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Abstract: The concept of self-organization is applied to the operators and parameters of genetic algorithm to develop a novel 

Auto-poietic algorithm solving a biological problem, Multiple Sequence Alignment (MSA). The self-organizing crossover 

operator of the developed algorithm undergoes a swap and shuffle process to alter the genes of chromosomes in order to 

produce better combinations. Unlike Standard Genetic Algorithms (SGA), the mutation rate of auto-poietic algorithm is not 

fixed. The mutation rate varies cyclically based on the improvement of fitness value in turn, determines the termination point of 

algorithm. Automated assignment of various parameter values reduces the intervention and inappropriate settings of 

parameters from user without prior the knowledge of input. As an advantage, the proposed algorithm also circumvents the 

major issues in standard genetic algorithm, premature convergence and time requirements to optimize the parameters. Using 

Benchmark Alignment Database (BAliBASE) reference multiple sequence alignments, the efficiency of the auto-poietic 

algorithm is analyzed. It is evident that the performance of auto-poietic algorithm is better than SGA and produces better 

alignments compared to other MSA tools. 
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1. Introduction 

Genetic Algorithm (GA), a randomized search 

algorithm, in a large solution space act as an intelligent 

tool and explore the prospective regions for finding 

better solution in an acceptable amount of time [6].  

GAs are robust and adaptive in nature, its application 

is not confined to the problem and can be applied to 

any combinatorial problem with slight modification of 

its elements. Since, GA is not problem specific its basic 

structure remains the same even if any modification in 

representation, fitness value, choice of parameter, 

operators are made. This feature of GA solves difficult 

problems quickly, accurately, and reliably where little 

is known with the knowledge of fitness function of the 

individuals. A major setback in computational 

approaches in the design and optimization of bio-

process systems is the lack of reliable methods. One 

such biological problem, Multiple Sequence Alignment 

(MSA), a process of aligning more than 3 or more 

sequences, has been identified as a challenging NP-hard 

problem due to its complexity in optimization [14]. 

Though, many variations of Standard Genetic 

Algorithms (SGA) have been investigated on MSA [7], 

the efficiency of GA can be realized only by setting the 

appropriate parameter values. As various inputs require 

different parameter setting, they are usually obtained by 

a lengthy process of trial and error, and require a lot of 
parameters manually to find a better solution, prior to 

application. When the solution space of the problem 

becomes too large, especially in the real-world 

applications, inappropriate selection of parameter  

 

values leads to premature convergence and fail to find 

the optimum in a reasonable computational time [12, 

16]. This necessitates the proposal of a novel Self-

Organizing Genetic Algorithm (SOGA), which 

combines GA and the concept of self-organization in 

order to self-configure the parameters like population 

size, probabilities, etc. Self-organizing systems 

emerges global behaviour based on numerous local 

interactions without the intervention from the external 

control [15, 17].  

In general, GA operation starts with an encoding of 

decision variables followed by the replication of 

chromosomes to form the population. A fitness value 

is assigned to each individual indicates how well, it is 

better or close to an optimal solution. Genetic 

operators affect the individuals of population and 

represent a possible solution to a given problem. The 

best individuals with a high fit are reproduced by the 

operational parameters of crossover and mutation for 

the next generation. In SGA, this procedure is 

repeated a number of times until the termination 

condition is satisfied given by the user [5]. 

2. Related Work 

Genetic algorithms have been applied in various 

domain problems and the biological field is no 

exception [17]. Irrespective of the problem type, 

several variants of SOGAs were proposed to improve 

the performance, mostly in the form of designing new 

operators or hybrid algorithms combined with 

conventional GA. Zhang et al. [21] have proposed a 
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proposed a SOGA constructed with a dominant 

selection operator enhancing the action of dominant 

individuals and a cyclical mutation operator that 

periodically varies the mutation probability during 

execution. A nonlinear regression analysis 

demonstrates that the algorithm is able to avoid 

premature convergence with a higher convergence 

speed with self-organization properties. Khayat et al. 

[9] have proposed Self-Organizing Fuzzy Neural 

Network based on Genetic Algorithm and Particle 

Swarm Optimization (SOFNNGAPSO) in which the 

parameters of consequent parts were obtained using the 

error function and the parameters of premise parts in an 

iterative process. In the second stage, an optimization 

process based on GA and PSO was used to evaluate the 

structure of SOFNNGAPSO with the objective of 

adjusting the parameters of premise parts and consequent 

parts. Initializing the parameters of consequent parts 

randomly, updating them in the parameter- dependent 

iterative process and using GA and PSO in the 

optimization phase which are generally slow to reach 

the global optimum have made the proposed algorithm 

dull. Tin´os et al. [19] Random Immigrants Genetic 

Algorithm (RIGA), the new individuals created in the 

current chain reaction are preserved in a sub-

population. Two strategies for replacement of 

individuals in the current population is carried 

1. Some individuals with randomly generated 

individuals.  

2. Lowest fitness individuals with random immigrants. 

 To Self-Organize RIGA (SORIGA), two modifications 

are made in the replacement function and the selection 

scheme.  

Wu et al. [20] have presented an algorithm 

combining the genetic algorithm and self-organizing 

neural network to solve MSA. This approach 

demonstrated improved performance in long DNA and 

RNA data sets exhibiting small similarity. Self-

organizing neural network as local optimization like 

classification is embedded into genetic algorithm to 

keep away from local optima. Kubota et al. [10] have 

suggested a Virus-Evolutionary Genetic Algorithm 

(VEGA) based on virus theory of evolution composed 

of a host population of candidate solutions and a virus 

population of substrings of host individuals.  

A reverse transcription operator overwrites a virus 

string on a host's string and a transduction operator 

generating a new virus from a host string. The virus 

infection operators enable increase of effective 

schemata with reverse transcription and transduction.  

The reverse transcription plays roles of crossover 

and selection simultaneously, since the reverse 

transcription generates new individuals overwriting on 

host individuals according to the virus infection rate.  

Further, transduction generates new virus individuals 

and evolves the virus population. Therefore, co-

evolution of the virus population and the host 

population enables quick solution of the optimization 

problem. 

3. The Proposed Algorithm: Auto-Poietic 

MSA 

The developed algorithm is focused to make use of the 

influence of crossover operator to improve the 

population diversity to enhance the global 

exploration. The algorithm starts with the generation 

of chromosomes (possible solutions) consisting of gap 

positions. The integer form of chromosome with gap 

positions is changed to binary form (presence and 

absence of gap) for mutation process. The length of 

the chromosomes varies for each input depending on 

the length of sequences [18]. The chromosome 

representation employed and the process of population 

initialization adopted as shown in the previous work 

[11]. Elite, the chromosome with best fitness value are 

selected and saved for each genetic operation. During 

crossover operation, each gene in a chromosome is 

evaluated individually to identify the best one among 

the chromosomes of current population.  

A new strategy, self-organizing dual operation of 

designed crossover operator is based on gene level 

distribution. The Auto-poietic Crossover Operator 

(ACO) selects the best genes of all chromosomes 

followed by a dual process, swapping and shuffling.  

The best genes of all chromosomes are swapped in 

different combinations. Thereby, it increases the 

population size from initial population paving way to 

the generation of best individuals which could not be 

arrived at chromosome level using normal crossover. 

The chromosome representation is converted to 

binary form by a newly developed mutation operator 

Self-Organizing Binary Shuffler (SOBS) to perform 

mutation for a range of rates [11]. The mutation rate is 

increased cyclically at uniform intervals based on the 

betterment of the resulting population 
which enhances the capacity of GA to refine its 

solution is an added advantage. Based on the 

improvement, the total number of generation thereby, 

the termination is also self-organized [13]. 

3.1. Fitness Function 

In order to select the elite (best chromosome of the 

current population) after every genetic operation, the 

fitness of every chromosome is evaluated using a 

function called Column Score (CS). 

Column Score=Exact Match/ Alignment length, 

where, exact match=1, when aligned residues in the 

entire column are same [13, 14]. 

3.2. Pseudo Code of Auto-Poietic Algorithm 

for MSA (AP-MSA) 

1. [Start] Generate the random population of n 

chromosomes. 
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Figure 1. Flowchart of Auto-Poietic Algorithm for MSA (AP-

MSA). 

2.  [Fitness] Evaluate the fitness f(x) of each 

chromosome x in the population. 

3. [Selection] Select and save elite (chromosome with 

best fitness value) of current population. 

4. [New Population] Create a new population using (i 

to iv) repeatedly until the process is complete 

a. [ACO] Select best genes in the current 

population. Swap and shuffle the best genes in 

different combinations of all chromosomes using 

ACO. 

b. [Selection] Select and save elite in the current 

population. 

c. [C-SOBS] Convert the chromosome 

representation to a binary form and perform 

cyclic mutation for a range of rates using SOBS.  

d. [Selection] Select and save elite of the current 

population. 

5. [Test] Check the termination condition. If satisfied, 

stop, and return the best solution 

6. [Loop] Go to step 4, as shown in Figure 1. 

3.3. Auto-Poietic Crossover Operator 

Two types of operations are inbuilt in the newly 

designed crossover operator. ACO with dual operation 

perform a self-organizing swap and shuffle process is 

proposed to design a new operator. ACO operator 

chooses the best individuals by calculating the gap 

penalty for each gene, where, lesser the penalty better 

the genes. The affine gap penalty model is used to 

evaluate the fitness evaluation of gene of the 

chromosomes.  

3.3.1. Self-Organizing Swap and Shuffle Operation 

 To illustrate the self-organizing crossover operation 

a chromosome consists of three genes (G1, G2, and 

G3) is considered as shown in Figure 2. Initially, 

gap penalty of each gene is calculated to identify 

the best genes in a population. The Best Genes 

(BGs) are named as BG1, BG2, and BG3 and saved 

separately 

 Swap: in this process, the swap operation replaces 

the gene G1 with BG1 of all chromosomes of entire 

population, whereas the other two genes G2 and G3 

remain unaltered. In the same way, the swap 

process is carried for G2 with BG2 and G3 with 

BG3 individually, thereby creating three different 

set of population.  

 Shuffle: the second part of the crossover is to 

shuffle the best genes collected in the above 

process. In this operation, the genes G1and G2 are 

shuffled with best genes BG1 and BG2, as a result 

the chromosome [BG1||BG2||G3] is generated for 

the whole population. Similarly, the genes (G2, G3) 

and (G1, G3) is shuffled with (BG2, BG3) and 

(BG1, BG3) respectively to get [G1||BG2||BG3] 

and [BG1||G2||BG3] combination in the population. 

As a result of dual crossover operations (swap and 

shuffle), the best genes are differently combined to 

create the population set. As an instance, for an input 

of three chromosomes, the resultant population size is 

six times more than the initial population. The best 

individuals produced by the above operation become 

the current population. Keeping the best genes around 

to crossover for swap operation favours the better 

shuffling which may not be possible in the normal 

crossover. Finally, the fitness score of the 

Evaluate Fitness f(x) 

Select Elite (Cb) 

Crossover Operation using Single/ 

Double point crossover 

Select best genes 

Swap and shuffle the best genes in different 
combinations 

 

Select Elite 

Initialize Mutation rate (Rm) 

 

Mutation Operation by shuffling of genes 

Select Elite 

Binary Conversion 

 

Initialize Iterative generation Ig = 0 

Self-organizing increase in Rm 

Termination        

condition 

Optimal Alignment 

Get input sequences (n) 

Initialize Population (Cp) 

ACO 
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chromosomes are calculated to select the elite. It is 

evident, that the dual crossover creates a wide range of 

search space, in turn facilitates the exploration of 

optimal solution. 

 

Figure 2. An illustration of auto-poietic crossover. 

3.4. Cyclic Self-Organizing Binary Shuffler (C-

SOBS) 

In SGA, a fixed optimal rate or optional rates are given 

which may not be suitable for all input. It is too hard 

for the user to select appropriate rate without prior 

knowledge of the problem. To eliminate these 

problems, a new mutation operator with a different 

approach is discussed. Instead of a fixed rate, the 

operator performs mutation for a range of rates 

cyclically [1, 19] till the termination conditions are 

satisfied. 

In default, shuffling process for mutation leads to the 

problems like: 

1. Increase in the number of gaps for a particular 

sequence 

2. Occurrence of repeated gap positions in a sequence 

In order to avoid this, the proposed mutation operator 

converts the chromosome representation from integer to 

binary digits (1, 0) represents the presence and absence 

of gaps. The working principle of C-SOBS is as 

follows: 

1. Convert the chromosome representation to a binary 

form. 

2. Initialize minimum optimal mutation rate and the 

corresponding mutation point is selected. 

3. Genes before mutation point are considered for 

mutation. 

4. The genes within each complete point and if any 

gene occurs between the last complete point and 

mutation point are shuffled separately as shown in 

Figure 3. 

Change the chromosome representation back to gap 

positions 

1. Generate MSA corresponding to the chromosome. 

2. Calculate fitness score. 

3. Select elite. 

If elite is replaced, the generation continues with same 

rate else increases cyclically until an optimal upper 

limit is reached. The algorithm terminates on reaching 

the optimal upper limit when no further increase in 

column scores [13]. 

 

Figure 3. An illustration of self-organizing binary shuffler. 

4. Results and Discussion  

To validate the proposed algorithm, it is tested using 

the datasets of standard Benchmark Alignment 

Database (BAliBASE), OXBench Benchmark suite 

(OXBench), and a Simple Modular Architecture 

Research Tool (SMART) [2] were taken and some of 

them were reported. The number of input sequences 

ranges from 4 to 16 and its total length vary from 1000 

to 7000 are considered. The important parameters like, 

number of generation and resultant score of the final 

alignment are calculated and tabulated.  

4.1. Comparative Analysis of AP-MSA and 

SGA 

The number of generation is fixed in case of SGA 

whereas in AP-MSA, it is self-organized based on the 

betterment of alignment resulting in each generation.  

The comparative result shows that, on average, 

Auto-Poietic algorithm for MSA (AP-MSA) produces 

better alignments than SGA in less number of 

generations and time. For RV11_BB11001 dataset 

with 4 sequences, SGA generated the final 

alignment scoring 0.016 in 50 generations, 

whereas, AP-MSA produced a high scoring 

optimal alignment in much less generations. The 

results are tabulated Tables 1, 2, and 3 and a graphical 

representation is shown in Figures 4, 5, and 6. 
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Table 1. Comparative analysis of performance of AP-MSA and 
SGA for BAliBASE datasets. 

S.No. Dataset 
SGA AP-MSA 

No. of Gen Score No. of Gen Score 

1 RV11_BB11015 50 0.0127 43 0.0152 

2 RV11_BB11021 50 0.016 44 0.02 

3 RV11_BB11025 50 0.0135 44 0.0188 

4 RV11_BB11032 50 0.0201 42 0.0006 

5 RV11_BBS11001 50 0.0129 43 0.0640 

6 RV11_BBS11029 50 0.0172 44 0.0207 

7 RV12_BB12006 50 0.0195 42 0.0206 

8 RV20_BBS20001 50 0.0069 42 0.0036 

9 RV11_BBS11022 50 0.0186 45 0.0322 

10 RV12_BBS12010 50 0.0038 41 0.0034 

11 RV12_BBS12021 50 0.0224 43 0.0174 

12 RV12_BBS12034 50 0.0040 42 0.0225 

13 RV11_BBS11002 50 0.0011 42 0.0115 

14 RV11_BBS11009 50 0.0305 41 0.0280 

15 RV11_BB11022 50 0.0183 45 0.0067 

16 RV11_BBS11006 50 0.0127 42 0.0034 

17 RV11_BB11001 50 0.016 40 0.0397 

18 RV11_BBS11008 50 0.0135 44 0.0229 

 

 

Figure 4. Comparative analysis of performance of AP-MSA and 

SGA for BAliBASE datasets. 

Table 2. Comparative analysis of performance of AP-MSA and 
SGA for OXBench datasets. 

S.No. Dataset 
SGA AP-MSA 

No. of Gen Score No. of Gen Score 

1 4t3 50 0.0085 42 0.0170 

2 10s10 50 0.0017 44 0.0051 

3 12s55 50 0.0072 41 0.0120 

4 12S83 50 0.0146 40 0.0170 

5 22s30 50 0.0209 45 0.0287 

6 43s6 50 0.0078 43 0.0089 

7 57t7 50 0.0027 44 0.0054 

8 82t5 50 0.0042 41 0.0106 

9 469 50 0.0985 46 0.1034 

 

 
Figure 5. Comparative analysis of performance of AP-MSA and 

SGA for OXBench datasets. 

Table 3. Comparative analysis of performance of AP-MSA and 
SGA for SMART datasets. 

S.No. Dataset 
SGA AP-MSA 

No. of Gen Score No. of Gen Score 

1 Crf 50 0.0189 44 0.0316 

2 Chsh 50 0.0038 42 0.0154 

3 Fimac 50 0.0075 45 0.0112 

4 Net pep 50 0.0111 43 0.0333 

5 Calcitonin 50 0.0324 41 0.0519 

6 Clb 50 0.0026 46 0.0065 

7 AXH 50 0.0191 44 0.0276 

8 NMU 50 0.1777 40 0.2111 

9 SORB 50 0.0421 42 0.0526 

10 Thy 50 0.0751 43 0.1052 

 

 
Figure 6. Comparative analysis of performance of AP-MSA and 

SGA for SMART datasets. 

4.2. Performance Analysis on Consecutive 

Execution of AP-MSA 

To analyze the changes in the resulting score and self-

organizing convergence point, the algorithm is 

executed for ten times using model dataset 469 with 

three sequences from OXBench benchmark alignment 

suite [2] and the scores, number of generations are 

tabulated Table 4. A graphical representation 

indicating changes in the column score against 

execution is given in Figure 7. This analysis shows 

that the alignment produced and number of 

generations varies for various executions. It is evident 

from the result that best score was generated more 

number of times, thus, proving the efficiency of the 

algorithm. 

Table 4. Impact of execution on score (AP-MSA). 

No. of Execution No. of Generations Column Score 

1 42 0.0985 

2 40 0.0960 

3 43 0.1034 

4 41 0.1009 

5 45 0.0985 

6 41 0.1034 

7 39 0.1009 

8 44 0.1034 

9 42 0.1009 

10 43 0.1034 
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Figure 7. Impact of execution on score (AP-MSA). 

4.3. Procedural Analysis of AP-MSA 

To explain the self-organizing procedure of AP-MSA, a 

model dataset 469 with three sequences from OXBench 

benchmark [2] are used as input. In AP-MSA, the 

crossover rate (Rc) is random depending on the 

alignment length and the mutation rate (Rm) is allowed 

to change from 1% to 80% based on the improvement 

of alignment score which has an impact on termination 

of execution thereby number of generations. The 

execution starts with Rm=1% and generation (1) 

produced an alignment with Column score 0.0788. In 

next generation (2) by the concept of self-organization 

implemented in the procedure Rm increased to 3% 

resulting a score of 0.0812. Generation (3) retains the 

same rate Rm=3% resulting a score of 0.0812 and no 

further increase in the score. Hence by the concept of 

self-organization Rm is increased to 5%. Self-

organizing increase in Rm continues till the upper limit 

(80%) is reached. Mutation rate reaches the upper limit 

81%, when generation=46 and the score of output 

alignment is 0.1034 as shown in Table 5. A Graph 

explaining the above procedure with generation against 

score is given in Figure 8. It is evident from the result 

data, for 469 dataset, seven improvements occurred for 

execution/ procedure to obtain the final score of 0.1034. 

 
Figure 8. Impact of self-organizing procedure (AP-MSA). 

Table 5. Impact of Self-organizing procedure (AP-MSA). 

Generation 
Rate of Cyclic Mutation 

Operator (in Percentage) 
EM of elite 

Column 

score 

1 1 32 0.0788 

2 3 33 0.0812 

3 3 33 0.0812 

4 5 33 0.0812 

5 7 33 0.0812 

6 9 35 0.0862 

7 9 37 0.0911 

8 9 37 0.0911 

9 11 37 0.0911 

10 13 37 0.0911 

11 15 37 0.0911 

12 17 37 0.0911 

13 19 37 0.0911 

14 21 40 0.0985 

15 21 40 0.0985 

16 23 40 0.0985 

17 25 40 0.0985 

18 27 40 0.0985 

19 29 40 0.0985 

20 31 41 0.1009 

21 31 41 0.1009 

22 33 41 0.1009 

23 35 41 0.1009 

24 37 41 0.1009 

25 39 41 0.1009 

26 41 41 0.1009 

27 43 41 0.1009 

28 45 41 0.1009 

29 47 41 0.1009 

30 49 41 0.1009 

31 51 41 0.1009 

32 53 41 0.1009 

33 55 41 0.1009 

34 57 41 0.1009 

35 59 41 0.1009 

36 61 41 0.1009 

37 63 41 0.1009 

38 65 41 0.1009 

39 67 41 0.1009 

40 69 41 0.1009 

41 71 42 0.1034 

42 71 42 0.1034 

43 73 42 0.1034 

44 75 42 0.1034 

45 77 42 0.1034 

46 79 42 0.1034 

4.4. Comparison of AP-MSA and Existing 

MSA Tools  

BAliBASE, OXBench and SMART [2] sequences are 

aligned using other MSA tools namely, Web-based 

computer program (CLUSTAL) for multiple sequence 

alignment (CLUSTALW) [18], Multiple Alignment 

using Fast Fourier Transform (MAFFT) [8], MUltiple 

Sequence Comparison by Log-Expectation 

(MUSCLE) [4], Multiple sequence alignment with 

hierarchical clustering (MULTALIN) [3], Tree-based 

Consistency Objective Function for Alignment 

Evaluation (T-COFFEE) [13], DNA or protein 

ALIGNment program (DIALIGN) [10] with default 

parameter settings and tabulated in Table 6. The RV11 

dataset used consists of sequences with less than 25% 

identity. The alignment results of Auto-Poietic 

algorithm for MSA (AP-MSA) and other MSA tools 

were compared using column score to prove the 

performance efficiency of developed algorithm. The 
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results areTable 6. Comparison of AP-MSA with other 

MSA Tools in Figure 9. The column score of the 

alignment generated by MULTALIN for 

RV11_BB11009, RV11_BB11037 and 

RV11_BB11002 datasets is zero due to the absence of 

exact match. Similarly, the alignment programs, 

MAFFT, and DIALIGN, generated alignment without 

any exact match for datasets RV11_BB11002, and 

RV11_BB11032, respectively.  

Whereas, AP-MSA produced alignments with better 

column score than the widely used MSA tools 

considered in the comparative analysis. The ability of 

AP-MSA to generate optimal or close to optimal 

alignments for all reference datasets shows its 

performance efficiency.  

Table 6. Comparison of AP-MSA with other MSA tools. 

S. 

No. 
DATASET CLUSTALW MAFFT MUSCLE MULTALIN T-COFFEE DIALIGN 

AP-

MSA 

1 RV11_BB11002 0.0046 0 0.0016 0 0.0056 0.0098 0.0038 

2 RV11_BB11009 0.0203 0.0188 0.0490 0 0.0177 0.0801 0.0322 

3 RV11_BB11015 0.1166 0.0043 0.0849 0.1118 0.1394 0.0604 0.0152 

4 RV11_BB11032 0.0119 0.0058 0.0134 0.0024 0.0063 0 0.0006 

5 RV11_BB11037 0.0234 0.0124 0.0321 0 0.0350 0.0038 0.0004 

6 RV11_BBS11013 0.0459 0.0210 0.0696 0.0282 0.0534 0.0337 0.0146 

7 RV11_BBS11022 0.0801 0.0402 0.1058 0.0809 0.0884 0.0218 0.0241 

 
Figure 9. Comparison of AP-MSA with other MSA tools. 

5. Conclusions 

There are several variants in genetic algorithm 

modified at genetic operator level and procedural level 

that ultimately trying to improve the performance of 

conventional genetic algorithm. This work is an attempt 

to devise a novel self-organizing GA to explore MSA 

problem and to enhance the performance of SGA. In 

contrast to SGA, the parameters are designed to adapt 

optimal values during execution. This procedure helps 

non-domain users to avoid execution with fixed 

parameter values as it may not be appropriate in all 

circumstances. As an advantage, the developed auto-

poietic crossover operator encourages the gene to 

enhance exploration in order to improve the working 

efficiency and to analyze the influence of crossover on 

population diversity. Saving a copy of best 

chromosome after each genetic operation with elitism 

selection guarantees the avoidance of disruption of best 

chromosome is avoided. SOBS increases the mutation 

rate cyclically based on the improvement in the 

resultant score, thereby, allowing the process to explore 

all rates within the range. Incorporating the designed 

operators, AP-MSA is developed and implemented to 

solve MSA and it is found to perform better to avoid 

premature convergence. The comparative analysis of 

performance with SGA and other widely used MSA 

tools shows the efficiency and consistency of AP-

MSA in producing optimal alignment.  
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