
The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020 677

Streaming Video Classification Using Machine

Learning

Adnan Shaout and Brennan Crispin

The Electrical and Computer Engineering, the University of Michigan-Dearborn, Michigan

Abstract: This paper presents a method using neural networks and Markov Decision Process (MDP) to identify the source

and class of video streaming services. The paper presents the design and implementation of an end-to-end pipeline for training

and classifying a machine learning system that can take in packets collected over a network interface and classify the data

stream as belonging to one of five streaming video services: You Tube, You Tube TV, Netflix, Amazon Prime, or HBO.

Keywords: Machine Learning, Neural Networks, Deep Packet Inspection, MDP, Video Streaming, AI.

Received February 29, 2020; accepted June 9, 2020

https://doi.org/10.34028/iajit/17/4A/13

1. Introduction

Methods, such as IP and port scanning, are not always

available for clients using Virtual Private Networks

(VPNs) or with providers (You Tube, You Tube TV,

Netflix, Amazon Prime, or HBO) using varying IP

addresses to be able to identify the types of data and

content providers that are being used on their

networks. Neural networks and Markov Decision

Process (MDP) are potential methods in identifying the

source and class of video streaming services. This

paper is an extension to our paper [18], which was

present at ACIT20 UAE.

The objective of this paper is to design and

implement an end-to-end pipeline for training and

classifying a machine learning system that can take in

packets collected over a network interface and classify

the data stream as belonging to one of five streaming

video services: You Tube, You Tube TV, Netflix,

Amazon Prime, or HBO. This paper will layout

method employing Markov Decision Process applied

to a simple multi-layer perceptron neural network in

order to more accurately classify these video services.

Previously, it has been possible for researchers to

identify network traffic and by extension streaming

services using IP addresses and ports; however, due to

increasing optimizations, service providers no longer

use reliably identifiable ports [14]. As such, new

methods are being developed that make use of

encrypted data and characteristics of the packets and

traffic to better identify traffic, however, very little of

this has been used to classify different streaming

services, and so few tools are available to discriminate

between the services for providers.

The rest of this paper will be organized as follows:

Section 2 describes previous work in classifying

network traffic and streaming data. Section 3 describes

the methodology used to collect our datasets and for

the implementation of our classifiers. Section 4 covers

experimental results and analysis. Section 5 is

discussion and conclusion.

2. Related Work

A lot of work in network traffic classification has been

done [14] that has focused on using NetFlow [8] to

identify traffic type or destination, rather than

traditional deep packet inspection. For example, Erman

et al. [5] proposed a traffic classification system that

only uses flow stats. They also provided a method to

estimate network flow at both edge and core network

nodes [6]. Zhang et al. [22] proposed a method to

classify network traffic using correlation with

comparatively low sample sizes for their data.

Further attempts to improve classification

performance appear in Moore and Zuev [13] and Auld

et al. [2], in which a supervised naïve Bayes tree is

applied to estimate traffic identity, and further

extended using neural networks based on Bayesian

methods to classify internet traffic using flow data.

BLINd Classification (BLINC) [9] also attempted to

classify hosts and associate them with applications

rather than classifying pure IP flow. Bernaille and

Teixeira [3], used the size of first packets to identify

applications by using deep packet inspection.

Most relevant to classifying video, traffic, however,

is work by Bonfiglio et al. [4], in which they identify

VOIP related traffic to identify skype traffic on a

network. There has been an increase in interest in how

deep learning techniques can be applied to network

traffic classification [1, 10, 17, 19, 20]. Work was done

to estimate You Tube Quality of Experience (QoE)

[15, 16] metrics from packet metadata by applying

several techniques to estimate these packet statistics.

Fast Orthogonal Search applied to a k Nearest

Neighbor (kNN) classifier to select optimal feature sets

678 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

[12] was also presented. Finally, Hubballi and Mayank

[7] described using bit-level information to identify the

differences in bit-coding signatures between different

sources using a Hamming distance for the bit coding to

discern different traffic sources.

3. Implementation

This section discusses the data collection methodology,

data pre-processing steps, and algorithms used to

classify traffic.

A. Data Collection: Data was collected using

Wireshark [21] to collect raw Packet Captures

(PCAPS) of streaming video and then aggregated

together with named labels for each streaming

service being studied. The data was collected by

connecting to a streaming service and collecting all

packets sent to and received by the local computer

during this time.

B. Data Preprocessing: In order to make the raw

PCAPS collected using Wireshark usable for data

analysis, several steps were taken.

Figure 1. Pre-processing box diagram.

First, the data was loaded and transformed them into

a Pandas dataset for use with Python’s machine

learning libraries.

As part of this pre-processing step, shown in Figure

1, data was taken that had been captured at the data-

link layer (which includes information such as MAC

addresses). As part of this step, we removed certain

elements, such as packets that are considered

irrelevant: Synchronous (SYN), Acknowledge (ACK),

Finish (FIN) flags, since they are used for hand shake

generation and do not contain any useful information

about the protocol or service. Additionally, we deleted

all (Destination) DNS and similar segments from the

dataset. While these can be extremely useful for

service identification, as DNS lookups can return

information on the identity of the IP address, they do

not provide useful information for traffic

characterization and classification. Further, DNS look-

ups may provide one-to-one associations between the

IP address and the streaming service, so while

extremely precise within our dataset they would be

useless generalizing the model outside of it.

Finally, certain columns were removed from the

dataset, such as IP address, since these are generally 1-

1 correlation with services, which would create a

severe data leakage in our models - the models would

collapse to using IP address solely, but be unable to

identify streams that come from new IP addresses.

Finally, packets were transformed to bytes from bits to

reduce input size in the neural networks being used.

C. Neural Network: After pre-processing of the raw

PCAP data collected from the streaming services,

the 23 remaining PCAP columns are passed into a

simple multi-layer perceptron neural network to

create a set of classification probabilities on the

possible outputs. In order to ensure that the features

later passed to the Markov decision tree would be of

maximum quality, we then iterated on varying

configurations of the neural network to find the

highest performing number of hidden layers and

other meta-features. The neural network was

programmed using Matlab’sMatConvNet [11,19]

library.

 Figure 2. Starting neural network structure.

Figure 2 shows the starting NN structure. The initial

architecture of the neural network was simple:

 23 nodes in the input layer.

 A single hidden layer containing 4 nodes.

Streaming Video Classification Using Machine Learning 679

 A ReLU transform function.

 A final 5 node output layer.

After this test was run, further variations in the

architecture of the neural network were explored to see

which structures would generate the best results. The

hyper-parameter range explored included additional

hidden layers, increased nodes in the hidden layers,

and an exploration of alternative activation functions

such as sigmoid. Additionally, the batch size and

learning rate were varied.

Figure 3 shows the diagram for training the NN.

Figure 3. Box diagram for training the NN.

D. Markov Decision Process: With the best results

from the neural network used as an input set, we

attempted to use a Markov Decision Process to

improve the accuracy of the classifications provided

by the neural network. Instead of taking the

classification provided by the neural network as the

output, however, the set of probabilities created by

MatConvNet were used to create a new set of

features for each state in the Markov decision

process.

To construct the Markov Decision chain, the output

classification probabilities from each time slice

generated by the neural network was used to create a

series of ‘states’, where for each state a set of 5

probabilities were provided as features.

For each time slice, treated as a discrete state S,

there was a potential subsequent state S` as well as 5

additional final states: one for each of the possible

classification outcomes. Therefore, for any possible

state, there would be 6 potential actions: wait for the

next time slice, or go to one of the 5 final classification

states. Since we would want a final decision to be

made, the fifth time slice was chosen as a final

‘undecided’ state (Figure 4).

The decision rule was simple: there would be a

minimum probability threshold required to be met by

each state-if one state met that threshold then the

action would be to progress to the selection state for

that probability. If multiple met the condition, then the

max would be selected as the action. If none met the

threshold, then the action would be to proceed to the

next time slice state.

Figure 4. Markov decision process.

In order to further improve the results for the

Markov Decision Process, a second policy set was

created using multiple thresholds for all possible

classification categories. This was then run through

multiple iterations with changes to the threshold values

to improve the final prediction output. To find the

optimal thresholds, a reward function was associated

with each of the output states. For a correct state a

+100 score was assigned, and -100 was assigned for an

incorrect score. Timeouts were set at 0. In order to

optimize for fast resolutions, a gamma of 0.9 was

added to minimize the value of later decisions being

made.

Once the Markov Decision Process (MDP) had been

designed, an initial test policy was created -for each

state there would be a minimum threshold that the

maximum probability had to clear. If that threshold

was cleared, then the policy would select the ‘Classify

as X’ action. If not, then the policy would progress to

the next time state. This policy was implemented in

Python.

E. Summary of MDP Algorithm

1. Assign initial thresholds to each state.

2. Calculate classification probabilities using

optimized neural network to get 5 probabilities for

each time slice.

3. For each time slice, get the next five time slice

probabilities and generate states {s…s_n.

680 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

4. For each state s, check whether probability exceeds

threshold, if yes, go to final state, else go to s`

5. Repeat 4 until either in classification state or

timeout state.

6. Check classification against test data label and

modify threshold accordingly.

7. If misclassified, raise threshold for selected stream.

if timeout, lower threshold for correct stream

8. Go to step 3 until minimum error is met.

F. Evaluation: In order to evaluate the results from the

Markov Decision Process and properly compare its

results to those from the neural network, a test set

was taken from the total dataset to be used for

evaluation.

Figure 5. Training and evaluation sets.

Some 70% of the dataset was randomly selected and

placed into the training set. Further, 20% of the data

was used for validation and a final 10% was placed

into the test set as shown in Figure 5.

For the validation set, data was used to fine-tune our

results and to guard against overfitting by the training

set. The accuracy of prediction from models trained on

the training set was tested against the validation set.

Poor results were indicative that the hyper-parameters

of the model needed fine-tunings.

Once the training and validation sets had settled, we

took the trained networks and had them classify each

element from the labeled test set. In order to evaluate

the accuracy of the trained model, the number of

correct classifications was counted and a simple

percentage of correct classifications was used to model

the effectiveness of the MDP as compared to the

simple neural networks used to feed it data.

4. Results

This section presents the results for the proposed

classification method. A comparison was run of the

accuracy against the known classification for both the

training set and the testing set.

A. Neural Network: Figure 6 shows the final accuracy

of 99.7% in the training set and 73.1% in the

validation set. The relative disconnect between the

training and validation sets indicates that overfitting

was an issue with the data, and that further

modifications to the neural network structure were

unlikely to improve results.

Figure 6. Training and validation accuracy per epoch.

To prove the overfitting, when modifying the

number of hidden layers, the accuracy in the validation

set generally went down as shown in Table 1.

Table 1. Prediction accuracy for layer parameters.

Variation Training Validation

2 Hidden Layers 91.5% 68.5%

3 Hidden Layers 92.2% 69.2%

4 Hidden Layers 94.1% 70.1%

Table 2 shows that tests with a single hidden layer

but variances in the number of nodes have shown even

more dramatic loss in accuracy.

Table 2. Prediction accuracy for node parameters.

Variation Training Validation

10 Hidden Nodes 90% 68.1%

15 Hidden Nodes 82% 60.4%

23 Hidden Nodes 33% 40%

B. Cross Validation: In order to solve the overfitting

issue, K-fold cross validation was used. Data was

broken into 5 separate validation sets, with the

remainder used for training data. Table 3 shows that

an average success rate of 81.7% was found,

indicating that cross validation would be a good

avenue to improve results for training the networks.

Table 3. Prediction accuracy for each service.

Stream Accuracy

Amazon Prime 0.84

Netflix 0.82

HBO 0.86

You Tube 0.77

You Tube TV 0.75

C. Markov Decision Process: Originally, we had

results in the 73% range; including the MDP in the

decision making process improved results to around

85% on average. Table 4 shows that the

classification results have improved to an average

over 90%, even for the markedly poor results of

You Tube TV. This was achieved by adding a

Streaming Video Classification Using Machine Learning 681

regression policy to fine-tune the thresholds used by

the MDP for each possible classification.

Table 4. Prediction accuracy for each service.

Stream Threshold Accuracy

Amazon Prime 0.51 0.91

Netflix 0.75 0.92

HBO 0.6 0.902

You Tube 0.85 0.85

You Tube TV 0.9 0.845

5. Conclusions

Neural networks appear to have the accuracy required

to make classification useful while there are many

other methods for classifying streaming data based on

collected PCaps. A trained neural network with a MDP

enhancement was shown to handle the classification.

This paper presents a method that allows for

discriminating between streaming services using

similar, but not identical protocols. Others have used

neural networks to discriminate between VOIP and

non-VOIP traffic, or to classify disparate types of

traffic using supervised neural networks [17]. The

method presented in this paper allowed similar types of

streaming traffic from different services to be

classified accurately.

References

[1] Archanaa R. Athulya V., Rajasundari T., and

Kiran M., “A Comparative Performance Analysis

on Network Traffic Classification Using

Supervised Learning Algorithms,” in

Proceedings of 4th International Conference on

Advanced Computing and Communication

Systems, Coimbatore, pp. 1-5, 2017.

[2] Auld T., Moore A., and Gull S., “Bayesian

Neural Networks for Internet Traffic

Classification,” IEEE Trans. Neural Networks,

vol. 18, no. 1, pp. 223-239, 2007.

[3] Bernaille L. and Teixeira R., “Early Recognition

of Encrypted Applications,” in Proceedings of

International Conference on Passive and Active

Network Measurement, Louvain-la-neuve, pp.

165-175, 2007.

[4] Bonfiglio D., Mellia M., Meo M., Rossi D., and

Tofanelli P., “Revealing Skype Traffic: When

Randomness Plays with You,” in Proceedings of

the Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communications, Kyoto, pp. 37-48, 2007.

[5] Erman J., Mahanti A., Arlitt M., and Cohen I.,

“Semi-Supervised Network Traffic

Classification,” ACM SIGMETRICS Performance

Evaluation Review, vol. 35, no. 1, 2007.

[6] Erman J. Mahanti A., Arlitt M., and Williamson

C., “Identifying and Discriminating between

Web and Peer-to-Peer Traffic in the Network

Core,” in Proceedings of the 16th International

Conference on World Wide WebMay, Banff, pp.

883-892, 2007.

[7] Hubballi N. and Mayank S., “BitCoding:

Network Traffic Classification Through Encoded

Bit,” IEEE/ACM Transactions on Networking,

vol. 26, no. 5, pp. 2334-2346, 2018.

[8] Hofstede R., Čeleda P., Trammell B., Drago I.,

Sadre R., Sperotto A., and Pras A., “Flow

Monitoring Explained: From Packet Capture to

Data Analysis with NetFlow and IPFIX,” IEEE

Communications Surveys and Tutorials, vol.

16 , no. 4 , pp. 2037-2064, 2014.

[9] Karagiannis T., Konstantina P., and Michalis F.,

“BLINC: Multilevel Traffic Classification in the

Dark,” ACM SIGCOMM Computer

Communication Review, vol. 35, no. 4, 2005.

[10] Lotfollahi M., Zade R., Siavoshani M., Saberian

M., “Deep Packet: A Novel Approach for

Encrypted Traffic Classification Using Deep

Learning,” Soft Computing, vol. 24, pp. 1999-

2012, 2020.

[11] “MatConvNet: CNNs for MATLAB”

MatconvNet. http://www.vlfeat.org/matconvnet/

Last Visited, 2020.

[12] McGaughey D. Semeniuk T., Smith R., and

Knight S., “A Systematic Approach of Feature

Selection for Encrypted Network Traffic

Classification,” in Proceedings of Annual IEEE

International Systems Conference, Vancouver,

pp. 1-8, 2018.

[13] Moore A. and Zuev D., “In¬¬ternet Traffic

Classification Using Bayesian Analysis

Techniques,” ACM SIGMETRICS Performance

Evaluation Review (SIGMETRICS, vol. 33, pp.

50-60, 2005.

[14] Nguyen T. and Armitage G., “A Survey of

Techniques for Internet Traffic Classification

Using Machine Learning,” IEEE

Communications Surveys and Tutorials, vol. 10,

no. 4, pp. 56-76, 2008.

[15] Orsolic I., Pevec D., Suznjevic M., and Skorin-

Kapov L., “You Tube QoE Estimation Based on

the Analysis of Encrypted Network Traffic Using

Machine Learning,” in Proceedings of Globecom

Workshops (GC Wkshps), Washington, 2016.

[16] Ran D., Hadar O., Richman I., Trabelsi O., Dvir

A., and Peles O., “Video Quality Representation

Classification of Safari Encrypted DASH

Streams,” in Proceedings of Digital Media

Industry and Academic Forum (DMIAF).

Santorini, 2016.

[17] Shafiq M., Yu X., Laghari A., Yao L., Karn N.,

and Abdessamia F., “Network Traffic

Classification Techniques and Comparative

Analysis Using Machine Learning Algorithms,”

in Proceedings of 2nd IEEE International

Conference on Computer and Communications,

Chengdu, 2016.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6963743

682 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

[18] Shaout A. and Crispin B., “Markov Augmented

Neural Networks for Streaming Video

Classification,” in Proceedings of the IEEE

International Arab Conference on Information

Technology, Al Ain, pp. 1-7, 2019.

[19] Shaout A., Mysuru D., Raghupathy K., “Vehicle

Condition, Driver Behavior Analysis and Data

Logging Through CAN Sniffing,” The

International Arab Journal of Information

Technology, vol. 16, no. 3A, pp. 493-498, 2019.

[20] Wei W., Zhu M., Wang J., and Zeng X., “End-

To-End Encrypted Traffic Classification With

One-Dimensional Convolution Neural

Networks,” in Proceedings of IEEE International

Conference on Intelligence and Security

Informatics, Beijing, 2017.

[21] Wireshark, Wireshark, www.wireshark.org, Last

Visited, 2020.

[22] Zhang J., Xiang Y., Wang Y., Zhou W., Xiang

Y., and Guan Y., “Network Traffic Classification

Using Correlation Information,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 24, no. 1, pp. 104-117, 2013.

Adnan Shaout is a full professor

and a Fulbright Scholar in the

Computer Science Department at the

Electrical and Computer

Engineering Department at the

University of Michigan–Dearborn.

His current research is in

applications of software engineering methods,

embedded systems, fuzzy systems, real time systems

and AI. Dr. Shaout has published over 260 papers in

topics related to Computer Science, Electrical and

Computer Engineering fields. Dr. Shaout has obtained

his B.S.c, M.S. and Ph.D. in Computer Engineering

from Syracuse University, Syracuse, NY, in 1982,

1983, 1987, respectively.

Brennan Crispin has an MS degree

in Software Engineering from the

University of Michigan – Dearborn.

He is currently working as a

Software Engineer at Deepfield-

Ann Arbor, MI.

http://www.wireshark.org/

