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Abstract: One of the main requirements in clustering spatial datasets is the discovery of clusters with arbitrary-shapes. 

Density-based algorithms satisfy this requirement by forming clusters as dense regions in the space that are separated by 

sparser regions. DENCLUE is a density-based algorithm that generates a compact mathematical form of arbitrary-shapes 

clusters. Although DENCLUE has proved its efficiency, it cannot handle large datasets since it requires large computation 

complexity. Several attempts were proposed to improve the performance of DENCLUE algorithm, including DENCLUE 2. In 

this study, an empirical evaluation is conducted to highlight the differences between the first DENCLUE variant which uses the 

Hill-Climbing search method and DENCLUE 2 variant, which uses the fast Hill-Climbing method. The study aims to provide a 

base for further enhancements on both algorithms. The evaluation results indicate that DENCLUE 2 is faster than DENCLUE 

1. However, the first DECNLUE variant outperforms the second variant in discovering arbitrary-shapes clusters.  
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1. Discovery of Arbitrary-Shapes Clusters 

Cluster analysis is important to understand the 

distribution of data and has been applied in many 

applications [4, 9]. Density-based clustering algorithms 

have gained substantial attention in both theory and 

practice, due to their efficiency in discovering clusters 

with arbitrary shapes [14, 17]. Density-based clustering 

algorithms explore the data space at high scales of 

granularity. Generally, density-based algorithms 

explore the data space at a rationally high scale of 

granularity and then a post-processing step is applied to 

merge the dense regions of the explored data space to 

form arbitrary shapes. The advantage of such approach 

is that it can reconstruct the true shape of the data 

distribution [1]. 

The density at a specific point in the space is 

estimated, based on local connectivity (number of 

points in a predetermined extent of the point locality) or 

based on a density function. DBSCAN, which is a local 

connectivity based algorithms, estimate the density by 

determining the number of points in a fixed-radius 

neighbourhood. A point x is surrounded by a dense 

region if its ε neighbourhood contains at least δ number 

of points, including x itself [10]. The DENCLUE 

algorithm estimates the density using a density 

function, the “Kernel Density Estimation” (KDE). The 

density function at a point x is estimated as the sum of 

the influence functions of all data points at the point x. 

After that, x is assigned to an attractor point, x*, which 

is the “local maximum” of the density function at the 

point x. If the density of x*exceeds the density 

threshold, ξ, then x is considered within a dense region 

[1]. 

DENCLUE was first proposed by [7], in which the 

Hill-Climbing method was used to find the attractors 

(local maximum) of the density functions. The 

DENCLUE has good features in comparison with 

other density-based algorithms. 

1. It uses a firm mathematical base for density 

estimation.  

2. Achieves high performance in datasets with large 

amounts of noise. 

3. It employs a compact mathematical form of 

arbitrary-shapes clusters in high-dimensional 

datasets. 

4. Outperforms other algorithms in terms of execution 

time. 

Different enhancements have been applied on 

DENCLUE algorithm [10]. Hinneburg and Gabriel [6] 

proposed an updated Hill-Climbing method, named 

“Fast Hill-Climbing”, which requires less number of 

iterations to find the local maximum. Therefore, the 

fast Hill-Climbing method is faster than the gradient-

based Hill-Climbing method in finding density-

attractors. 

This study aims to discuss the difference between 

the two algorithms proposed in [6, 7]: 

 Hinneburg and Keim [7], reports the first variant of 

the DENCLUE algorithms, which applies the 

gradient-based Hill-Climbing method to find 

density-attractors. 
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 In [6], a direct update rule of the Hill-Climbing 

method was proposed. In passing, notice this 

updated rule is essentially the Mean-Shift algorithm 

proposed by [5], as testified by [19]. 

 If multiple modes occur in a cluster, the Mean-Shift 

may fail to detect the correct structure of the cluster 

[16]. Consequently, DENCLUE 1 outperforms 

DENCLUE 2 in discovering such types of clusters as 

shown in the experiments. 

 DENCLUE 2 outperforms DENCLUE 1 in terms of 

execution speed, due to the updated Hill-Climbing 

method and K-means sampling. 

The study aims to provide a base for further 

enhancements on both algorithms. In addition, it will 

help to determine which variant can be used for a 

particular dataset. To evaluate the result of the 

clustering of both algorithms, we have used the 

Adjusted Rand Index. 

The structure of this study is as follows: Section 2 

provides an overview of the DENCLUE algorithm. The 

steps of density clustering of the DENCLUE 1 

algorithm are discussed in section 2.1 and the steps of 

density clustering of Denclue 2 are discussed in section 

2.2. Section 3 discusses the behaviour of the 

DENCLUE 2 algorithm and section 4 presents the 

empirical evaluation of the algorithms. Finally, section5 

concludes this study. 

2. DENCLUE Algorithms  

This section summarizes the both variants of the 

DENCLUE algorithm, DENCLUE 1 and DENCLUE 2. 

2.1. DENCLUE 1 

The DENCLUE algorithm estimates the density of a 

data point as the sum of the influence of all other data 

points in the dataset. The influence of a data point is 

modelled via a kernel function, such as the Gaussian 

kernel. The sum of all kernels (using suitable 

normalization) provides an estimation of the probability 

at any point x,  
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Formally, a density-attractor x*of a given influence 

function is the local maximum of the density-

function 𝑝. Any point, x, is considered density-attracted 

to the density-attractor x*iff∃ K ∊ N:d(xk,x*) ≤ε and 

satisfies the following: 

𝑥0 = 𝑥, 𝑥1+1 =  𝑥𝑖 + 𝛿.
∇𝑝(𝑥𝑖)

‖∇𝑝(𝑥𝑖)‖
 

DENCLUE uses the parameter δ to control the speed 

of convergence, ∇�̂�(𝑥𝑖)is the gradient of the density 

function �̂�(𝑥𝑖), and ‖∇�̂�(𝑥𝑖)‖ is the euclidean norm of 

the gradient density function. The Hill-Climbing 

search stops at the step k, such that k>0 and satisfies 

the condition �̂�(𝑥𝑘+1) < �̂�(𝑥𝑘).After that, it assigns 

the point x to the density-attractor x*= xk. The 

parameter ξ is used to determine the minimum density 

threshold. A point x is considered noise or outlier if it 

converges in the Hill-Climbing search to a local 

maximum which density is less than the minimum 

density threshold, 𝑝(x*) <ξ. 

A “center-defined" and “arbitrary-shape" clusters 

are defined as follows: 

 A center defined cluster, (wrtσ and ξ) is a subset in 

which every point in this subset has isattracted 

tox*and has density ≥ ξ.  

 An arbitrary-shape cluster (wrt σ and ξ) is a set of 

density-attractors X, such that: For every two 

attractors x1*, x2* ∊ X, there exist a path P from x1* 

to x2*, with all p ∊ P, �̂�(𝑝) ≥ ξ. 

The number of discovered clusters via such approach 

varies depends on σ [7]. 

2.2. DENCLUE 2 

The DENCLUE 2 algorithm uses an updated Hill-

Climbing method for finding attractors. The updated 

method modifies the step size without any extra cost, 

finds the local maximum exactly and requires less 

number of iterations. Instead of using the “gradient-

based” Hill-Climbing, the first derivative of 𝑝(𝑥)𝑖s set 

to zero and the equation is solved for x, such that: 

𝑥 =  
∑ 𝐾(

𝑥−𝑥𝑖
ℎ

)𝑁
𝑖=1 .𝑥𝑖
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The updated Hill-Climbing does not require the step 

size δ and the assignment of points to clusters is 

performed in a different way. The search starts at a 

point xi ∊X and keeps iterating until the density of 

attractor does not change much, such that, [𝑝(𝑥𝑖
𝑙) −

 𝑝(𝑥𝑖
𝑙−1)]/𝑝(𝑥𝑖

𝑙)  ≤  휀. A new measure is calculated, 

which is the size of the last two steps to the attractor 

x*, denoted by𝑠𝑡. This measure is calculated as𝑠𝑡 =

∑ ‖𝑥𝑖
𝑙−𝑖+1 − 𝑥𝑖

𝑙−1‖𝑘
𝑖=1 . 

Two points x1 and x2 are in the same cluster if their 

attractors,𝑥1
∗and 𝑥2

∗fall within a particular distance of 

each other, |𝑥1
∗ −  𝑥2

∗|  ≤ 𝑠𝑡1 +  𝑠𝑡1.  
In their research, [6] proved the convergence of the 

updated hill climbing using Gaussian Kernel by 

casting the density function maximization as a special 

case of the EM algorithm. In order to enhance the 

performance of the algorithm, an acceleration based 

on sampling, using the K-means algorithm was used. 

 (1) 

 (2) 

 (3) 

 (4) 
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3. The Behaviour Analysis of the DENCLUE 

2 

The Hill-Climbing is a critical step in the DENCLUE 

algorithm, and selecting an appropriate value for the 

step size affects the discovery of density-attractors. If 

the step size is too large, the density-attractor may be 

missed. However, selecting a small value for the step 

size, too many steps will be needed to find the density-

attractor [12]. To overcome this issue, Hinneburg and 

Gabriel [6] proposed the updated Hill-climbing method 

as an alternative to the “gradient-based” Hill-climbing 

method.  

This proposed method, the fast Hill-climbing 

method, is essentially the Mean-Shift method, which 

was proposed by [5], as testified by [15, 19]. The 

Mean-Shift method is deterministic (i.e., it has no step 

size) and nonparametric (does not require to determine 

the number of the clusters in advance) [2, 11]. 

The Mean-Shift may fail to capture the correct 

structure of the cluster if the cluster contains multiple 

modes. For instance, a Spiral dataset contains 

continuous dense-regions in each cluster, which may 

result in detecting multiple modes by the Mean-Shift 

[16]. As a result, the algorithm may fail to discover the 

true structure of clusters with arbitrary shapes. 

We have conducted experiments to trace the 

movement of the attractors found by DENCLUE 1 and 

DENCLUE 2. Two points were selected from the Spiral 

dataset for the experiments. The first pointis the point 

90 (22.9, 16.9) and the second is the point 272(25.75, 

13.7). The points were selected randomly from two 

different clusters. Figure 1 shows the attractors 

movement of two points in the Spiral dataset using 

DENCLUE 1. Figure 2 shows the attractors movement 

of the same two points in the Spiral dataset using 

DENCLUE 2 (without using sampling). Since 

DENCLUE 2 starts by a large step (and we cannot 

control the steps size), it has missed the correct density-

attractor of the second point and assigned it to the same 

cluster of the first point.  

 

Figure 1. Attractor movement using hill-climbing (DENCLUE 1). 

 
Figure 2. Attractor movement using mean-shift (DENCLUE 2). 

4. Empirical Evaluation 

To evaluate the DENCLUE performance, different 

empirical evaluations have been conducted on the 

performance of DENCLUE 1 and DENCLUE 2 (with 

sampling). Both algorithms used in the experiments 

are implemented using Java. The experiments were 

run on a machine with 7-core 2.6-GHz CPU, 8 GB of 

RAM and a 1-TB hard disk. 

4.1. Clustering Quality 

The first set of experiments were conducted to 

evaluate the quality of the clustering using the 

Adjusted Rand Index (ARI) [8]. The used datasets are 

the three 2D datasets: 3-Spiral dataset in Figure 3, 

which was used in [3] and two datasets generated 

using “Scikit Learn” libraryhttps://scikit-learn.org, the 

Noisy Two-Circles Dataset, Figure 4 and the Noisy 

Two-Moons Dataset, Figure 5. 

 

Figure 3. Spiral dataset. 

 
Figure 4. Noisy two-circles dataset. 
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Figure 5. Noisy two-moons dataset. 

Besides the mentioned datasets, five d-dimensional 

datasets were used. All used datasets are described in 

Table 1, including the number of objects (instances), 

the number of dimensions, and the number of clusters 

of each dataset. 

Table 1. Description of the datasets. 

Dataset 
Number of 

Instances 

Number of 

Dimensions 
Number of Clusters 

Noisy Two-

Circles 
1024 2 2 

Noisy Two-

Moons 
1500 2 2 

3-Spiral 312 2 3 

R15 600 2 17 

Compound 399 2 6 

Iris 150 4 3 

Seeds 210 7 3 

Segment 2310 19 7 

WDBC 569 30 2 

Libras 360 90 15 

 

The results of clustering were measured via the ARI 

measure and shown in Table 2. As a cluster validation 

measure, the ARI has proved its success among other 

measures [13, 18]. It is used to compare the clustering 

results of an algorithm against external criteria and it 

lies between zero and one. If the ARI value is near 1, 

this means that the two partitions have achieved better 

ARI value. The ARI is computed based on the 

following Equation: 

 

ARI =  
Index −  Expected Index

MaxIndex − ExpectedIndex
 

 

The results in Table 2 indicates that DENCLUE 1 

outperforms DENCLUE 2, specifically, in datasets that 

contain clusters with multiple modes, such as Noisy 

Two-Circles, Noisy Two-Moons, and 3-Spiral datasets. 

Carreira-Perpinan in [2] proves that the Gaussian 

Mean-Shift algorithm is a particular instance of the EM 

algorithm. That, if the kernel, used by Mean-Shift, is 

Gaussian, then the Mean-Shift algorithm is an 

Expectation-Maximization (EM) algorithm. This 

explains the behaviour of DENCLUE 2. Since the EM 

algorithm produces globular-shapes clusters, it cannot 

deal well with datasets that contain arbitrary-shapes 

clusters [1].  

This can be seen in Figures 6-11, which are the 

visual representation of the clustering results of both 

DENCLUE 1 and DENCLUE 2 (without sampling) on 

the Noisy Two-Circles, the Noisy Two-Moons, and 

the 3-Spiral datasets. 

Table 2. The Adjusted Rand Index value of DENCLUE 1 and 
DENCLUE 2. 

Algorithm Dataset ARI value Parameters 

 

DENCLUE 1 

Noisy Two-Circles 1.0000 σ = 0.15 , ξ = 3 

Noisy Two-Moons 1.0000 σ = 0.2 , ξ = 3 

3-Spiral 1.0000 σ = 2.5 , ξ = 3 

R15 0.6749 σ = 0.8 , ξ = 3 

Compound 0.7862 σ = 1.2 , ξ = 3 

Iris 0.6988 σ = 23 , ξ = 3 

Seeds 0.7810 σ = 0.7 , ξ = 3 

Segment 0.9838 σ = 1.5 , ξ = 3 

WDBC 0.6377 σ = 20 , ξ = 10 

Libras 0.9251 σ = .3 , ξ = 3 

 
DENCLUE 2 

Noisy Two-Circles -0.0009 σ = .39 

Noisy Two-Moons 0.3406 σ = 0.39 

3-Spiral 0.0267 σ = 2.5 

R15 0.2550 σ = 0.5 

Compound 0.5681 σ = 0.9 

Iris 0.4338 σ = 85 

Seeds 0.6913 σ = 0.7 

Segment 0.194 σ = 2.4 

WDBC 0.3007 σ = 18 

Libras 0.9787 σ = .3 

 

 

Figure 6. DENCLUE 1-spiral dataset. 

 
Figure 7. DENCLUE 1-circles dataset. 

 
Figure 8. DENCLUE 1-moons dataset. 

 (5) 
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Figure 9. DENCLUE 2-spiral dataset. 

All conducted experiments indicate that DENCLUE 

1 can detect clusters with arbitrary-shapes more 

accurately than DENCLUE 2. 
 

 
Figure 10. DENCLUE 2-circles dataset. 

 
Figure 11. DENCLUE 2-moons dataset. 

4.2. Clustering Performance 

The second experiments set was conducted to assess the 

performance of both algorithms. The results of their 

running time are shown in Table 2. DENCLUE 2 

(without sampling) was faster than DENCLUE 1 in all 

experiments because of using the fast Hill-Climbing 

method, which reduces the number of steps needed to 

find the density attractor. Because of using sampling, 

DENCLUE 2 can reduce the running time almost to the 

half. Hence, for datasets with spherical-shapes clusters, 

DENCLUE 2 is preferable. 

5. Conclusions 

Due to the importance of discovering arbitrary-shapes 

clusters in spatial datasets, it has attracted a lot of 

attention. DENCLUE algorithm provides an efficient 

solution to discover arbitrary-shapes clusters via a 

mathematical basis. The algorithm DENCLUE 2 was 

proposed to enhance the performance of DENCLUE 1 

based on the Hill-Climbing method using a fast Hill-

Climbing method. Although this variant has improved 

the performance of DENCLUE, it may fail to capture 

the correct structure of clusters with arbitrary-shapes. 

The results of the evaluation indicate that DENCLUE 

2 performance outperforms DENCLUE 1 in terms of 

execution time. However, the DENCLUE 1 

outperforms the DENCLUE 2 in discovering 

arbitrary-shapes clusters. 

Table 3. The Running Time (in seconds) of DENCLUE 1 and 

DENCLUE 2 Algorithms. 

Algorithm Dataset Running Time 

 

DENCLUE 1 

Noisy Two-Circles 2.943 

Noisy Two-Moons 8.626 

3-Spiral 0.224 

R15 1.200 

Compound 0.102 

Iris 0.310 

Seeds 0.172 

Segment 0.387 

WDBC 62.376 

Libras 0.316 

 

DENCLUE 2 

Noisy Two-Circles 0.362 

Noisy Two-Moons 0.152 

3-Spiral 0.269 

R15 0.069 

Compound 0.840 

Iris 0.113 

Seeds 0.170 

Segment 1.240 

WDBC 1.821 

Libras 1.806 

 

DENCLUE 2 With 
Sampling 

Noisy Two-Circles 0.316 

Noisy Two-Moons 0.417 

3-Spiral 0.089 

R15 1.609 

Compound 0.165 

Iris 0.387 

Seeds 5.159 

Segment 0.224 

WDBC 1.200 

Libras 0.102 
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