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Abstract: String search is an important branch of pattern matching for information retrieval in various fields. In the past four 

decades, the research importance has been attached on skipping more unnecessary characters to improve the search 

performance, and never taken into consideration on large scale of data. In this paper, two major achievements are contributed. 

At first, we propose a Quick Search algorithm for data Stream (QSS) on a single machine to support string search in a large 

text file, as opposed to previous researches that limits to a bound memory. For the next, we implement the search algorithm on 

MapReduce framework to improve the velocity of retrieving the search results. The experiments demonstrate that our 

approach is fast and effective for large files.  
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1. Introduction 

String search technology is widely applied in various 

fields, such as finding keywords in documents, 

locating variables or functions in source codes, and 

intrusion detection in security management systems [8], 

etc., It can also be used on bio-chemical researches like 

string matching in Domain Name System (DNS) 

sequence [7]. Currently it is still a hot topic not only in 

computer science but also in many other subjects. 

The goal of a string search problem can be 

expressed as follows: Given the input text T = T [0,..., 

n-1] of length n and the specified pattern P =P[0,...,m-1] 

of length m over an alphabet Σ, find out all the 

positions of the matched strings inside T. Algorithms 

derived and extended from this descriptive model are 

studied in [6, 21]. 

In the 1970s, two of the most notable pattern 

matching algorithms were born: the Kunth-Morris-

Pratt (KMP) [17] and the Boyer-Moore (BM) [5]. Both 

algorithms match the pattern and the text by skipping 

characters that are not likely to result in exact matching 

with the pattern. They require O( m  ) time for pre-

processing the pattern and O(mn) as the worst time or 

O(
n

m
) as the best time for searching. Since then, many 

variants of the two algorithms have been proposed to 

optimize the worst and best searching time [11, 21]. 

For instance, the Franek-Jennings-Symth (FJS) 

algorithm [12] reaches O(n) as the worst time for 

searching. 

By investigating and making comparison on KMP, 

BM and all their variants, we can find that the 

performance of those algorithms are greatly affected 

by the length of the input text T, i.e., n. For the first, 

the algorithms run at a linear time to n, whatever on a 

worst searching time of O(n) or a best searching time 

O(
n

m
). In the second place, the algorithms assume that 

the search operation on the text T is done in the 

memory, so that one or more pointers are defined to 

move forwards and backwards on the characters of T 

without any restrict. However, if n grows up to Giga-

Bytes (GB) or even Tera-Bytes (TB) level, T might 

have to be retrieved from a large text file through data 

stream. As only one direction is permit, the key steps 

in search operation of the algorithms would be 

different. 

We introduce MapReduce framework [10] to reduce 

the string searching time on large text files. 

MapReduce is programming model for processing 

huge datasets using a number of machines usually in a 

cluster. A MapReduce job starts with partitioning the 

input file into several smaller “splits” and distributing 

them on corresponding machines. Then the operations 

are performed in parallel on their own machine. Finally, 

the results from each machine are collected, sorted and 

organized for output.  

This research includes two major contributions:  

1. We propose the Quick Search for data Stream (QSS) 

algorithm to support quick search on data stream as 

an extension of Sunday’s Quick Search (QS) 

algorithm [22]. The search operation is pushed as 

the data stream flows until the end of file is reached, 

without knowing the text length n beforehand. The 

complexity of QSS does not come down and 

remains to be the same as that of QS.  
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2. On such basis, we apply the QSS algorithm on 

MapReduce framework, using a complementary 

strategy to avoid the situation that the matched 

string resides in two splits. The experiments 

demonstrate the algorithm runs mush faster 

compared to that on a single machine.  

The rest of paper contains five more sections. Section 2 

describes the related work of string search algorithms. 

Section 3 illustrates the QSS algorithm with an 

example of search operation on data stream. Section 4 

elaborates the QSS implementation on MapReduce 

framework. Section 5 proves the excellent performance 

of the research using comparative experiments. Section 

6 gives the conclusion and future work.  

2. Related Works 

In this section, we describe the states of art of pattern 

matching algorithms on a single machine. Such 

research has never been done for data stream or even in 

a distributed environment so far. 

There are many algorithms proposed for pattern 

matching since KMP and BM came out to the world. 

Most of them are usually classified into three 

categories [11]: forward orientation, backward 

orientation and no specific direction. In forward 

orientation, the text is compared to the pattern from left 

to right, where KMP algorithm is the candidate. 

Apostolico and Crochemore’s research are also in this 

category [3, 9]. In backward orientation, the text is 

compared to the pattern from right to left, with the BM 

algorithm as its candidate. In the third category, 

algorithms use both directions for comparison at the 

same time, such as the Horspool algorithm [15], 

Sunday’s quick search algorithm [22], the FJS 

algorithm [12], Lin’s Faster Quick Search (FQS) 

algorithm [20] and Al-Ssulami’s hybrid string 

matching algorithm [2]. See Charras and Lecroq’s 

book [6] for more similar algorithms.  

Besides, there are pattern matching algorithms not 

based on character comparison. Karp and Rabin 

proposed a randomized algorithm using a hashing 

function to represent longer strings to shorter 

“fingerprints”, which are manipulated to achieve the 

algorithm efficiency [16]. Baeza-Yates and Gonnet 

introduced a different pattern matching operation using 

bitwise operations such as “shift” and “and”, where 

pattern is represented by a binary mask [4]. On this 

basis, Fredrikkson and Grabowski improved the 

approach to bitwise parallelism with the purpose of 

exact pattern matching [13]. Adjeroh etc. provided a 

survey of techniques for pattern matching in 

compressed text and images [1], listing algorithms 

suitable for pattern matching of various compression 

methods. Gagie etc. made use of the classical LZ77 

algorithm, and designed a self-index for the string to 

support both random access and pattern matching 

queries [14]. Moreover, parallel techniques are used to 

make the matching process faster, such as 

multithreading approach by Kofahi and Abusalama 

[18] and and Graphics Processing Unit (GPU) usage by 

Kouzinopoulos et al. [19]. 

The above algorithms are required to be worked in a 

bounded resource, which results in a restriction on 

length of the string to be matched. 

3. Quick Search for Data Stream 

In this section, we illustrate the QSS algorithm, which 

is an extension of Sunday’s QS algorithm for data 

stream. At first, we take a brief introduction on the QS 

algorithm. Then we use an example to show the 

process of QSS. In the end, we give out the pseudo 

code of QSS as implementation. 

3.1. The Quick Search Algorithm 

The QS algorithm was proposed by Sunday in 1990 

[22]. It is a simplified BM algorithm using a bad-

character shift array of length |Σ|. The array stores the 

position of rightmost occurrence of each letter c in P, 

defined as follows. 

 min : 0,    if  
( )

1 if  

           
  

k k m P m k

m

 




 

The QS algorithm contains two stages. The pre-

processing stage constructs the Δ array, while the 

searching stage makes comparison of each substring in 

T and shifts the current pointer to a new position 

according to Δ. For instance, given P = “abcace”, we 

will have m = 6 and Σ = {a, b, c, e} with Δ[a, b, c, e] = 

[1, 2, 3, 5]. 

Same to the BM algorithm, QS requires O( m  ) 

time for pre-processing the pattern and O(mn) as the 

worst time or O(
n

m
) as the best time for searching. 

However, it is very simple and easy to implement, see 

Christian and Thierry’s webpage (http://www-

igm.univ-mlv.fr/~lecroq/string/index.html) for C code. 

3.2. Search on Data Stream 

In the new era of “big data”, the conception of 

“Volume”, “Velocity” and “Variety” is proposed as 

new requirements for large scales of data. However, 

traditional string matching algorithms could no longer 

come up with the new demands, and the reasons are 

listed as follows: 

 Volume: The size of data grows rapidly so that the 

input text is usually stored in a large file rather than 

fit in a bound memory. Also the backward 

comparison is not suggested as it might produce 

additional disk I/O. 

 Velocity: This attribute is related to Volume. As the 

complexity is linear to the text length, more 

 (1) 
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execution time is required as the volume of data 

grows. 

 Variety: The character range should be extended 

from ASCII Standard to Unicode Standard to 

support string matching on multiple languages. In 

that case, |Σ| would possibly reach a maximum 

value of 65535 in case that all the characters are 

used. As one character might take 1-2 bytes, the 

length of input text is totally unknown. 

In this section, we propose a new QSS for the purpose 

of “Volume” and “Variety”, where the “Velocity” 

attribute will be handled in section 4. The QSS 

algorithm is an extension from QS. It also contains two 

stages and the pre-processing step is exactly the same 

as that of QS. 

We use the following example to illustrate the 

search operation on data stream, given pattern P= 

“abcace”. We use two char buffers, cbuf and tmp. The 

former is used to buffer the streaming data with the 

maximum of m characters, and the latter to accumulate 

the current position of offset to the head of file with the 

maximum size of m+1 characters. 

 

tmp=“” 

Figure 1. The initial state of the char buffer. 

At the very beginning, the first m characters are read 

to the cbuf, shown as Figure 1. Obviously, we have a 

mismatch and nothing is output.  

 
tmp=“” 

Figure 2. Read “f” into the char buffer. 

 
tmp=“abcdcef” 

Figure 3. Read m more characters. 

After that, one more character is read from the 

stream, as shown in Figure 2. Since “f” does not belong 

to Σ, we copy cbuf to tmp, adding the single character 

at the end of tmp, and then read m more characters to 

overwrite cbuf, as shown in Figure 3. Again, it is a 

mismatch from P. We count on the actual bytes in tmp, 

and move the file pointer forward. 
 

 
tmp=“” 

Figure 4. Read “a” into the char buffer. 

 
tmp=“cde” 

Figure 5. A match is found. 

For the next, the similar steps are performed. We get 

a character “a” from the stream, and clear tmp, as 

shown in Figure 4. As Δ[a]=3, we copy the first 3 

characters from cbuf to tmp, and shift the rest m-3 

characters left-sided in cbuf. Then we append the 

character “a” to cbuf and read 3-1=2 more characters 

from the stream. Now we get a match from P, shown 

as Figure 5. The file pointer is accumulated by adding 

up the bytes in tmp, and output to the console. 

The string search process continues repeatedly as 

illustrated above until reaching the End Of File (EOF), 

shown in Algorithm 1. The algorithm takes filename 

and start_pos of file as part of the input parameters. 

Algorithm 1: QSS search stage 

Input: filename, start_pos, P, Σ, Δ 

1.  is = new InputStream(filename); 

2.  pos = start_pos; is.seek(pos); 

3.  m=|P|; 

4.  char cbuf[0…m-1]; 

5.  is.read(cbuf, 0, m); 

6.  While true 

7.     matched = compare(cbuf, P); 

8.     If matched == true  output(pos);  End If   

9.     char c = is.read(); 

10.     If c == EOF  Break;  End If 

11      If c∈Σ 

12.       delta =Δ[c]; 

13.       char tmp[0…delta-1]; 

14.       tmp[0…delta-1]  cbuf[0…delta-1]; 

15.       cbuf[0…m-delta-1]  cbuf[delta…m-1]; 

16.       cbuf[delta]  c; 

17.       is.read(cbuf, m-delta+1, delta-1); 

18.       If EOF Break;  End If 

19        acc = tmp.getBytes(); 

20.     Else 

21.       char tmp[0…m]; 

22.       tmp[0…m-1]  cbuf[0…m-1]; 

23.      tmp[m]  c; 

24.      is.read(cbuf, 0, m); 

25.      If EOF  Break;  End If 

26.      acc=tmp.getBytes(); 

27.    End If 

28.    pos += acc; 

29.  End While 

Note that some programming languages support 

reading Unicode characters by calling specific 

functions, e.g., BufferedReader in Java (Line 9, 17, and 

24). Different from QS, this algorithm outputs the 

offset position to the header of file (Line 8), rather than 

number of characters read. Moreover, QSS is flexible 

that another boundary such as end_pos of the input file 

might be defined to terminate the search operation in 

advance, regardless of the EOF symbol. 

4. Implementation on MapReduce 

As the volume of data grows, the velocity for achieving 

computational results needs to be improved. The 

MapReduce framework is designed to perform parallel 

computing on large data sets. It is capable of speeding 

up certain algorithms that each element is not 

a b c d c e f c d e a b c a c e 

a b c d c e f c d e a b c a 

a b c d c e f c d e a b c 

a b c d c e f 

a b c d c e 
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globalized, such as QSS. A MapReduce job usually 

includes five phases.  

 Input: The input data is divided into M smaller splits 

in a user-specific approach, and distributed to 

certain machines in a cluster. 

 Map: A map() function is invoked to retrieve data 

from each split, and writes the computational results 

in the form of <key, value> pairs to a temporary 

storage. 

 Shuffle: The intermediate results are sorted and 

partitioned on key through a hash function (e.g., key 

mod R). 

 Reduce: A reduce() function is invoked to retrieve 

data from the temporary storage with values 

grouped by key. The computational results are emit 

in the form of another <key, value> format for final 

output. 

 Output: R files are output in a user-specified format. 

Most MapReduce jobs perform the computation or 

comparison in Map stage or Reduce stage. However, in 

our approach, the string search operation is done in the 

Input stage, while the Map stage is only used to pass 

the result. Moreover, we skip Shuffle and Reduce stage 

to Output directly to save the cost from sorting and 

network transfer.  

4.1. Splitting the Input Data 

The Input phase of a MapReduce job is controlled by 

the file input format class and RecordReader class or 

their user-defined extensions. The get Splits() function 

in extended File Input Format class creates input splits 

in a certain way. Users can specify the size of each 

split to control the number of map tasks as M. The 

extended RecordReader class is used to read the 

content from each split, usually through data stream, 

and pass the information under current file pointer to 

Map phase in the form of <key, value> pairs. 

About to partition the input data into splits, we face 

with the problem that a string that matches the pattern 

might be placed in two splits. Figure 6 shows an 

example of such case. Given P= “abcace”, the 

characters “abca” appears at the end of Split 1, and 

“ce” appears at the beginning of Split 2. 

 

 

 

 

 

Figure 6. A string in two splits and the complementary strategy. 

Although the probability of such cases is extremely 

tiny especially for a long pattern, we have to take care 

of it to retrieve exact and accurate results. Thus we 

propose the complementary strategy to deal with this 

problem. We read a few (no more than m) more 

characters in all the splits but the last to make the 

string complete.  

As the MapReduce framework supports reading a 

large file through the same data stream, no matter how 

many splits produced and where they reside in, we just 

make extensions on the RecordReader class by 

applying the QSS algorithm on certain functions. The 

getSplit() function remains unchanged unless the size 

of each split should be modified. The main procedure 

of the RecordReader class is shown in Algorithm 2. 

Algorithm 2: class QSRecordReader 

Input: split, start_pos, split_len, P, Σ 

Function initialization() 

{ 

 1.  Δ  pre-processing(P, Σ); 

 2.  end = start_pos + split_len; 

 3.   filename = split.getFilePath(); 

 4.  Line 1-5 from Algorithm 1 

} 

 

Function nextKeyValue() 

{ 

 1.  While pos < end 

 2.    key.set(pos); value.set(null); 

 3.    matched = compare(cbuf, P); 

 4.    Line 9-28 from Algorithm 1 

5.    If matched == true 

       /* Emit <key, value> pair to Map phase */ 

6.      Return true;   

7.    End If 

  8.   End While 

       /* Finish reading the split */ 

  9.  Return false; 

} 
 

We need to explain some points about Algorithm 2: 

1. The pre-processing stage from QSS is now placed in 

the initialization function. It might also be in the 

getSplits() function before creating splits, so that the 

piece of code would be only executed once. 

However, the produced Δ array has to be distributed 

to each split for further process, resulting in 

additional network transfer. Thus we choose to do it 

locally in each split. 

2. The nextKeyValue() function is used to read the 

contents of the current split. If it returns true, the 

current <key, value> will be emit to the Map phase, 

where key is an integer variable representing the 

current offset to the head of input file and value is 

null. Otherwise, it stops reading and the job is ready 

for the Map phase. 

3. Although the size of each split is explicitly defined, 

we can read bytes across the end as mentioned in 

the previous paragraph. The additional bytes read in 

each split would be pos - end in case of pos > end. 

Also, only the reading in the last split can meet with 

the EOF. 

 

 

… 

Split 1 Split 2 Split M 

 

bcf.............

...........abca 

 

ceg.............

...........apbc 

 

dab.............

........... 

ce dab 
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4.2. Collecting the Results 

As the Input phase takes the charge of string search 

operation, the others are invoked to collect the results 

for the output files. 

It is not surprisingly that the map() function in the 

Map phase is so simple that it has only one line of code 

to pass the keys directly to the Output phase. As the 

keys, i.e., positions of the file pointer, are received in 

an ascending order, it is not necessary to enter the 

Shuffle phase for sort, neither the Reduce phase to 

group the same keys as all the keys are different.  

We just use the default text output format class in 

the Output phase. Then the MapReduce job produces 

M output files, each of which contains positions in 

ascending order. Finally, we merge all the files into a 

single one by the appending operation file to file, 

which takes only a few seconds. 

5.  Experiments 

In this section, we conduct some experiments with two 

public datasets. The cluster consists of 1 NameNode 

and 6 DataNodes. Each machine has Intel QuadCore 

CPU, 8GB RAM and 450GB SCSI disk, with CentOS 

6.4 system and Hadoop 2.6.0 [23] as the basis of 

MapReduce framework. 

 

Figure 7. Time comparison on QSS and different split size of 

MRQS. 

Table 1. Statistics of pattern search result using MRQS. 

Pattern Length Occurrence 
Execution time of different split size (seconds) 

512M 1G 2G 4G 8G 

阿拉伯 3 3273817 2175.698 2111.416 2157.683 2289.663 2370.372 

模式匹配 4 3877 1993.313 1964.504 1943.47 2179.774 2348.804 

中华人民共和

国 
7 10304775 1838.381 1797.676 1850.357 1924.036 2136.473 

MapReduce 9 4854 1789.886 1808.724 1837.99 1876.242 2120.342 

1945年 8月

15日 
10 28657 1788.845 1734.017 1838.595 1856.964 1941.259 

好人人人人人

人人人人人人

人人人人人人

人人 

20 0 1666.224 1687.979 1732.772 1794.141 1942.266 

5.1. TPC-H Benchmark 

TPC-H is a decision support benchmark consisting of a 

suite of business oriented ad-hoc queries and 

concurrent data modifications. It includes two fact 

tables and six dimension tables Most tables have a 

Scale Factor (SF) so that users can alternate the size 

the performance of different split size by modifying the 

getSplits () function in the InputFormat class. The 

pattern we used is “TRUCK”, which is a frequently 

appeared value in the SHIPMODE column of Lineitem 

table. Figure 7 shows the comparison results of QSS on 

a single machine and its MapReduce implementation 

(MRQS) on the cluster with different split size. 

The QSS algorithm performs quite well on small 

datasets. When SF=1, the text size is around 707 MB 

and the search process costs only 18.343 seconds. 

However, as the volume of data grows, it takes great 

time to find out all the places that match the pattern, 

about 30 minutes when SF reaches 100.  

The MapReduce approach achieves shorter time for 

large datasets, but the split size is another factor that 

affects the performance. Given a fixed data size, bigger 

split size results in fewer number of map tasks in the 

job. According to the scheduling mechanism of the 

framework, a map task requires a few seconds to be 

launched before starting, and another few seconds to 

be terminated. On the other hand, if the split size is 

bigger than the configured Hadoop Distributed File 

System (HDFS) block size, one split might contain 

blocks residing on different machines, resulting in 

additional network transfer.  

Obviously the default configured split size of 

128MB is the worst as the data volume grows. The 

split size of 2GB does not perform well enough when 

the input text is less than 30GB, but becomes much 

better when the volume increasing to 60GB. The split 

size of 1GB appears to be the best in most situations of 

the range.  

5.2. Wikipedia Database Dump 

Wikipedia provides revision histories of articles in the 

form of database dump files. In this experiment, we 

pick up a document containing Chinese articles in all 

the pages to verify supporting of Unicode characters, 

available at http://dumps.wikimedia.org/zhwiki/. The 

document file is in xml format with the size of 456GB 

after decompression. We pick up some patterns of 

different length, calculating their occurrences in the 

document and making comparison on the execution 

time in different split size. The statistics listed in Table 

1 reveals the facts as follows.  

1. It proves the fact that MRQS becomes slower when 

the split size is set to 4G or 8G. We can assume that 

the values around 1G can achieve the optimal 

performance as they might leverage the cost balance 

between the number of map tasks and network 

transfer from other machines to the best extent. 

2.  Both the length and occurrence of pattern would 

affect the search speed. For instance, the 3-length 

pattern “阿拉伯” (Arab) with occurrence over three 
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million is slower than the 4-length pattern “模式匹

配” (Pattern Matching) with only 3877 occurrence, 

but the 7-length pattern “中华人民共和国” (PR 

China) with more than 10 million occurrence is 

even faster. As a result, longer pattern length and 

fewer occurrences would take less time. 

3. The last example shows an extreme case style of 

pattern as “abm-1” and |Σ| =2. With Δ[b] =1, only one 

character is shifted in each time meeting with a 

character “b”. However, the performance is still 

satisfactory and cost the least time compared with 

the previous examples. It can also be inferred that 

the alphabet size |Σ| does not much affect the search 

time. 

Even though the performance is actually limited by the 

scale of cluster, the experiments have proved the 

validity and effectiveness on large text files. Given 

more machines will absolutely speed up the velocity of 

search process. Also the support of Unicode characters 

is enabled to perform string search on documents 

written in other languages, such as Arabian text.  

6. Conclusions 

As the data volume grows, previous string search 

approaches could not work in a bound memory any 

more. Also the execution speed of such algorithms 

becomes a great challenge. This paper is the first study 

of string search on data stream, combining with the 

MapReduce framework to reduce the process time on 

large files. The experiments demonstrate that the 

proposed QSS algorithm is effectively to perform 

string search in a text file and the MapReduce 

implementation is able to speed up the velocity to a 

certain extent. Restricted by the experimental 

environment, although the improvement of search time 

is limited, it can be seen a better scope in a large 

cluster. 

There is some more progress to be made in the 

future. Since the QSS algorithm is not optimal, we will 

try to reduce the complexity by combining with other 

proper string search approaches. Besides, we will 

evaluate the performance on distributed computational 

frameworks other than MapReduce to seek a more 

suitable one for string search algorithms. 
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