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Abstract: Email worms pose a significant security threat to organizations and computer users today. Because they propagate 

over a logical network, the traditional epidemic model is unsuitable for modeling their propagation over the internet. However, 

it is no doubt that accurate modeling the propagation of email worms is helpful to contain th9eir attacks in advance. This paper 

presents a novel email worms’ propagation model, which is based on a directed and weighted social network. Moreover, the 

effects of user’s behavior are also considered in this model. To the author’s knowledge, there is little information available 

considering the effects of them in modeling their propagation. A simulation algorithm is designed for verifying the effectiveness 

of the presented model. The results show that the presented model can describe the propagation of email worms accurately. 

Through simulating different containing strategies, we demonstrate that the infected key nodes in email social community can 

speed up the worm propagating. Last, a new General Susceptible Infectious Susceptible (G-SIS) email worm model is presented, 

which can predict the propagation scale of email worms accurately. 
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1. Introduction 

Email is one of the most convenient and indispensable 

communication mediums in our life [18]. However, 

email worms quickly evolved the ability to spread 

through the Internet by various means and constitute 

one of the major Internet security problems. Email 

worms are defined as a piece of malicious code that 

spreads through email by including a copy of itself in 

the email attachment [1, 17, 20]. Some famous email 

worms such as Melissa in 1999, love letters in 2000, 

W3/Sircam in 2001, SoBig in 2003 spread throughout 

the Internet and cause millions or even billions of 

dollars in damage [6, 19]. “Random scanning worms 

(Code Red or Slammer)” find vulnerabilities in 

computers by scanning IP addresses and compromise 

computers. Such email worms as “MyDoom” use social 

engineering techniques to lure email users to execute 

worm attachment [2]. Due to the characteristics of slow 

start and exponential propagation exhibited by email 

worms, it is challenging to model their propagation 

accurately and detect it at the early stage. 
Email worms typically exploit the social network to 

propagate from one computer to another. Recent studies 

reveal that Internet exhibits a common property of 

community structure [12, 14]. Generally speaking, 

community structure is the natural division of the 

network into groups of vertices with denser connections 

within each group and fewer connections between 

groups, where vertices and connections represent 

network users and their social relationships,  

 

respectively. Members in each community usually share 

some common interests and thus, tend to socialize with 

other members more frequently than with ones from 

outside communities. Moreover, due to less interactions 

between communities, email worm propagates within a 

single community would be much faster than it does 

between communities on a social network. That is, the 

propagation of email worm is affected by the social 

network topology. Specially, a computer with 

high-degree (active node) in a community group, either 

in-degree or out-degree, should get higher priority for 

being monitored because it is more likely to be infected 

or to infect others. Since email worms propagate over a 

logical network that makes the traditional epidemic 

model unsuitable for modeling their propagation over 

the internet. The epidermic models describe the viral 

infections based on the birth and death rates of a virus. 

These models usually assume that each node in Internet 

has the same chance of being infected. [5, 9, 10, 11, 24] 

investigated the topological effects on the propagation 

of email worms, however, these researches focus 

mainly on the random scanning worms, which are not 

suitable for modeling the Internet email worms. 

Recently, Gang et al. [7] uses Barrat Barthelemy 

Vespignani (BBV) [3] weighted scale-free network 

model to simulate a power law network topology, and 

explores the virus propagation in this model. Yang et al. 

[23] studies the propagation of “Rose” in different 

scenarios through analytic model and discusses the 

impact of immune factors. Wang et al. [22] proposes a 

topology aware worm propagation model. Hayashi et 
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al. [8] studies the propagation of email virus through 

SIR model and obtained the optimal time to control the 

virus propagation. The above literature studied the 

topological effects on modeling the propagation of 

email worms, but, for one thing, they failed to consider 

the user’s behavior impacts (such as the probability of 

opening attachment). Speaking of the effects of user’s 

behavior, [26] presents an email worm model by 

considering the user’s email checking time and the 

probability of opening attachments, however, the 

probability is seen as a random event and also they 

restricted treating the email network as an undirected 

graph, which cannot reflect the of relationships of 

computers in a community and their email exchanges. 

For another, they also neglected the capability of email 

worms have in exploiting the users’ address book. 

Specifically, email worms can search a user’s local 

address book and send emails to other users appears in 

the book. As a result, a victim computer receiving this 

email will most likely open it because he believes it 

comes from someone he knows or trusts.  

Thus, we believe that an effective worm propagation 

model should take into account the depth of 

relationships between computers in network，which will 

be a key factor that can precisely describe the 

propagation of email worms. By figuring out the social 

interactions between computers, i.e., which computers 

are more likely to exchange emails with each other, we 

can predict the likeliest propagation path of such email 

worm. Except [26], to the author’s knowledge, there is 

little information available in literature considering the 

depth of relationships between computers in modeling 

the email worms’ propagation. Thus, the central point of 

this research lies in that we include the depth of 

relationships (represented by mutual trust degree in this 

paper) and the user’s behavior in modeling the 

propagation of email worms, which helps us predict 

their propagation more accurately.  

The contributions of this research are: 

1. We construct a directed and weighted social network 

structure for email worm’s propagation. This 

structure describes the social relationships between 

computers which are usually exploited by email 

worms for spreading and help us have a better 

understanding of their propagation in network. The 

simulation results verify that the presented network 

structure is conforming to the characteristics of 

social network.  

2. We propose a new email worm simulation algorithm 

based on the behaviors of email users and email 

social network, on which we carry out extensive 

simulations that verify the critical roles of the 

combination of the user’s behavior and the social 

network in modeling the propagation.  

3. We discuss the key factors that affect the propagation 

of worms and compare the inhibitory effects of 

different measures. At last, based on the simulations, 

it demonstrates that the key node has the highest 

priority for being protection (the computer with the 

highest risk to be infected or infect others is the key 

node). At the end of the paper, we build an email 

worm analytic model General Susceptible Infectious 

Susceptible (G-SIS) to predict the propagation scale 

of email worm. 

The rest of the paper is organized as follows: A directed 

and weighted email social network structure and 

simulations are introduced in section 2. In section 3 we 

present an analytic model for predicting the propagation 

of email worms. In Section 4 we analyze the protections 

against the propagation of email worms. Finally, section 

5 concludes this paper with some discussions. 

2. Email Worm Propagation Simulation 

2.1. Construction of Email Social Network 

In [26], email network was described as a simple 

undirected graph, which can’t reflect the mutual 

relationships and email exchanges between users. Based 

on the concept of social network, this section presents 

an email directed and weighted social relationship 

graph based on Enron email dataset [13]. Enron email 

dataset is a public data collection of email 

communication in the real network and is widely used 

in the study of social network. The dataset collected 

517,431 email communication records of Enron 

Corporation from October 1998 to July 2002, and 

included more than 80,000 network nodes. It does not 

include spam or virus emails, and reflect the users’ 

interactions. The presented email social network is 

shown in Figure 1. Some notations marked in Figure 1 

are illustrated in definition 1 and 2. 
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Figure 1. Email social network topology. 

 Definition 1: G =< V , E > is the directed and 

weighted network, V={v1,v2,…,vn} (viV), v denotes 

an email user. |V | is the total number of email users. 

Degree of node vi (denoted as λ(vi)) is defined as the 

number of edges connected to vi.   is the average 

degree of email network. E is the edge set and 

E={e(vi, vj)|vi sends at least one email to vj, vi ,vj V, 

1≤i, j≤n, i≠j}. ω(vi ,vj) attaches to e(vi,vj) represents 

the trust degree between vi and vj. 

 Definition 2: The key node in email network is the 

node with high degree {vi is the key node︱λ(vi)>M 
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(M >0), M is the threshold}, which has a large 

amount of communications and with higher 

reliability. The communication frequency between 

users is derived by analyzing the Enron Email 

Dataset. In order to construct the topology of email 

communications, the weight matrix of edges between 

two users is constructed by the following steps. 

 Step 1: Let weight ω(vi ,vj) denote the frequency of 

sending emails from vi to vj. The more frequency of 

email exchanges between them the higher trust 

degree they have; 

 Step 2: According to the node degree, adjust the 

weight with (1). The node with high degree is 

considered to be the key node; 

( )
( , ) ( , )

j

i j i j

v
v v v v


 


  

 Step 3: Compute the average weight   of email 

network. The construction of email social network is 

achieved by the generation of weight matrix. This 

paper uses the Pajek [4] topology generator to 

produce Enron email network topology as shown in 

Figure 2. It is shown that the network topology 

shows a community structure in which a small 

number of key nodes are centers with higher degree.  

    

Figure 2. Enron email network (partial). 

2.2. Simulation and Results 

Intuitively, the propagation of email worm depends on 

the time and frequency distribution of using mailboxes, 

that is, the user’s behavior pattern, which is different 

from RedCode (vulnerability scanning). Thus, the 

large-scale and rapid propagation of worm happens in 

the period of high frequency of using mailbox. If there 

are few mailboxes being used, the speed of worm 

propagation will slow down. Figure 3 is the statistics of 

Nyxem email worm [15] and the virus spreading 

fluctuates over time, it is shown that the virus spreading 

is at the low point on public holidays. As shown in 

Figure 4-a), the peak use of mailbox concentrates on 

working hours (2-4, 8-10 and 14-16 o’clock). In these 

periods, the virus spreading is faster. After 18 o’clock, 

the frequency of use is lower and the spreading will 

slow down. Figure 4-b) shows the ratio of active users 

per week. Thus, from these two figures, it is clear that 

the user’s behavior can affect the worm propagation. 

 

Figure 3. Propagation of nyxem worm (from CAIDA). 
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a) Statistics of user email each day.               b) Ratio of active users per week. 

Figure 4. Statistics of user’s behaviors. 

In order to know the effects of user’s behaviors in 

modeling the propagation of email worms, this paper 

defines behavior pattern functions α(t) and μ(t), where 

α(t) denotes the statistics of user’s emails each day and 

μ(t) denotes the ratio of active users per week. Let V 

denote the entire nodes (users), VI denote the infected 

nodes, VS denote the easily infected nodes and VS
* 

denote the actively easily infected nodes, VR denote the 

repaired nodes. |V|, |VI| and |VS| represent the size of V, 

VI and VS, respectively. Define U(t)=α(t)*μ(t) to 

represent the ratio of active users at time t. In order to 

simulate the real propagation of email worm, the 

algorithm takes into account the user’s behavior, the 

social network topology constructed in section 2.1. and 

the lower probability of reinfection of repaired nodes, 

etc., For continent, the variables used in this section are 

listed in Table 1.  

Table 1. Variables definitions. 

notation implication 

α(t) statistics of user’s emails each day 

μ(t) ratio of active users per week 

N the total number of users 

V the entire nodes, |V| = N 

VI the infected nodes 

VS the easily infected nodes 

VS
* the actively easily infected nodes 

U(t)=α(t)*μ(t) the ratio of active users at time t 

n0 initially infected nodes 

N*= U(t)N active nodes 

2.2.1. Non-Reinfection Algorithm 

 Step 1: Select n0 initially infected nodes randomly, 

|VI| = n0, |VS| = N-n0 and |V| = N; 

 Step 2: Select N*= U(t)N nodes as the active nodes 

randomly; 

(1) 
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 Step 3:  vVS
*, if uVI, e=(u,v)E, it means that 

u and v have email exchange, moreover, v has 

received virus email from infected u. We assume that 

the infection probability of v is 
( )e

p p



  ( p is 

basic infection probability and σ is adjustment 

coefficient). Once infected, VS = VS − {v}; VI = VI + 

{v}. 

 Step 4: Select γ|VI| infected nodes in VI as the 

elements of VR, execute the following operations: VS 

= VS + VR; VI = VI − VR; vVR , uV (u ≠ v), if e = 

(u,v)E, ( )
( )

2
e

e
  . 

 Step 5: t = t + 1, go to Step2.  

2.2.2. Reinfection Algorithm 

 Step 1: Select n0 initially infected nodes randomly, 

|VI| = n0, |VS| = N-n0 and |V| = N; 

 Step 2: Select N*= U(t)N nodes as the active nodes 

randomly; 

 Step 3: vVS
*, if uVI, e=(u,v)E, we assume 

that the infection probability of v is 
( )e

p p



 , 

once infected, VI = VI + {v}; 

 Step 4: Select γ|VI| infected nodes in VI as the 

elements of VR, execute the following operations: VI 

= VI −VR; vVR, uV(u≠v), if e = (u,v)E, 
( )

( )
2

e
e

  ; 

 Step 5: t = t + 1, go to Step2. 

Based on Enron Email Dataset, this paper builds the 

email directed and weighted network simulation 

environment, which includes 87106 nodes, 359817 

directed and weighted edges. The average weight of 

directed edges is   =5 and the average node degree is   

= 8. The node degree and the edge weight are power law 

exponentially distributed with the exponents of 1.95 and 

1.86, respectively. We select initially infected nodes 

randomly with normal distribution function X~N 

(1,800) and simulate non-reinfection and reinfection 

cases, respectively. Figure 5 shows the propagation 

curves after 150 simulation runs. It is clear that the 

simulation results are basically consistent with the real 

propagation law of email worms (shown in Figure 3) 

and the algorithm further illustrates the critical roles of 

the user’s behavior and the social network in modeling 

the propagation of email worms. Figure 6 shows the 

numbers of active users and active infected users at each 

time step. As shown in Figure 7, possible due to the old 

version of antivirus software or the weak security 

awareness of users, the worm propagation exhibits a 

rapid growth at the start of propagation. With the 

gradually increasing number of infected nodes, regular 

updating of software and increasing security awareness, 

the worm spread approaches to the repair rate. At the 

approximate 500 time step, it reaches to the maximum 

and after which levels off. 
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Figure 5. Behaviors of email worm propagation on simulation 

network. 
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Figure 6. Statistics of active users. 
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Figure 7. Statistics of email worm. propagation on simulation 

network. 

3. Propagation Analytic Model 

Many email worms’ propagation models such as K-M, 

Susceptible Infectious Susceptible (SIS) [21] and two 

factor worm model [25] do not take into account the 

effects of user’s behavior so that they can’t describe the 

propagation accurately. Based on the classic SIS model, 

considering the user’s behavior and the social network 

topology, we derive a general Internet worm 

propagation model called G-SIS. 

As indicated before, U(t)=α(t)*μ(t) denotes the ratio 

of active users at time t, in which α(t) denotes the active 

degree of user at different times of a day, μ(t) is used to 

adjust the user’s activity ratio in a week, then we 

describe the effect of cyclical fluctuation of user’s 

behavior on the worm propagation. Let I(t) denote the 

number of infected users at time t, S(t) denote the 

number of easily infected users at time t, N denote the 

total number of users. Then I*(t)=U(t)I(t) denotes the 

number of actively infected users, that is, I*(t) users will 

continue to spread virus at time t. S*(t)=U(t)S(t) denotes 

the number of actively easily infected users at time t. 

javascript:void(0)
javascript:void(0)
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N*(t)=U(t)N denotes the total number of active users at 

time t. 

In fact, the infected nodes may be repaired by 

updating the system when he feels the system anomaly 

or by updating the antivirus software, et al. However, 

the email worm infection depends on the user’s trust 

degree instead of the system vulnerability so that the 

repaired node may be reinfected. Thus, we use SIS 

epidemic model [16] to describe the user’s state, and 

R(t) represents the number of repaired nodes at time t. 
( )

( ) ( )
dR t

r t I t
dt

 , r is the repair rate of infected users, 

μ(t)I(t) denotes the number of active infected users. The 

above variables are listed in Table 2.  

Table 2. Variables definitions. 

notation implication 

I(t) the number of infected users at time t 

S(t) 
the number of easily infected users at 

time t 

I*(t)=U(t)I(t) the number of actively infected users 

S*(t)=U(t)S(t) 
the number of actively easily infected 

users at time t 

N*(t)=U(t)N the total number of active users at time t 

R(t) the number of repaired nodes at time t 

μ(t)I(t) the number of active infected users 

Then, the change in the number of easily infected 

users after Δt period of time is as following: 

)]()([)()()()( tRttRttItSttSttS  ）（  
So, 

( ) ( )
( ) ( ) ( )

dS t dS t
t S t I t

dt dt
      

The differential equation of the number of infected 

users at time t is: 

( ) ( )
( ) ( ) ( )

dI t dR t
t S t I t

dt dt
     

Where, S*(t)=N*(t) −I*(t), so, 

( ) ( )
( )[ ( ) ( )]

dI t dR t
t N t I t

dt dt
      

Based on above, 

2 2( )
( ) ( ) ( )[ ( )] ( ) ( ) ( )

dI t
t t t N I t I t r t I t

dt
       

In [25], Zou simulated the effect of network congestion 

caused by worm scanning on the worm propagation, 

and the infection rate β(t) is the function of time t. Note 

that the continuous random scanning does not work on 

email worm environment, thus, it is not easy to appear 

the fluctuation of infection rate caused by large-scale 

abnormal netflow. In email network, the infection rate 

β(t) reflects the ability to spread virus at time t, that is, 

the degrees of infected nodes are correlated at time t. 

The greater the power law exponent is the more average 

distribution of the node degree is. This paper uses the 

power law exponent of scale-free network to measure 

the effect of social network on the infection rate. Define 

( ) (1 ( ) )t S t N t    (γ is the power law exponent). We 

study the email worms’ propagation and the parameters 

N=87106=S(0), γ=0.002, I(0)=31, 

( ) (1 ( ) ) ,( * (0) 0.00285)t S t N t I N       .  

Figure 8 is the prediction of worm propagation scale 

by the integration of 
0

( ) ( )
( ( ) )

t
dI t dI t

I t
dt dt

  , which has a high 

degree of agreement with the results of simulation 

algorithm, thus, the G-SIS model can accurately predict 

the email worm propagation. 

 

Figure 8. Comparisons of results between model prediction and 

simulation. 

4. Containing Email Worms 

The propagation of email worm code has randomness 

and uncertainty. This section will study the features of 

worm propagation from a micro-perspective by 

considering the effects of social network, and give the 

propagation trend from a macro-perspective. In this 

section we study the roles of key node in email social 

network by which a network operator would arrest a 

worm's propagation before it causes complete 

network-scale infection. Patch propagation techniques 

have been developed for delivering worm signatures to 

contain worms. However, in such a 

bandwidth-constrained environment, patches cannot be 

propagated by a network operator to all computers at the 

same time. Moreover, the patch would have to compete 

with the bandwidth already being consumed by a 

propagating email worm. Taking into account the 

spreading capability of email worms by exploiting the 

users’ email address book, we take an approach towards 

patching the key nodes within the community first. 

Intuitively, such nodes once infected are most likely to 

infect the entire social community and hence they must 

be patched first. 

 Definition 3: Assume vVI and uVS. If there is a 

path from v to u (denoted as L = (e1 , e2 , ……, em ), ei 

is the edge) and the infection probability through ei is 

Pi, the infection probability of u through path L is 

1

m

L i

i

P P


 ,

 

L is called the infection path of u with the 

probability of PL.  

(2) 

(3) 

(4) 

(5) 

javascript:void(0)


Simulating Email Worm Propagation Based on Social Network and User Behavior                                                                  859 

 Definition 4: The degree of node u is d =λ(u). That is, 

there are at least d paths from VI to u. Let D(u) denote 

the number of infection path of u (D(u) ≥d). 

Assume that the nodes a, bVI and λ(a)>>λ(b). Due to 

the randomness of the initially infected nodes, the 

length of infection path to a (or to b) and the probability 

of worm propagation on the edge are independent 

distributed. The infection probability of each path is 

independent Gaussian variable, that is, 2( , )g p pP N   . 

The experiment shows that the greater degree of the 

node is the larger average weight of the edge connected 

to it, as shown in Figure 9. Because λ(a)>>λ(b), 

( ) ( )a b   
(the average weights of a and b are 

( )

1

( )

( )
( )

a

i

i

e

a
a










＝  and 

( )

1

( )

( )
( )

b

j

j

e

b
b











＝ ).  

The infection probabilities of a and b are: 
 

( )

( )

1

( )
( )

a

i
g i

i

a
P a P








  and 
( )

( )

1

( )
( )

b

i
g i

i

b
P b P








  (assume  = 1) 

 

Then, 

( ( )) ( ) ( )pE P a a a   and ( ( )) ( ) ( )pE P b b b    (μp is the 

average value of Pg, Pg is the independent Gaussian 

variable). 

E(P(a))>E(P(b)) and a has a greater infection 

probability than b so that the greater degree of the node 

is the greater chance of being infected it will. Figure 10 

is the statistics of the average degrees of the infected 

nodes at each time step. It shows that the average degree 

has power law characteristic. That is, the node with 

larger degree (key node) will be infected quickly in the 

early stage of worm propagation. Therefore, key nodes 

should be protected and patched first. In order to 

illustrate this point, we simulate the scenarios of worm 

propagation under four different containing strategies as 

shown in Figure 11. It is shown that the protection to the 

key node can slow down the worm spread effectively.  

 Strategy 1: Set the protection strength Strength(v) for 

node v whose degree is larger than the average 

degree. Then the greater degree of a node is the 

higher degree of protection should be taken.  

( ( ) )*2%, ( ) 50 ;
( )

100% ,

v v
Strength v

other

    
 


 

 Strategy 2: Set the protection strength Strength(v) for 

the key node (M>150, Num=800 and M is threshed 

of degree). Then the greater degree of a node is the 

higher degree of protection should be taken. 

 Strategy 3: Only protect the key node (M>100, 

Num=1500, Strength=85%). 

 Strategy 4: Only protect the key node (M>50, 

Num=3000, Strength=60%). 
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Figure 9. Relation between degree and average weight of a given 

node. 
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Figure 10. Average degree of infected nodes per hour. 
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Figure 11. Impacts of different protection strategies on worm 

propagation. 

5. Conclusions 

Email worms have been posing a significant security 

threat to internet communities. The limitations of 

traditional epidemic models make it unsuitable for 

modeling their propagation.  

In order to accurately modeling the propagation of 

email worms, this paper constructs an email social 

network with a directed and weighted topological 

structure and on which an email worm’s propagation 

simulation algorithm is presented by considering the 

social network and the user’s behavior. To the author’s 

knowledge, there is little information available in 

literature considering the effects of them in modeling 

 (6) 
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their propagation. The simulation results show that the 

propagation simulation algorithm could reflect the 

propagation of email worms accurately, and also 

verifies the social character of email worms’ 

propagation. Moreover, we analyze the critical roles of 

key nodes in social community and point out that 

preventing email worms from propagation can be 

achieved effectively by distributing patches to the most 

influential users (the key nodes in network). At the end 

of the paper, we give a G-SIS model for predicting the 

propagation scale of email worms. The simulation 

verifies the model’s effectiveness.  
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