
934 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

Paradigma: A Distributed Framework for Parallel

Programming

Sofien Gannouni, Ameur Touir, and Hassan Mathkour

College of Computer and Information Sciences, King Saud University, Saudi Arabia

Abstract: Recent advances in high-speed networks and the newfound ubiquity of powerful processors have revolutionized the

nature of parallel computing. It is becoming increasingly attractive to perform parallel tasks on distant, autonomous, and

heterogeneous networked machines. This paper presents a simple and efficient new distributed framework for parallel

programming known as Paradigma. In this framework, parallel program development is simplified using the Gamma

formalism, providing sequential programmers with a straightforward mechanism for solving large-scale problems in parallel.

The programmer simply specifies the action to be performed on an atomic data element known as a molecule. The workers

compete in simultaneously running the action specified on the various molecules extracted from the input until the entire

dataset is processed. The proposed framework is dedicated for fine-grained parallel processing and supports both the Simple

program multiple data and multiple program multiple data programming models.

Keywords: Distributed systems, parallel programming, gamma formalism, single program multiple data, multiple program

multiple data.

Received March 5, 2015; accepted March 9, 2016

1. Introduction

The parallel solution of a large-scale computing

problem consists of dividing the problem into

independent tasks, distributing the tasks over the

processes, dividing the data among the processes, and

coordinating the various processes that are running

simultaneously. The processes that execute the tasks are

commonly known as workers. It is becoming

increasingly attractive for the workers to operate on

distant, heterogeneous, and autonomous machines that

are connected through a network [15, 31]. Currently,

only highly skilled programmers have the expertise to

write parallel code for distributed machines. Although

most sequential programmers are aware of the

performance gains attainable through distributed

parallel programming, the technologies involved are

often prohibitively complex and require the mastery of

a new and difficult programming style.

Various Parallel Programming Frameworks (PPFs)

have been proposed to make parallel programming less

complex and more widely accessible [11]. A

framework can be treated as a set of components that

constitute a puzzle in which certain pieces (the specific

computations to be performed) are missing and must be

provided by the end-user [23]. There is competition

among the various frameworks on the market to

decrease the effort required from the end-user by

reducing the complexity of the missing pieces and

providing transparency in the parallelism. Although

existing PPFs require “little” work from the end-user,

they nevertheless rely on his or her expertise in solving

large-scale problems in a parallel fashion.

In this paper, we present a new simple and efficient

framework for parallel programming known as

Paradigma. Paradigma is an easy-to-use, reliable

distributed framework for parallel programming that is

dedicated for fine-grained parallel processing and

supports both the Single Program Multiple Data

(SPMD) and Multiple Program Multiple Data

(MPMD) programming models. This framework

reduces the complexity of parallel program

development by adopting a programming technique

known as the Gamma formalism. In the Gamma

formalism [3, 4], a computation is described as a form

of chemical reaction between various individual data

elements. Parallelism is achieved by simultaneously

performing the reaction on every data element, and the

processing terminates when no further reactions are

possible. We experiment the benefit of using the

Gamma formalism in solving various problems such

as normalization of a database schema [36], Quad tree

and PM-Quad tree spatial index structures

implementation [37]. Several attempts to implement

the Gamma formalism were performed in order to

simplify the parallel programming. Indeed, [36, 37]

have adopted a centralized approach to implement

their frameworks. Whereas, recently, [27] has

developed the Gamma formalism on a cluster machine

using International Business Machines (IBM) tuple

space middleware. This implementation was extended

by developing a parser to transfer the Gamma

programs to Nvidia’s Compute Unified Device

Architecture (CUDA) architecture [25, 26].

We have developed a fully distributed sharing

nothing framework for parallel programming based on

Paradigma: A Distributed Framework for Parallel Programming 935

the Gamma formalism called Paradigma. Herein, we

focus on describing the architecture of Paradigma. The

remainder of this paper presents the main

characteristics of the framework, describes the

reference architectures of Paradigma and its various

components, and explains how the proposed framework

supports the SPMD and MPMD programming models.

2. Related Work

Several dedicated frameworks for parallel

programming have been proposed in the literature, and

we describe the most important ones here.

 Cactus [3, 4, 18] is an open-source environment that

enables parallel computation on many different

architectures. Thus, using Cactus, applications can

run on clusters or supercomputers.

 PetSc [9, 13] is a library that is designed for parallel

programs. This library provides an abstraction layer

above MPI that enables users to focus on writing

parallel programs rather than concerning themselves

with low-level Message Passing Interface (MPI)

operations.

 Cilk [12] is a C-based runtime system that supports

the multithreaded parallel programming paradigm.

Cilk includes a programming language that is an

extension of C with additional primitives for

expressing parallelism. The Cilk runtime system

maps the expressed parallelism into parallel

execution. Using these primitives, Cilk allows a

function that calls another function to continue

running simultaneously with the callee function.

 Swarm [24] (SoftWare and Algorithms for Running

on Multicore) is an open-source portable parallel

programming framework. Swarm provides basic

features for multithreaded programming, such as

synchronization, control and memory management,

and collective operations.

 Condor [5, 20, 28, 35] is a meta-computing

environment that resides on a cluster of machines

(called a Condor pool) and observes their

characteristics, such as the load average. In the

Condor environment, idle machines are utilized for a

significant fraction of the time. Users submit their

jobs to Condor, which subsequently runs the jobs on

idle machines, monitors their progress, and informs

the user upon completion. When the owner of a

machine returns, Condor either suspends or kills the

job running on that machine.

 Master-Worker (MW) [19] is a framework that

enables users to parallelize their applications in a

straightforward manner using the Condor meta-

computing environment. A large computation is

divided into a number of tasks to be executed in

parallel. The MW framework works with Condor to

assign processing units (machines) to these tasks,

handle the communication, reassign tasks if their

current machines fail, and manage the global

parallel computation.

Numerous recent parallel processing frameworks are

Java-based. This is due to the fact that Java is an

object-oriented, platform-independent, secure

programming language that includes various ready-

made packages for communication. Most of these

frameworks have attempted to add layers,

components, and/or services over the pre-existing

technologies to overcome the limitations of Java in

parallel processing. In the literature, the existing Java-

based frameworks for parallel processing are usually

classified into two main approaches:

1. Native MPI wrappers.

2. Pure Java implementations. We classify these

frameworks into five main approaches.

 The first approach utilizes Java as a wrapper for

existing MPI implementations. Prototypes such as

mpiJava [8] and Java/DSM provide MPI

communication by calling native methods (in C,

C++, or Fortran) using the Java Native Interface

(JNI). The major drawbacks of this approach are its

lack of portability and interoperability.

 The second approach provides a portable message-

passing implementation because the entire library is

developed in Java. Prototypes such as MPJ [6, 7],

Distributed Object Group Metacomputing

Architecture (DOGMA) [32], Java Parallel Virtual

Machine (JPVM) [33], Java Message Passing

Interface (JMPI) [29], and Pure Java

Implementation of Message Passing Interface

(PJMPI) [39] have been proposed. This approach

solves the portability and interoperability problems;

however, the developed prototypes have

unfortunately exhibited inferior performance

compared with native MPI implementations.

 The third approach extends the Java language

features to overcome the limitations of the second

approach. Prototypes such as HPJava [14],

JavaParty [25], Manta [30], Titanium [41], Java

Object-Passing Interface (JOPI) [1, 2], and the do!

[23] Have been shown to exhibit improved

performance. Some of these prototypes extend

certain Java features, such as inter-process

communication, object serialization [21], and

message passing [34, 38]. Others either provide

new Java classes, enabling users to write parallel

programs in a more straightforward fashion [23] or

extend the Java syntax to describe how individual

tasks are performed across multiple processes [14,

41].

 The fourth approach is mainly web-oriented; it uses

the Java applet to execute parallel tasks. For

example, Javelin [15] adopts this approach. Javelin

is a web-based infrastructure for parallel computing

that requires access to a Java-enabled web browser.

936 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

By simply pointing their browsers to a known URL,

users can make their resources available for hosting

portions of parallel computations. This is achieved

by downloading and executing an applet that spawns

a small daemon thread that waits and “listens” for

tasks.

 The fifth approach is grid-based. Prototypes such as

HPJava [14] (the latest version), Java Parallel

Programming Framework (JPPF) [40], and Mpich-

G2 [22] (a non-Java-based framework) adopt this

approach. HPJava and Mpich-G2 extend existing

parallel frameworks to allow users to run parallel

programs across multiple computers. JPPF and

Mpich-G2 rely on the Globus toolkit [17] for

resource allocation, process creation, monitoring,

control, and communication.

3. Characteristics of Paradigma

The main characteristics of the Paradigma framework

are as follows:

 Distributed parallel processing. The parallel

processing is performed in a fully distributed way.

The framework relies neither on a central component

to manage and synchronize the global processing nor

on shared memory for exchanging data.

 Loosely coupled. The built-in knowledge that must

be exchanged between the interacting components is

minimal. Each component requires only the address

of a directory service (registry) to join the

framework and communicate with the other

components.

 No parallel programming. The framework relieves

the user from details of the communication between

the framework components and from details of

parallelism. The user can therefore concentrate his or

her effort on the logic of the problem rather than

focusing on aspects such as the splitting and

gathering of data or its parallel processing.

 Scalable. To improve the responsiveness and

performance of the framework, additional processing

power can be added at run time. In addition, specific

computations required to solve the problems can be

entered by the users into the framework at run time.

4. Overview of the Gamma Formalism

The Gamma formalism [10, 11] is a programming

model that is designed to make parallelism more

accessible. Gamma allows the user to specify a task as

an action on a data element (known as a molecule) that

satisfies a criterion known as the reaction condition.

Parallelism is achieved by performing the action

simultaneously on every molecule satisfying the

reaction condition. Molecules are generated either from

the data provided by the user (as input) or from the data

produced by the action. The processing terminates

when no further actions are possible, that is, when no

remaining data elements satisfy the reaction condition.

5. Terminology and Specifications

 A worker () is a processing unit.

 An atom is an elementary data item.

 A data set () is a set of atoms.

 A molecule () is a subset of a data set .

 The molecular cardinality of a molecule ,

denoted by , is the exact number of atoms that

compose the molecule.

 All molecules of the same type have the same

molecular cardinality.

 A service () is an action (specific computation of

a user) to be performed on any given molecule .

 The execution of on the molecule is denoted

by)(. The result of this execution is two sets

of atoms:𝐴 and 𝑃 say.

 𝐴 is the set of active atoms that will replace

in the data set in further processing.

 𝑃 is the set of passive atoms that are part of the

final result and do not require further

processing.

 The capacity of a service , denoted by)(, is

the minimum molecular cardinality required to

run the action of the service .

 A molecule factory),(c extracts, whenever

possible, a molecule from that satisfies = c

where c is the molecular cardinality of .

Consequently, the size of the set is reduced by

the size of the set of atoms that composes .

),(' Such that ' .

 Atoms integrator),(X inserts the set of atoms X

into the data set .

 A Gamma machine is a set of interconnected

workers running a set of services. The machine is

denoted by M(W,L,S) where:

 W is a nonempty set of workers.

 L is a set of links connecting the workers. A link

is defined as a connected pair of workers, and L

defines the network topology of the connected

workers.

 S is a set of services.

 A task),(is the input to the Gamma machine.

A task is composed of a service and a data set .

)(is the service that is associated with

)(is the data set that is associated with

 M),(denotes the parallel processing of on the

machine M; it refers to the simultaneous execution

of () by the various workers W of the

Paradigma: A Distributed Framework for Parallel Programming 937

machineM on distinct molecules , extracted by

(() ()), .

() ()
 W

,M : ,

()

() (())()
m

, m

denotes the multiple execution of)(on the worker

 with various molecules extracted by ((), ()) :

()

(,) : (,) = (())()
 W W m

M m

6. Paradigma System Architecture

Paradigma is a reliable distributed framework for

parallel programming that is dedicated for fine-grained

parallel processing that supports both the SPMD and

MPMD programming models. As depicted in Figure 1,

Paradigma consists of the following four components:

Client

Registry Delivery Service

Workers Community

D
iscovery

S
ervice

S
ubm

itting tasks

S
ubm

itting

T
asks

P
ublishing

S
ervices

P
ub

li
sh

in
g

R
es

ul
ts

P
ub

li
sh

in
g

R
es

ul
ts

D
ow

nl
oa

od
in

g

S
er

vi
ce

s

D
is

co
ve

ri
ng

/

Jo
in

in
g

W
or

ke
rs

Figure 1. Paradigma reference architecture.

 Client. The client allows the user to

1. Define and publish his or her own services.

2. Discover existing services.

3. Submit tasks.

4. Receive the related results of the tasks in an

asynchronous manner.

 Gamma Machine. As defined above, the Gamma

machine is composed of a set of workers that are

interconnected within a network of a given topology.

These workers collaborate to accomplish the tasks

submitted by the user and generate their results.

 Delivery Service Mediator (DSM). The DSM acts as

a broker between the client and the Gamma machine.

This component is responsible for delivering the

tasks submitted by the client to the workers and

transferring the results of the tasks to the client. Each

client is assigned a DSM when it starts.

 Registry Service. The registry service is a repository

in which all workers and services of the Gamma

machine and delivery service mediators are

recorded.

6.1. The Client

The client is mainly responsible for submitting the

tasks of users and receiving their related results. This

component provides a set of tools to handle the

communication and synchronization between the

components of the framework so that the users need

not be concerned with these details. The client allows

the users to specify and publish their own services and

discover and utilize the already existing services,

Figure 2 illustrates the client architecture.

R
es

u
lt

 R
ec

ei
ve

r

Service
Publish

er

Registry Connector

Task ManagerResultManager

Client Facade

R
es

u
lt

 It
er

at
o

r

Ta
sk

 F
ac

to
ry

D
SM

 C
o

n
n

ec
to

r

Se
rv

ic
e

Ex
p

lo
re

r

Se
rv

ic
e

U
p

lo
ad

er

Network

Figure 2. Client architecture.

As shown in Figure 2, the client consists of the

following components:

 The connectors. There are two connectors: the

registry connector and the DSM connector. These

connectors provide remote access to the registry

service and to the DSM assigned to the client. The

registry connector is used basically for the

publication and discovery of services.

 The task manager. This component is primarily

responsible for defining and submitting the tasks of

users and specifying and uploading the relevant

services. The task manager consists of a service

publisher, service uploader, service explorer, and

task factory.

 The service publisher. publishes XML documents

that describe the services deployed by the user

(name, purpose, approach, context, input/output

description, etc.,).

 The service uploader. uploads the services to the

registry.

 The service explorer. enables the discovery of

services that are already published in the registry.

 The task factory generates the tasks of the user to

be processed by the Gamma machine.

 The result manager. This component consists of a

result receiver and a result explorer. The result

receiver receives the results of the submitted tasks

in an asynchronous manner, while the result-

(1)

(2)

 (3)

938 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

explorer browses the results and checks them for

readiness.

 The client façade. This component ensures that the

other three components of the client are well

configured. The client façade may be viewed as the

Paradigma user/application interface that

encompasses all of the client components.

6.2. The Registry Service

The Registry Service (RS) is considered to be the entry

point for clients and workers. The RS stores useful

information that enables the various components of

Paradigma to communicate, collaborate, and complete

the tasks submitted by the users. The RS is composed

of a workers repository, a services repository, and a

mediator’s repository.

6.3. The Delivery Service Mediator

The Delivery Service Mediator (DSM) acts as a broker

between a client and the Gamma machine. Each client

is assigned a DSM that is created when the client starts.

The DSM

1. Forwards each received task to a worker selected

randomly from the workers repository.

2. Receives the results from the workers.

3. Transfers the results back to the client.

Figure 3 illustrates the DSM architecture.

C
lie

n
t

C
o

n
n

ec
to

r

Li
st

en
er

R
eg

is
tr

y
C

o
n

n
ec

to
r

W
o

rk
er

 C
o

n
n

ec
to

r

Result
Manager

Task Manager

Network

Figure 3. DSM architecture.

 The following three connectors:

 The registry connector, which enables

communication with the registry service.

 The client connector, which transfers the results

back to the relevant client.

 The worker connector, which forwards the tasks

to a worker of the Gamma machine.

 The listener. This component facilitates the receipt

of tasks from the client and their corresponding

results from the Gamma machine.

 The result manager. Because multiple tasks may be

processed simultaneously and fragments of the

results are often received in a random fashion, the

result manager is responsible for assembling the

fragments of a given result. When a result has been

received in its entirety, it is transferred back to the

client.

6.4. The Worker

The community of workers is considered to be the

core unit of the Gamma machine. This component

comprises the backend layer that constitutes the

processing power of Paradigma. The worker

community is composed of a scalable set of workers

running on distant, autonomous, and heterogeneous

interconnected machines. The workers are responsible

for processing the tasks submitted by the various

DSMs. They simultaneously run the expected services

on disjoint portions of the data that are extracted

fromthe received tasks. When a worker receives a

task , it:

1. Extracts a molecule from the data input)(.

2. Forwards the remaining data to its neighbours.

3. Downloads and deploys the service)(if

necessary.

4. Performs)(on .

A worker may participate in the processing of a given

task several times by running the same service on

various molecules extracted from the input data. When

the entire task has been processed, each worker
sends the obtained result (), to the DSM owner of

the accomplished task. Figure 4 illustrates the worker

architecture.

Connectors

Remote Access Service Listener

Gamma Processing Handler

Specific Processing Handler

Network

Figure 4. Worker architecture.

As depicted in Figure 4, the worker consists of the

following components:

 The connectors:

 A registry connector. that enables

communication with the registry service (this

connector enables the necessary services to be

downloaded),

 A DSM connector. that enables the results to be

sent back to their corresponding DSMs and

Paradigma: A Distributed Framework for Parallel Programming 939

 The worker. connectors, which enable

communication with the other workers.
 The remote access service. This component manages

the network topology of the worker community and

provides remote access to the various components of

Paradigma through the connectors. The framework's

underlying communication layer is designed in the

form of patterns to enable various advanced network

topologies, such as mesh, multidimensional torus,

hypercube, or pyramid topologies, to be adopted

with minimal effort. The current version of the

framework fully supports ring, 2D and 3D torus

network topologies.

 The listener. This component enables the receipt of

messages (tasks, alerts, tokens, etc.) from DSMs and

workers.

 The Gamma processing handler. This component is

considered to be the core of the worker. The Gamma

processing handler implements the Gamma

formalism as a generic abstract machine.

 The specific processing handler. This component

provides the Gamma processing handler with

concrete problem-solving strategies.

6.4.1. The Specific Processing Handler

The Specific Processing Handler (SPH) provides

uniform access to the specific services deployed by the

users. For a given service , the SPH instantiates a

single unique object of the class implementing that

service. As depicted in Figure 5, the SPH consists of

the following components:

 The service loader. This component is responsible

for downloading services from the services

repository of the RS. The download action is

triggered whenever a worker attempts to run a non-

available service.

 The service manager. This component handles all of

the services that are downloaded by the service

loader. Each service is made accessible through an

instance, known as a Service Provider (SP), of the

class implementing the service. An implementation

of a service must override the following two

methods:

 Service Capacity (), which returns the capacity

)(of the service .

 Action (, A, P), the specific computation to be

performed on any given molecule that satisfies

the condition)(. This method

implements)(which produces two sets of

atoms: A and P. Here, A is the set of active atoms

that are generated by the action and require

further processing, while P is the set of passive

atoms that are generated by the action and have

attained their final state.

 The molecule factory. This component implements

),(c . When a worker receives a task , the

molecule factory extracts a molecule from the

data input)(, with a molecular cardinality

c , where (())c .

Service
Locator

Task Manager
Molecule
Factory

SP1 SP2

SPi

SPk
SP

k+1
SPn

Figure 5. Specific processing handler architecture.

6.4.2. The Gamma Processing Handler

The Gamma Processing Handler (GPH) is the abstract

machine that ensures the parallel processing of the

tasks defined by the user. Given a received task , the

GPH

a. Applies (() (())), to extract a molecule from

the input data)(that satisfies (()) .

b. Delegates the remaining data to the neighbouring

workers using the remote access service.

c. Performs)(on and obtains the sets of active

atoms A and passive atoms P.

d. Delays the delivery of P, as a portion of the final

result, until all of the workers have finished

processing the task .

e. Applies (()),A to insert the set A into)(.

As depicted in Figure 6, the GPH consists of the

following components:

 The processing manager. This component

determines whether the task τ must be processed

locally or can be delegated depending on the status

of the worker (busy or idle).

 The local processor. This component is responsible

for the local processing of tasks . The local

processor uses the SPH to obtain the service

provider of and a molecule from)(and

triggers the service provider to take action on .

The remaining portion of)(is passed to the

delegator. When the local processor finishes

processing , it continues working on the same task

τ by extracting a new molecule ' from the

available active atoms A. If no molecule could be

generated, then the worker is set to idle.

 The delegator. This component enables the

asynchronous submission of a data set to the

neighbouring workers.

 The end detector. This component is responsible for

detecting the global termination of the parallel task

940 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

running on the distributed workers. In the end

detector, the Dijkstra et al. [16] wave algorithm for

termination detection on a ring network is extended

to include 2D and 3D torus networks. The wave

algorithm pays a token visit to each node and

collects information regarding the status of the entire

system. A full description of the algorithm is beyond

the scope of this paper. However, we considered the

following criteria in the specification of our

termination detection algorithm:

 Correctness. The termination detection occurs if

and only if the computation has terminated, and if

the termination occurs, then it must be detected.

 Number of detection iterations. Detecting the

global termination within a minimum number of

iterations (turns) is important for the overall

performance of the termination detection

algorithm because it affects many factors,

including the delay, resource consumption, and

congestion.

 Overhead. The termination detection algorithm

generates the minimum possible number of

secondary messages.

 Detection delay. The termination detection delay

is the time interval between the completion of the

execution and the subsequent detection.

En
d D

et
ec

to
r

De
leg

ato
rProcessing Manager

Local Processor

Figure 6. Gamma processing handler architecture.

7. Paradigma Parallel Programming Models

7.1. The SPMD Programming Model

In the SPMD programming model, the workers

simultaneously perform the same service on different

molecules. The molecules are extracted from the

dataset provided by the task at hand. The task runs

through all of the workers until all molecules are

extracted and processed. Each worker creates an

instance of the service and performs the service on the

extracted molecules.

To submit a task, the user can implement his or her

specific problem solution by extending an abstract class

called Service. This class contains two fundamental

abstract methods, action () and service Capacity (). The

functionalities of these methods are described in

Section 6.4.1. Once these two methods are

implemented, the user must deploy the service in the

framework by providing the service name and the URL

of the jar file that contains the service implementation.

Once these initial steps are complete, he or she can

submit a task. The following tables show the various

code fragments that must be implemented by the user to

calculate the sum of a set of integers.

Algorithm 1 shows the description of the abstract

class Service and focuses on the abstract methods that

should be implemented by the user.

Algorithm 1: The definition of the abstract Service Class

// provided by the framework

1. public abstract class Service {

2. protected String serviceName;

3. protected String serviceDescription;

4. protected String serviceFileName;

5. public Service(String svcName, String svcDesc,String

svcFName) { … }

6. public abstract void action(LinkedList molecule,

7. LinkedListactiveAtoms,

8. LinkedListpassiveAtoms);

9. public abstract intserviceCapacity();

10. }

Algorithm 2 shows how to implement the calculation

of thesum of integers as a specific computation (a

service). The sum service should be implemented as a

concrete class of the abstract class Service.

Algorithm 2: Implementation of a specific computation of a

user

//Should be provided by the user

1. public class SumService extends Service {

2.

3. public void action(LinkedList molecule,

4. LinkedListactiveAtoms,

5. LinkedListpassiveAtoms) {

6. int a, b;

7. a =((Integer) molecule.poll()).intValue();

8. b =((Integer) molecule.poll()).intValue();

9. activeAtoms.add(new Integer(a+b));

10. }

11. public intserviceCapacity() {

12. return 2;

13. }

14. }

Algorithm 3 shows how the user should define his

data set using the abstract class Data Set.

Algorithm 3:Definition of the abstract class Data Set and

user defined data types.

//provided by the framework

1. public abstract class DataSet {

2. private LinkedList<Object> data;

3. public final LinkedList<Object>moleculeFactory(int

cardinality) { … }

4. public final void

atomsIntegrator(LinkedList<Object> atoms) { … }

5. …

6. public final void add(Object atom) { … }

7. public final LinkedList<Object>getData() {…}

8. …

9. }

//Should be provided by the user if necessary

1. public class MyData extends DataSet {

2. …

3. }

Paradigma: A Distributed Framework for Parallel Programming 941

Algorithm 4 shows how the user can deploy and submit

the sum service as an SPMD program.

Algorithm 4: Deployment of a single service and the

execution of a task asan SPMD program.

//Should be provided by the user

1. public class SPMD_Program {

2. public static void main (String[] args) {

3. ParadigmaClient cl = new ParadigmaClient();

4. DataSetmyData = new DataSet();

5. SumService svc = new SumService();

6.

7. for (inti=0; i< 10000000; i++)

8. myData.add(new Integer(i));

9.

10. cl.deploy(svc);

11. Task myTask = new Task(svc, myData) ;

12. cl.submit(myTask);

13. DataSetmyResult = cl.getResult(myTask);

14. }

15. }

7.2. The MPMD Programming Model

In the MPMD programming model, the workers

simultaneously perform distinct tasks that perform

different services. Each task runs as an SPMD program

and benefits implicitly from the parallel capabilities of

Paradigma.
Algorithm 5 shows an example of a client deploying

distinct services and submitting several tasks for

parallel processing.

Algorithm 5: Deployment of distinct services and the

execution of several tasks as MPMD programs.

//Should be provided by the user

1. public class MPMD_Program{

2. public static void main (String[] args) {

3. ParadigmaClient cl = new ParadigmaClient();

4. MyData1 myData1 = …;

5. MyData2 myData2 = …;

6. MyService1 svc1 = …;

7. MyService2 svc2 = …;

8. …

9. cl.deploy(svc1);

10. cl.deploy(svc2);

11.
12. Task myTask1 = new Task(svc1, myData1) ;

13. Task myTask2 = new Task(svc2, myData2) ;

14. …

15. ArrayList<Task>myTasks = new ArrayList<Task>();

16. myTasks.add(myTask1);

17. myTasks.add(myTask2);

18.
19. cl.submit(myTasks);

20. ArrayList<DataSet>myResults = cl.getResult(myTasks);

21. …

22. }

23. }

8. Conclusions

In this paper, we have presented a new distributed

virtual parallel machine known as Paradigma.

Paradigma is composed of four components: the

client, registry service, delivery service mediators, and

workers. The client enables the users to submit SPMD

and MPMD programs. The registry service enables the

users to share their expertise in solving large-scale

problems. The delivery service mediators ensure

communication between the clients and workers. The

workers execute the SPMD and MPMD parallel

programs provided by the users. The workers are

distributed and interconnected within a network. The

proposed framework supports various connection

topologies ranging from simple ring networks to

multidimensional torus networks.

Most of existing parallel programming frameworks

which rely on the expertise of the programmer to solve

a large scale problem. In contrast to that, Paradigma

adopts a programming technique known as the

Gamma formalism which allows the programmer to

concentrate his/her efforts on writing only the action

(service) to be performed on a single data element

known as a molecule. Paradigma automatically

deploys the service on all of the available workers,

which simultaneously perform the action on distinct

molecules extracted from the task defined by the user.

Moreover, unlike existing frameworks, which

distribute the tasks in an MPMD program to the

workers for simultaneous execution with a single task

assigned to each worker, Paradigma processes the

tasks in a given MPMD program simultaneously as

SPMD programs. The workers then compete to

participate in the processing of each task. MPMD

programs therefore benefit implicitly from the parallel

capabilities of the proposed framework.

Acknowledgment

This work was supported by the Research Center of

College of Computer and Information Sciences, King

Saud University. The authors are grateful for this

support.

References

[1] Al-Jaroodi J., Mohamed N., Jiang H., and

Swanson D., “JOPI: A Java Object-Passing

Interface,” in Proceedings of the Joint ACM-

ISCOPE Conference on Java Grande, Seattle,

pp. 37-45, 2002.

[2] Al-Jaroodi J., Mohamed N., Jiang H., and

Swanson D., “Middleware Infrastructure for

Parallel and Distributed Programming Models in

Heterogeneous Systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 14, no.

11, pp. 1100-1111, 2003.

[3] Allen G., Benger W., Dramlitsch T., Goodale T.,

Hege H., Lanfermann G., Merzky A., Radke T.,

and Seidel E., “Cactus Grid Computing: Review

of Current Development,” in Proceedings 7th

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

942 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

International Conference Euro-Parallel,

Manchester, pp. 817-824, 2001.

[4] Allen G., Goodale T., Massó J., and Seidel E.,

“The Cactus Computational Toolkit and Using

Distributed Computing to Collide Neutron Stars,”

in Proceedings 8th International Symposium on

High Performance Distributed Computing,

Redondo Beach, pp. 57-61, 1999.

[5] Bader D., Kanade V., and Madduri K.,

“SWARM: A Parallel Programming Framework

for Multicore Processors,” in Proceedings of 1st

Workshop on Multithreaded Architectures and

Applications, Long Beach, pp. 1966-1971, 2007.

[6] Baker M., Carpenter B., and ShafiA., “MPJ

Express: Towards Thread Safe Java HPC,” in

Proceedings IEEE International Conference on

Cluster Computing, Barcelona, pp. 1-10, 2006.

[7] Baker M., Carpenter B., and Shafi A., “MPJ: A

New Look at MPI for Java,” in Proceeding of UK

E-Science All Hands Meeting, Nottingham, pp.

666-669, 2005.

[8] Baker M., Carpenter B., Fox G., Ko S., and Lim

S., “MpiJava: An Object-Oriented Java Interface

to MPI,” in Proceedings of International Parallel

and Distributed Processing Symposium, San

Juan, pp. 748-762, 1999.

[9] Balay S., Gropp W., McInnes L., and Smith B.,

“Efficient Management of Parallelism in Object

Oriented Numerical Software Libraries,” Modern

Software Tools in Scientific Computing, pp. 163-

202, 1997.
[10] Banatre J., Fradet P., and Le Metayer D.,

“Gamma and the Chemical Reaction Model:

Fifteen Years Later,” in Proceedings of

International Conference on Membrane

Computing, Curtea de Arges, pp. 17-44, 2000.

[11] Banatre J., Fradet P., and Radenac Y., “Higher-

Order Chemistry,” in Proceedings of

International Workshop on Membrane

Computing, Tarragona, pp. 102-111, 2003.

[12] Blumofe R., Joerg C., Kuszmaul B., Leiserson C.,

Randall K., and ZhouY., “Cilk: An Efficient

Multithreaded Runtime System,” in Proceedings

of 5thACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, Santa

Barbara, pp. 207-216, 1995.

[13] BrowneM., “The PETScLibrary: Portable,

Extensible Toolkit for Scientific Computing,”

technicalreport,www.ichec.ie/support/tutorials/pet

sc.pdf, Last Visited, 2016.

[14] Carpenter B. and Fox G., “HPJAVA: A Data

Parallel Programming Alternative,” Journal of

Computing in Science and Engineering, vol. 5,

no. 3, pp. 60-64, 2003.

[15] Christiansen B., Cappello P., Ionescu M., Neary

M.,Schauser K., and Wu D., “Javelin: Internet-

Based Parallel Computing Using Java,”

Concurrency: Practice and Experience, vol. 9,

no. 11, pp. 1139-1160, 1997.

[16] Dijkstra E., Feijen W., and VanGasteren A.,

“Derivation of A Termination Detection

Algorithm For Distributed Computations,”

Information Processing Letter, vol. 16, no. 5, pp.

217-219, 1983.

[17] Foster I., “Globus Toolkit Version 4: Software

for Service-Oriented Systems,” in Proceedings

of IFIP International Conference on Network

and Parallel Computing, Beijing, pp. 2-13,

2005.

[18] Goodale T., Allen G., Lanfermann G., Mass´o J.,

Radke T., Seidel E., and Shalf J., “The Cactus

Framework and Toolkit: Design and

Applications,” in Proceedings of 5th

International Meeting on High Performance

Computing for Computational Science, Porto,

pp. 197-227, 2002.

[19] Goux J., Kulkarni S., Linderoth J., and Yoder

M., “An Enabling Framework For Master-

Worker Applications on the Computational

Grid,” in Proceedings of 9th International

Symposium on High-Performance Distributed

Computing, Pittsburgh, pp. 43-50, 2000.

[20] Goux J., Kulkarni S., Yoder M., and Linderoth

J., “Master-Worker: An Enabling Framework for

Applications on the Computational Grid,”

Cluster Computing, vol. 4, no. 1, pp. 63-70,

2001.

[21] Helen-Ma H. and YangL., “Improvement of

Object Serialization in Java Remote Method

Invocation,” in Proceedings 7th ACIS

International Conference on Software

Engineering, Artificial Intelligence, Networking,

and Parallel Distributed Computing, Las Vegas,

pp. 35-42, 2006.

[22] Karonis T., Toonen B., and Foster I., “Mpich-

G2: A Grid-Enabled Implementation of the

Message Passing Interface,” Journal of Parallel

and Distributed Computing, vol. 63, no. 5, pp.

551-563, 2003.

[23] Launay P. and Pazaty J., “The Do! Project:

Distributed Programming-Using Java,” in

Proceedings of 1st UK Workshop on Java for

High Performance Network Computing,

Europar, pp. 76-84, 1998.

[24] Leiserson C. and Plaat A., “Programming

Parallel Applications InCilk,” Society of

Industrial and Applied Mathematics News, vol.

31, no. 4, pp. 122-126, 1998.

[25] Lin H., Kemp J., and Gilbert P., Computer

Engineering: Concepts, Methodologies, Tools

and Applications, IGI-Global, 2012.

[26] Lin H., Kemp J., and Gilbert P., “Computing

GAMMA Calculus on Computer Cluster,”

International Journal of Technology Diffusion,

vol. 1, no. 4, pp. 42-52, 2010.

Paradigma: A Distributed Framework for Parallel Programming 943

[27] Lin H., Kemp J., and Molina W., “Parallel

Computing in Chemical Reaction Metaphor with

Tuple Space,” International Journal of Computer

Science and Security, vol. 4, no. 2, pp. 149-159,

2010.

[28] Meehean J. and Livny M., “A Service Migration

Case Study: Migrating the Condor Schedd,” in

Proceedings of the 38th Symposium on Instruction

and Computing, Wisconsin, pp. 456-472, 2005.

[29] Morin S., Koren I., and Krishna C., “JMPI:

Implementing the Message Passing Standard in

Java,” in Proceedings 16th International Parallel

and Distributed Processing Symposium, Ft.

Lauderdale, pp. 1956-1962, 2002.

[30] Philippsen M. and Zenger M., “Javaparty-

Transparent Remote Objects in Java,”

Concurrency Practice and Experience, vol. 9, no.

11, pp. 1225-1242, 1997.

[31] Ragab H., Sarhan A., Sallam A., and Ammar R.,

“Balanced Workload Clusters for Distributed

Object Oriented Software,” The International

Arab Journal of Information Technology, vol. 12,

no. 4, pp. 379-388, 2015.

[32] Snell Q., Judd G., and Clement M., “The

DOGMA Approach to Parallel and Distributed

Computing,” Scientific International Journal for

Parallel and Distributed Computing, vol. 2, no. 2,

pp. 23-34, 2001.

[33] Sqalli M. and Sirajuddint S., “An Adaptive Load-

Balancing Approach to XML-Based Network

Management Using JPVM,” in Proceedings of

13th IEEE International Conference on Networks,

Kuala Lumpur, pp. 202-207, 2005.

[34] Taboada G., Tourino J., and Doallo R.,

“Performance Analysis of Java Message-Passing

Libraries On Fast Ethernet, Myrinet and SCI

Clusters,” in Proceedings IEEE International

Conference on Cluster Computing, Hong Kong,

pp. 118-126, 2003.

[35] Thain D., Tannenbaum T., and Livny M.,

“Distributed Computing in Practice: The Condor

Experience,” Concurrency and Computation:

Practice and Experience, vol. 17, no. 2, pp. 323-

356, 2005.

[36] Touir A., Al-Athel D., and Mathkour H., “An

application of Gamma Formalism to Database

Design,” in Proceedings of International

Conference on Computer and Communication

Engineering, Kuala Lumpur, pp. 974-977, 2008.

[37] Touir A., Al-Twairesh N., and Mathkour H., “A

Gamma-Based PM-Quadtree Specification,” in

Proceedings of the 9th World Multi-Conference on

Systemics, Cybernetics and Informatics, Orlando,

pp. 215-221, 2005.

[38] Van Nieuwport R., Maassen J., Bal H., Kielmann

T., and Veldema R., “Wide-Area Parallel

Programming using the Remote Method

Invocation Model,” Concurrency: Practice and

Experience, vol. 12, no. 8, pp. 643-666, 2000.

[39] WeiQin T., Hua Y., and WenSheng Y., “PJMPI:

Pure Java implementation of MPI,” in

Proceedings of 4th International

Conference/Exhibition on High Performance

Computing in the Asia-Pacific Region, Beijing,

pp. 533-535, 2000.

[40] www.jppf.org, Last Visited, 2009.

[41] Yelick K., Semenzato L., Pike G., Miyamoto C.,

Liblit B., Krishnamurthy A., Hilfinger P.,

Graham S., Gay D., Colelia P., and Aiken A.,

“Titanium: A high-performance Java dialect,” in

Proceedings of ACM Workshop on Java for

High-Performance Network Computing,

Stanford, pp. 825-836, 1998.

Sofien Gannouni received his

Master degree in Computer Science

from Paul Sabatier University

(Toulouse III - France), and his PhD

degree in Computer Science from

Pierre & Marie Curie University

(Paris VI - France). Currently, he is

an Assistant Professor at College of Computer and

Information Sciences, King Saud University. His main

research interests include service-oriented computing,

distributed computing, parallel processing,

middleware grid computing and cloud computing.

Ameur Touir received his Master

degree in Computer Science from

Ecole National Superieure des

Techniques Avancees (INSTA/Paris

VI, Paris - France), and his PhD

from Sup. Telecom. Paris.

Currently, he is an Associate

Professor at College of Computer and Information

Sciences, King Saud University. His main research

interests include spatial data structure and GIS,

semantic web services, database.

Hassan Mathkour received his

Master degree and PhD degree in

Computer Science from the

University of Iowa, USA.

Currently, he is a Professor and

former Dean of College of

Computer and Information

Sciences, King Saud University. His main research

interests include service-oriented computing,

distributed computing, artificial intelligence,

bioinformatics, image processing and software

engineering.

