
The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019 791

A MapReduce-based Quick Search Approach on

Large Files

Ye-feng Li1, Jia-jin Le2, and Mei Wang2
1College of Computer Science and Technology, Beijing University of Technology, China

2College of Computer Science and Technology, Donghua University, China

Abstract: String search is an important branch of pattern matching for information retrieval in various fields. In the past four

decades, the research importance has been attached on skipping more unnecessary characters to improve the search

performance, and never taken into consideration on large scale of data. In this paper, two major achievements are contributed.

At first, we propose a Quick Search algorithm for data Stream (QSS) on a single machine to support string search in a large

text file, as opposed to previous researches that limits to a bound memory. For the next, we implement the search algorithm on

MapReduce framework to improve the velocity of retrieving the search results. The experiments demonstrate that our

approach is fast and effective for large files.

Keywords: String search, mapreduce, data stream and large file.

Received May 21, 2015; accepted September 24, 2017

1. Introduction

String search technology is widely applied in various

fields, such as finding keywords in documents,

locating variables or functions in source codes, and

intrusion detection in security management systems [8],

etc., It can also be used on bio-chemical researches like

string matching in Domain Name System (DNS)

sequence [7]. Currently it is still a hot topic not only in

computer science but also in many other subjects.

The goal of a string search problem can be

expressed as follows: Given the input text T = T [0,...,

n-1] of length n and the specified pattern P =P[0,...,m-1]

of length m over an alphabet Σ, find out all the

positions of the matched strings inside T. Algorithms

derived and extended from this descriptive model are

studied in [6, 21].

In the 1970s, two of the most notable pattern

matching algorithms were born: the Kunth-Morris-

Pratt (KMP) [17] and the Boyer-Moore (BM) [5]. Both

algorithms match the pattern and the text by skipping

characters that are not likely to result in exact matching

with the pattern. They require O(m) time for pre-

processing the pattern and O(mn) as the worst time or

O(
n

m
) as the best time for searching. Since then, many

variants of the two algorithms have been proposed to

optimize the worst and best searching time [11, 21].

For instance, the Franek-Jennings-Symth (FJS)

algorithm [12] reaches O(n) as the worst time for

searching.

By investigating and making comparison on KMP,

BM and all their variants, we can find that the

performance of those algorithms are greatly affected

by the length of the input text T, i.e., n. For the first,

the algorithms run at a linear time to n, whatever on a

worst searching time of O(n) or a best searching time

O(
n

m
). In the second place, the algorithms assume that

the search operation on the text T is done in the

memory, so that one or more pointers are defined to

move forwards and backwards on the characters of T

without any restrict. However, if n grows up to Giga-

Bytes (GB) or even Tera-Bytes (TB) level, T might

have to be retrieved from a large text file through data

stream. As only one direction is permit, the key steps

in search operation of the algorithms would be

different.

We introduce MapReduce framework [10] to reduce

the string searching time on large text files.

MapReduce is programming model for processing

huge datasets using a number of machines usually in a

cluster. A MapReduce job starts with partitioning the

input file into several smaller “splits” and distributing

them on corresponding machines. Then the operations

are performed in parallel on their own machine. Finally,

the results from each machine are collected, sorted and

organized for output.

This research includes two major contributions:

1. We propose the Quick Search for data Stream (QSS)

algorithm to support quick search on data stream as

an extension of Sunday’s Quick Search (QS)

algorithm [22]. The search operation is pushed as

the data stream flows until the end of file is reached,

without knowing the text length n beforehand. The

complexity of QSS does not come down and

remains to be the same as that of QS.

792 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

2. On such basis, we apply the QSS algorithm on

MapReduce framework, using a complementary

strategy to avoid the situation that the matched

string resides in two splits. The experiments

demonstrate the algorithm runs mush faster

compared to that on a single machine.

The rest of paper contains five more sections. Section 2

describes the related work of string search algorithms.

Section 3 illustrates the QSS algorithm with an

example of search operation on data stream. Section 4

elaborates the QSS implementation on MapReduce

framework. Section 5 proves the excellent performance

of the research using comparative experiments. Section

6 gives the conclusion and future work.

2. Related Works

In this section, we describe the states of art of pattern

matching algorithms on a single machine. Such

research has never been done for data stream or even in

a distributed environment so far.

There are many algorithms proposed for pattern

matching since KMP and BM came out to the world.

Most of them are usually classified into three

categories [11]: forward orientation, backward

orientation and no specific direction. In forward

orientation, the text is compared to the pattern from left

to right, where KMP algorithm is the candidate.

Apostolico and Crochemore’s research are also in this

category [3, 9]. In backward orientation, the text is

compared to the pattern from right to left, with the BM

algorithm as its candidate. In the third category,

algorithms use both directions for comparison at the

same time, such as the Horspool algorithm [15],

Sunday’s quick search algorithm [22], the FJS

algorithm [12], Lin’s Faster Quick Search (FQS)

algorithm [20] and Al-Ssulami’s hybrid string

matching algorithm [2]. See Charras and Lecroq’s

book [6] for more similar algorithms.

Besides, there are pattern matching algorithms not

based on character comparison. Karp and Rabin

proposed a randomized algorithm using a hashing

function to represent longer strings to shorter

“fingerprints”, which are manipulated to achieve the

algorithm efficiency [16]. Baeza-Yates and Gonnet

introduced a different pattern matching operation using

bitwise operations such as “shift” and “and”, where

pattern is represented by a binary mask [4]. On this

basis, Fredrikkson and Grabowski improved the

approach to bitwise parallelism with the purpose of

exact pattern matching [13]. Adjeroh etc. provided a

survey of techniques for pattern matching in

compressed text and images [1], listing algorithms

suitable for pattern matching of various compression

methods. Gagie etc. made use of the classical LZ77

algorithm, and designed a self-index for the string to

support both random access and pattern matching

queries [14]. Moreover, parallel techniques are used to

make the matching process faster, such as

multithreading approach by Kofahi and Abusalama

[18] and and Graphics Processing Unit (GPU) usage by

Kouzinopoulos et al. [19].

The above algorithms are required to be worked in a

bounded resource, which results in a restriction on

length of the string to be matched.

3. Quick Search for Data Stream

In this section, we illustrate the QSS algorithm, which

is an extension of Sunday’s QS algorithm for data

stream. At first, we take a brief introduction on the QS

algorithm. Then we use an example to show the

process of QSS. In the end, we give out the pseudo

code of QSS as implementation.

3.1. The Quick Search Algorithm

The QS algorithm was proposed by Sunday in 1990

[22]. It is a simplified BM algorithm using a bad-

character shift array of length |Σ|. The array stores the

position of rightmost occurrence of each letter c in P,

defined as follows.

 min : 0, if
()

1 if

k k m P m k

m

The QS algorithm contains two stages. The pre-

processing stage constructs the Δ array, while the

searching stage makes comparison of each substring in

T and shifts the current pointer to a new position

according to Δ. For instance, given P = “abcace”, we

will have m = 6 and Σ = {a, b, c, e} with Δ[a, b, c, e] =

[1, 2, 3, 5].

Same to the BM algorithm, QS requires O(m)

time for pre-processing the pattern and O(mn) as the

worst time or O(
n

m
) as the best time for searching.

However, it is very simple and easy to implement, see

Christian and Thierry’s webpage (http://www-

igm.univ-mlv.fr/~lecroq/string/index.html) for C code.

3.2. Search on Data Stream

In the new era of “big data”, the conception of

“Volume”, “Velocity” and “Variety” is proposed as

new requirements for large scales of data. However,

traditional string matching algorithms could no longer

come up with the new demands, and the reasons are

listed as follows:

 Volume: The size of data grows rapidly so that the

input text is usually stored in a large file rather than

fit in a bound memory. Also the backward

comparison is not suggested as it might produce

additional disk I/O.

 Velocity: This attribute is related to Volume. As the

complexity is linear to the text length, more

 (1)

A MapReduce-based Quick Search Approach on Large Files 793

execution time is required as the volume of data

grows.

 Variety: The character range should be extended

from ASCII Standard to Unicode Standard to

support string matching on multiple languages. In

that case, |Σ| would possibly reach a maximum

value of 65535 in case that all the characters are

used. As one character might take 1-2 bytes, the

length of input text is totally unknown.

In this section, we propose a new QSS for the purpose

of “Volume” and “Variety”, where the “Velocity”

attribute will be handled in section 4. The QSS

algorithm is an extension from QS. It also contains two

stages and the pre-processing step is exactly the same

as that of QS.

We use the following example to illustrate the

search operation on data stream, given pattern P=

“abcace”. We use two char buffers, cbuf and tmp. The

former is used to buffer the streaming data with the

maximum of m characters, and the latter to accumulate

the current position of offset to the head of file with the

maximum size of m+1 characters.

tmp=“”

Figure 1. The initial state of the char buffer.

At the very beginning, the first m characters are read

to the cbuf, shown as Figure 1. Obviously, we have a

mismatch and nothing is output.

tmp=“”

Figure 2. Read “f” into the char buffer.

tmp=“abcdcef”

Figure 3. Read m more characters.

After that, one more character is read from the

stream, as shown in Figure 2. Since “f” does not belong

to Σ, we copy cbuf to tmp, adding the single character

at the end of tmp, and then read m more characters to

overwrite cbuf, as shown in Figure 3. Again, it is a

mismatch from P. We count on the actual bytes in tmp,

and move the file pointer forward.

tmp=“”

Figure 4. Read “a” into the char buffer.

tmp=“cde”

Figure 5. A match is found.

For the next, the similar steps are performed. We get

a character “a” from the stream, and clear tmp, as

shown in Figure 4. As Δ[a]=3, we copy the first 3

characters from cbuf to tmp, and shift the rest m-3

characters left-sided in cbuf. Then we append the

character “a” to cbuf and read 3-1=2 more characters

from the stream. Now we get a match from P, shown

as Figure 5. The file pointer is accumulated by adding

up the bytes in tmp, and output to the console.

The string search process continues repeatedly as

illustrated above until reaching the End Of File (EOF),

shown in Algorithm 1. The algorithm takes filename

and start_pos of file as part of the input parameters.

Algorithm 1: QSS search stage

Input: filename, start_pos, P, Σ, Δ

1. is = new InputStream(filename);

2. pos = start_pos; is.seek(pos);

3. m=|P|;

4. char cbuf[0…m-1];

5. is.read(cbuf, 0, m);

6. While true

7. matched = compare(cbuf, P);

8. If matched == true output(pos); End If

9. char c = is.read();

10. If c == EOF Break; End If

11 If c∈Σ

12. delta =Δ[c];

13. char tmp[0…delta-1];

14. tmp[0…delta-1] cbuf[0…delta-1];

15. cbuf[0…m-delta-1] cbuf[delta…m-1];

16. cbuf[delta] c;

17. is.read(cbuf, m-delta+1, delta-1);

18. If EOF Break; End If

19 acc = tmp.getBytes();

20. Else

21. char tmp[0…m];

22. tmp[0…m-1] cbuf[0…m-1];

23. tmp[m] c;

24. is.read(cbuf, 0, m);

25. If EOF Break; End If

26. acc=tmp.getBytes();

27. End If

28. pos += acc;

29. End While

Note that some programming languages support

reading Unicode characters by calling specific

functions, e.g., BufferedReader in Java (Line 9, 17, and

24). Different from QS, this algorithm outputs the

offset position to the header of file (Line 8), rather than

number of characters read. Moreover, QSS is flexible

that another boundary such as end_pos of the input file

might be defined to terminate the search operation in

advance, regardless of the EOF symbol.

4. Implementation on MapReduce

As the volume of data grows, the velocity for achieving

computational results needs to be improved. The

MapReduce framework is designed to perform parallel

computing on large data sets. It is capable of speeding

up certain algorithms that each element is not

a b c d c e f c d e a b c a c e

a b c d c e f c d e a b c a

a b c d c e f c d e a b c

a b c d c e f

a b c d c e

794 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

globalized, such as QSS. A MapReduce job usually

includes five phases.

 Input: The input data is divided into M smaller splits

in a user-specific approach, and distributed to

certain machines in a cluster.

 Map: A map() function is invoked to retrieve data

from each split, and writes the computational results

in the form of <key, value> pairs to a temporary

storage.

 Shuffle: The intermediate results are sorted and

partitioned on key through a hash function (e.g., key

mod R).

 Reduce: A reduce() function is invoked to retrieve

data from the temporary storage with values

grouped by key. The computational results are emit

in the form of another <key, value> format for final

output.

 Output: R files are output in a user-specified format.

Most MapReduce jobs perform the computation or

comparison in Map stage or Reduce stage. However, in

our approach, the string search operation is done in the

Input stage, while the Map stage is only used to pass

the result. Moreover, we skip Shuffle and Reduce stage

to Output directly to save the cost from sorting and

network transfer.

4.1. Splitting the Input Data

The Input phase of a MapReduce job is controlled by

the file input format class and RecordReader class or

their user-defined extensions. The get Splits() function

in extended File Input Format class creates input splits

in a certain way. Users can specify the size of each

split to control the number of map tasks as M. The

extended RecordReader class is used to read the

content from each split, usually through data stream,

and pass the information under current file pointer to

Map phase in the form of <key, value> pairs.

About to partition the input data into splits, we face

with the problem that a string that matches the pattern

might be placed in two splits. Figure 6 shows an

example of such case. Given P= “abcace”, the

characters “abca” appears at the end of Split 1, and

“ce” appears at the beginning of Split 2.

Figure 6. A string in two splits and the complementary strategy.

Although the probability of such cases is extremely

tiny especially for a long pattern, we have to take care

of it to retrieve exact and accurate results. Thus we

propose the complementary strategy to deal with this

problem. We read a few (no more than m) more

characters in all the splits but the last to make the

string complete.

As the MapReduce framework supports reading a

large file through the same data stream, no matter how

many splits produced and where they reside in, we just

make extensions on the RecordReader class by

applying the QSS algorithm on certain functions. The

getSplit() function remains unchanged unless the size

of each split should be modified. The main procedure

of the RecordReader class is shown in Algorithm 2.

Algorithm 2: class QSRecordReader

Input: split, start_pos, split_len, P, Σ

Function initialization()

{

 1. Δ pre-processing(P, Σ);

 2. end = start_pos + split_len;

 3. filename = split.getFilePath();

 4. Line 1-5 from Algorithm 1

}

Function nextKeyValue()

{

 1. While pos < end

 2. key.set(pos); value.set(null);

 3. matched = compare(cbuf, P);

 4. Line 9-28 from Algorithm 1

5. If matched == true

 /* Emit <key, value> pair to Map phase */

6. Return true;

7. End If

 8. End While

 /* Finish reading the split */

 9. Return false;

}

We need to explain some points about Algorithm 2:

1. The pre-processing stage from QSS is now placed in

the initialization function. It might also be in the

getSplits() function before creating splits, so that the

piece of code would be only executed once.

However, the produced Δ array has to be distributed

to each split for further process, resulting in

additional network transfer. Thus we choose to do it

locally in each split.

2. The nextKeyValue() function is used to read the

contents of the current split. If it returns true, the

current <key, value> will be emit to the Map phase,

where key is an integer variable representing the

current offset to the head of input file and value is

null. Otherwise, it stops reading and the job is ready

for the Map phase.

3. Although the size of each split is explicitly defined,

we can read bytes across the end as mentioned in

the previous paragraph. The additional bytes read in

each split would be pos - end in case of pos > end.

Also, only the reading in the last split can meet with

the EOF.

…

Split 1 Split 2 Split M

bcf.............

...........abca

ceg.............

...........apbc

dab.............

...........

ce dab

A MapReduce-based Quick Search Approach on Large Files 795

4.2. Collecting the Results

As the Input phase takes the charge of string search

operation, the others are invoked to collect the results

for the output files.

It is not surprisingly that the map() function in the

Map phase is so simple that it has only one line of code

to pass the keys directly to the Output phase. As the

keys, i.e., positions of the file pointer, are received in

an ascending order, it is not necessary to enter the

Shuffle phase for sort, neither the Reduce phase to

group the same keys as all the keys are different.

We just use the default text output format class in

the Output phase. Then the MapReduce job produces

M output files, each of which contains positions in

ascending order. Finally, we merge all the files into a

single one by the appending operation file to file,

which takes only a few seconds.

5. Experiments

In this section, we conduct some experiments with two

public datasets. The cluster consists of 1 NameNode

and 6 DataNodes. Each machine has Intel QuadCore

CPU, 8GB RAM and 450GB SCSI disk, with CentOS

6.4 system and Hadoop 2.6.0 [23] as the basis of

MapReduce framework.

Figure 7. Time comparison on QSS and different split size of

MRQS.

Table 1. Statistics of pattern search result using MRQS.

Pattern Length Occurrence
Execution time of different split size (seconds)

512M 1G 2G 4G 8G

阿拉伯 3 3273817 2175.698 2111.416 2157.683 2289.663 2370.372

模式匹配 4 3877 1993.313 1964.504 1943.47 2179.774 2348.804

中华人民共和

国
7 10304775 1838.381 1797.676 1850.357 1924.036 2136.473

MapReduce 9 4854 1789.886 1808.724 1837.99 1876.242 2120.342

1945年 8月

15日
10 28657 1788.845 1734.017 1838.595 1856.964 1941.259

好人人人人人

人人人人人人

人人人人人人

人人

20 0 1666.224 1687.979 1732.772 1794.141 1942.266

5.1. TPC-H Benchmark

TPC-H is a decision support benchmark consisting of a

suite of business oriented ad-hoc queries and

concurrent data modifications. It includes two fact

tables and six dimension tables Most tables have a

Scale Factor (SF) so that users can alternate the size

the performance of different split size by modifying the

getSplits () function in the InputFormat class. The

pattern we used is “TRUCK”, which is a frequently

appeared value in the SHIPMODE column of Lineitem

table. Figure 7 shows the comparison results of QSS on

a single machine and its MapReduce implementation

(MRQS) on the cluster with different split size.

The QSS algorithm performs quite well on small

datasets. When SF=1, the text size is around 707 MB

and the search process costs only 18.343 seconds.

However, as the volume of data grows, it takes great

time to find out all the places that match the pattern,

about 30 minutes when SF reaches 100.

The MapReduce approach achieves shorter time for

large datasets, but the split size is another factor that

affects the performance. Given a fixed data size, bigger

split size results in fewer number of map tasks in the

job. According to the scheduling mechanism of the

framework, a map task requires a few seconds to be

launched before starting, and another few seconds to

be terminated. On the other hand, if the split size is

bigger than the configured Hadoop Distributed File

System (HDFS) block size, one split might contain

blocks residing on different machines, resulting in

additional network transfer.

Obviously the default configured split size of

128MB is the worst as the data volume grows. The

split size of 2GB does not perform well enough when

the input text is less than 30GB, but becomes much

better when the volume increasing to 60GB. The split

size of 1GB appears to be the best in most situations of

the range.

5.2. Wikipedia Database Dump

Wikipedia provides revision histories of articles in the

form of database dump files. In this experiment, we

pick up a document containing Chinese articles in all

the pages to verify supporting of Unicode characters,

available at http://dumps.wikimedia.org/zhwiki/. The

document file is in xml format with the size of 456GB

after decompression. We pick up some patterns of

different length, calculating their occurrences in the

document and making comparison on the execution

time in different split size. The statistics listed in Table

1 reveals the facts as follows.

1. It proves the fact that MRQS becomes slower when

the split size is set to 4G or 8G. We can assume that

the values around 1G can achieve the optimal

performance as they might leverage the cost balance

between the number of map tasks and network

transfer from other machines to the best extent.

2. Both the length and occurrence of pattern would

affect the search speed. For instance, the 3-length

pattern “阿拉伯” (Arab) with occurrence over three

796 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

million is slower than the 4-length pattern “模式匹

配” (Pattern Matching) with only 3877 occurrence,

but the 7-length pattern “中华人民共和国” (PR

China) with more than 10 million occurrence is

even faster. As a result, longer pattern length and

fewer occurrences would take less time.

3. The last example shows an extreme case style of

pattern as “abm-1” and |Σ| =2. With Δ[b] =1, only one

character is shifted in each time meeting with a

character “b”. However, the performance is still

satisfactory and cost the least time compared with

the previous examples. It can also be inferred that

the alphabet size |Σ| does not much affect the search

time.

Even though the performance is actually limited by the

scale of cluster, the experiments have proved the

validity and effectiveness on large text files. Given

more machines will absolutely speed up the velocity of

search process. Also the support of Unicode characters

is enabled to perform string search on documents

written in other languages, such as Arabian text.

6. Conclusions

As the data volume grows, previous string search

approaches could not work in a bound memory any

more. Also the execution speed of such algorithms

becomes a great challenge. This paper is the first study

of string search on data stream, combining with the

MapReduce framework to reduce the process time on

large files. The experiments demonstrate that the

proposed QSS algorithm is effectively to perform

string search in a text file and the MapReduce

implementation is able to speed up the velocity to a

certain extent. Restricted by the experimental

environment, although the improvement of search time

is limited, it can be seen a better scope in a large

cluster.

There is some more progress to be made in the

future. Since the QSS algorithm is not optimal, we will

try to reduce the complexity by combining with other

proper string search approaches. Besides, we will

evaluate the performance on distributed computational

frameworks other than MapReduce to seek a more

suitable one for string search algorithms.

Acknowledgements

This paper is partly a result of technology development

project supported by the Technology Bureau Project of

Zhengzhou City under the grant No.153PKJGG115.

References

[1] Adjeroh D., Bell T., and Mukherjee A., Pattern

Matching in Compressed Texts and Images, Now

Publishers Incorporated, 2013.

[2] Al-Ssulami A., “Hybrid String Matching

Algorithm with A Pivot,” Journal of Information

Science, vol. 41, no. 1, pp. 82-88, 2015.

[3] Apostolico A. and Crochemore M., “Optimal

Canonization of all Substrings of a String,”

Information and Computation, vol. 95, no. 1, pp.

76-95, 1991.

[4] Baeza-Yates R. and Gonnet G., “A New

Approach to Text Searching,” Communications

of the ACM, vol. 35, no. 10, pp. 74-82, 1992.

[5] Boyer R. and Moore J., “A Fast String Searching

Algorithm,” Communications of the ACM, vol.

20, no. 10, pp. 762-772, 1977.

[6] Charras C. and Lecroq T., Handbook of Exact

String Matching Algorithms, Colleague

Publications, 2004.

[7] Chen L., Cheung D., and Yiu S., “Approximate

String Matching in DNA Sequences,” in

Proceedings of 8th International Conference on

Database Systems for Advanced Applications,

Kyoto, pp. 303-310, 2003.

[8] Coit C., Staniford S., and McAlerney J.,

“Towards Faster String Matching for Intrusion

Detection or Exceeding the Speed of Snort,” in

Proceedings of DARPA Information Survivability

Conference and Exposition, Anaheim, pp. 367-

373, 2001.

[9] Crochemore M. and Rytter W., Text Algorithms,

Oxford University Press, 1994.

[10] Dean J. and Ghemawat S., “MapReduce:

Simplified Data Processing on Large Clusters,”

Communications of the ACM, vol. 51, no. 1, pp.

107-113, 2008.

[11] Faro S. and Lecroq T., “The Exact Online String

Matching Problem: A Review of the Most Recent

Results,” ACM Computing Surveys (CSUR), vol.

45, no. 2, pp. 1-42, 2013.

[12] Franek F., Jennings C., and Smyth W., “A simple

fast Hybrid Pattern-Matching Algorithm,” in

Proceedings of Annual Symposium on

Combinatorial Pattern Matching, Jeju Island, pp.

288-297, 2005.

[13] Fredriksson K. and Grabowski S., “Average-

Optimal String Matching,” Journal of Discrete

Algorithms, vol. 7, no. 4, pp. 579-594, 2009.

[14] Gagie T., Gawrychowski P., Kärkkäinen J.,

Nekrich Y., and Puglisi S., “LZ77-based Self-

Indexing with Faster Pattern Matching,” in

Proceedings of Latin American Symposium on

Theoretical Informatics, Montevideo, pp. 731-

742, 2014.

[15] Horspool R., “Practical Fast Search in Strings,”

Software: Practice and Experience, vol. 10, no. 6,

pp. 501-506, 1980.

[16] Karp R. and Rabin M., “Efficient Randomized

Pattern-Matching Algorithms,” IBM Journal of

Research and Development, vol. 31, no. 2, pp.

249-260, 1987.

[17] Knuth D., Morris J., and Pratt V., “Fast Pattern

A MapReduce-based Quick Search Approach on Large Files 797

Matching in Strings,” SIAM Journal of

Computing, vol. 6, no. 2, pp. 323-350, 1977.

[18] Kofahi N. and Abusalama A., “A Framework for

Distributed Pattern Matching Based on

Multithreading,” The International Arab Journal

of Information Technology, vol. 9, no. 1, pp. 30-

38, 2012.

[19] Kouzinopoulos C., Michailidis P., and Margaritis

K., “Multiple String Matching on A GPU Using

Cudas,” Scalable Computing: Practice and

Experience, vol. 16, no. 2, pp. 121-138, 2015.

[20] Lin J., Adjeroh D., and Jiang Y., “A Faster Quick

Search Algorithm,” Algorithms, vol. 7, no. 2, pp.

253-275, 2014.

[21] Smyth W., Computing Patterns in Strings,

Addison-Wesley, 2003.

[22] Sunday D., “A Very Fast Substring Search

Algorithm,” Communications of the ACM, vol.

33, no. 8, pp. 132-142, 1990.

[23] White T., Hadoop: the Definitive Guide,

O’Reilly Media Inc., 2009.

Ye-feng Li received his Ph.D degree

from Donghua University in 2015.

Currently he is a postdoctoral

researcher in the college of

computer science in Beijing

University of Technology. His

research major focuses on the big-

data processing and information security technologies.

Jia-jin Le is professor and Ph.D

supervisor in the college of

Computer Science in Donghua

University. He is also a senior

member of China Computer

Federation. His research interests

include database and data

warehouse, software engineering theory and practice.

Mei Wang is a professor and M.S.

supervisor in the college of

Computer Science in Donghua

University. Her primary research

interests include database, image

semantic analysis, and information

retrieval.

