $\Delta E_{max}$, $\Delta E$, $\Delta E^2$. Also, the performance of the proposed algorithm is compared with the set of features presented in [1] given by the mean and the standard deviation of the filtered image with Gabor filters at different orientations and scales. Table 3 shows the comparison of the recognition performance of three approaches using NN and k-nearest neighbor classifiers using 5-folds cross validation procedure. Moreover, the proposed set of features significantly improved the recognition rate. We show that the proposed method exceed the two others methods and the average recognition rate reaches 99.3% while for the set of features in [5] the recognition system has poor performance explained by recognition rate close to 90%. Also, the method using the mean and the standard deviation of filtered images using Gabor features in [1] gives acceptable performance for expiry date numeral recognition. Figure 12 depicts the comparison results of the performance of the three compared algorithms for each digit composing expiry date code.

The last series of experiments consists of the performance comparison of MNN and SVM classifier on the same set of features. Table 4 shows the average recognition rate of the two classifiers. It is observed that the recognition rate using SVM is higher than neural network MLP and the recognition rate reaches 99.6% and 99.3%, respectively. But, the parameter storage of SVM classifier is significantly expensive compared with MLP neural network. Also, SVM classifier can be working successfully instead of the use of MLP neural network for expiration character classification.

Table 2. Average recognition rate (%) of the proposed algorithm using 5-fold cross-validation.

<table>
<thead>
<tr>
<th>Number of features</th>
<th>Average recognition rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 input features</td>
<td>99.6</td>
</tr>
<tr>
<td>42 input features</td>
<td>99.9</td>
</tr>
<tr>
<td>51 input features</td>
<td>98.7</td>
</tr>
<tr>
<td>69 input features</td>
<td>98.5</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the proposed algorithm with two others methods using 5 folds cross-validations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.2</td>
<td>98.6</td>
<td>98.9</td>
</tr>
<tr>
<td>2</td>
<td>89.6</td>
<td>97.8</td>
<td>98.8</td>
</tr>
<tr>
<td>3</td>
<td>91</td>
<td>99.1</td>
<td>99.7</td>
</tr>
<tr>
<td>4</td>
<td>90.4</td>
<td>98.9</td>
<td>99.6</td>
</tr>
<tr>
<td>5</td>
<td>91</td>
<td>99.5</td>
<td>99.9</td>
</tr>
<tr>
<td>Average</td>
<td>91</td>
<td>98.8%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>

Table 4. Comparison of the neural network with SVM classifier using different size of features.

<table>
<thead>
<tr>
<th>Number of input features</th>
<th>Average recognition rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 input features</td>
<td>99.6</td>
</tr>
<tr>
<td>42 input features</td>
<td>99.9</td>
</tr>
<tr>
<td>51 input features</td>
<td>98.9</td>
</tr>
<tr>
<td>69 input features</td>
<td>98.6</td>
</tr>
</tbody>
</table>

Figure 12. Expiry date numeral recognition rate for three different approaches.

4. Conclusions

In this paper, we have presented a vision approach for expiry date numeral recognition using S-Gabor based
features and MLP network. The results reported in this paper show that the current set of features can achieve high performance for digit recognition using NN and SVM classifiers. From the results, the proposed approach can be generalized for many computer vision applications. In the others word, the proposed method has two main advantages: The first one is the automation of the recognition process and the second is the high recognition rate for degraded digits. In addition, the use of new set of features derived from S-Gabor filters can be considered encouraging for character recognition. This study is meant to be a seed toward building a recognition system for many printed digits types.

References


Ahmed Zaafouri born in 1980 in Sidi Bouzid (Tunisia), he received the BSc degree in Electrical Engineering from the High school of sciences and techniques of Tunis, the Master Degree in Automatic from same school respectively in 2004 and 2006. He is currently an assistant professor in high institute of applied mathematics and informatics of Kairouan. Author has published about 10 research papers in many journal and international conferences. His research interests are focused on computer vision, artificial intelligence, pattern recognition and neural networks.

Mounir Sayadi born in 1970 in Tunis (Tunisia), he received the BSc degree in Electrical Engineering from the High school of sciences and techniques of Tunis, the DEA degree in Automatic and Signal Processing from same school and the PhD degree in signal processing from the National School of engineers of Tunis, respectively in 1992, 1994 and 1998. He is currently an Associate Professor at the High school of sciences and techniques of Tunis. Dr Sayadi has published over 40 scholarly research papers in many journals and international conferences. He was the Technical Program Co-Chairman of the IEEE International Conference on Industrial Technology, 2004, Tunisia. His research interests are focused on signal and image processing, classification and segmentation.

Farhat Fnaiech born in 1955 in la Chebba (Tunisia), he received the BSc degree in Mechanical Engineering in 1978 from Ecole Sup des Sciences et Techniques of Tunis and the master degree in 1980, The PhD degree from the same school in Electrical Engineering in 1983, and the Doctorate Es Science in Physics form the Sciences Faculty of Tunis in 1999.He is currently Professor at the High school of sciences and techniques of Tunis. Pr Fnaiech is Senior Member IEEE and has published over 150 research papers in many journals and international conferences. He was the general chairman and member of the international Board committee of many International Conferences. His is Associate Editor of IEEE Transactions Industrial Electronics. He is serving as IEEE Chapter committee coordination sub-committee delegate of Africa Region 8. His main interest research areas are nonlinear adaptive Signal processing, nonlinear control of power electronic devises, Digital signal processing, Image Processing, Intelligent techniques and control.
