
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 867

Specification of Synchronous Network Flooding in

Temporal Logic

Ra’ed Bani Abdelrahman1, Rafat Alshorman2, Walter Hussak3, and Amitabh Trehan3

1SoftwareEngineering Department, Ajloun National University, Jordan
2Department of Computer Science, Yarmouk University, Jordan

3Computer Science Department, Loughborough University, United Kindom

Abstract: In distributed network algorithms, network flooding is considered one of the simplest and most fundamental

algorithms. This research specifies the basic synchronous memory-less network flooding algorithm where nodes on the

network don’t have memory, for any fixed size of network, in Linear Temporal Logic. The specification can be customized to

any single network topology or class of topologies. A specification of the termination problem is formulated and used to

compare different topologies for earlier termination. This paper gives a worked example of one topology resulting in earlier

termination than another, for which we perform a formal verification using the model checker NuSMV.

Keywords: Network flooding, linear temporal logic, model checking.

Received December 17, 2018; accepted June 11, 2019

https://doi.org/10.34028/iajit/17/6/5

1. Introduction

Distributed systems can be specified as a composition

of the specifications of constituent components using

well-studied process-calculi approaches such as
Communicating Sequential Processes (CSP) [9], CCS

[18], the π-calculus [19], the Ambient Calculus [2] and

I/O automata [17]. These methods are useful when

components have significant internal actions/state that

affect external actions but need to be abstracted away

to prove properties of external behaviour. Our interest

in this paper is the network flooding algorithm where

individual components, in this case physical nodes in

the network, have minimal internal state. The global

properties to be proved derive their complexity from

the topology of the network graph. It may be difficult

to achieve a desired global topology as some kind of

composition of components may necessitate an extra

proof to show that the topology is indeed achieved.

This research chooses a more direct logic-based

approach specifying the overall system-algorithm and

network topology-as a set of temporal logic constraints

in order to prove required properties. This has the

added benefit that a different topology for the network

can be specified easily by changing a single constraint,

rather than many components, in order to achieve the

same effect. This paper is structured as follows.

Section 2 describes the synchronous flooding

algorithm. Section 3 defines the temporal logic and

operators used in the specification. The specification of

the network flooding is in section 4 along with the

proof obligation for the basic property of termination.

This is applied to comparing termination in different

network topologies in section 5. A worked example is

described in section 6, as well as its proof in NuSMV.

The conclusions are in section 7.

2. The Synchronous Flooding Algorithm

Distributed networks routing algorithms deal with

directing and redirecting messages between the

different network routers and end points [3]. This

research refers to routers and endpoints as nodes. The

router’s job is to send the message to one of its

neighbours that has a connection to in order to deliver

the message to its destination [3]. A fundamental

algorithm which can also be also be used for routing is

the flooding algorithm [1]. Flooding forms the basis of

many important distributed processes, for example,

construction of BFS trees which are used example in

one of the author’s work on distributed Leader Election

[14]. The flooding algorithm is an algorithm which

utilizes every path in the network [23]. In flooding, a

message is sent from one node to all of its neighbours.

 A neighbour which receives a message, will

forward the message to all of its neighbours except the

one(s) from which it originally received the message

[1, 23, 25, 27]. Synchronous distributed algorithms

assume a ‘global clock’ where actions happen in clock

ticks or rounds. This means that the network has

bounded link delays and lockstep synchronization with

pulses of the global clock. In the message

synchronization property, a message sent from node 𝑣

to neighbour 𝑢 at pulse 𝑝 of 𝑣 must be delivered to u

before pulse p+1 of 𝑢 [23].

In the first round, a message sent from the initial

node to its neighbours as shown in Figure 1-b). In the

second round, a neighbour which received this

message will forward the message to all of its

neighbours except the ones which it received it from.

868 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Eventually, all nodes in the network will receive a

message in a certain round.

This paper investigates ‘memoryless’ flooding i.e., a

node does not explicitly remember if it has previously

taken part in the process or who it interacted with

before. This may happen, for example, if the node does

not have enough memory to store past history or there

are multiple flooding operations going on which it does

not want to, or cannot, distinguish. It does, however,

know which node(s) sent it the message in the present

round and forwards copies of the message to all the

neighbours apart from the one(s) it received from.

Notice that if any round, a node receives the

message from all its neighbours, the node does not

need to do anything. If at some point, no node forwards

the message, we say, flooding has terminated. It is hard

to know if the flooding process will ever terminate

especially in complicated topologies with cycles.

Figure 1-a and Figure 1-c demonstrates the

synchronous flooding algorithm in a network of four

nodes. Nodes which hold a message “M” are double-

circled. Figure 2-a and Figure 2-e demonstrates another

example of the synchronous flooding algorithm in a

network of three nodes. Nodes which hold a message

“M” are double-circled.

a) Round 0. b) Round 1. c) Round 2.

Figure 1. Flooding example 1.

a) Round 0. b) Round 1. c) Round 2.

d) Round 3. e) Round 4.

Figure 2. Flooding example 2.

3. Linear Temporal Logic

This chapter and the next will use standard Linear

Temporal Logic (LTL) with the temporal operators

defined below as it has approved to be a successful

approach in networking applications as in [12].

3.1. Syntax of LTL

The alphabet of LTL consists of a set of propositional

symbols Pi,i=0,1,2,… (this paper will use different

capital letters to P in different contexts), Booleans

 and temporal operators X, Y, F, G.

Formulae in LTL are those generated by:

1 2:: iP X Y F G

The Boolean

connectives ∨, ⇒ and ⇔ will be defined in terms of ¬

and ∧ in the usual way.

3.2. Semantics of LTL

LTL is interpreted over a sequence of temporal states

(which this research sometimes refers to as ‘points in

time’, even though they may not represent real time)

An interpretation for LTL, I, (Sa),

at a given state Sa assigns truth values ()aIs

iP

to the

propositional symbols Pi. A structure M is a sequence

of interpretations I, (S0),…, I, (Sa)… for the sequence

of states. The semantics of a LTL formula ø

is given by

a truth relationship

which means that ø

holds at state Sa in the structure M. The relation is

defined inductively as follows:

Intuitively, the temporal operator X reads as “in the

next state”, Y reads as “in the previous state”, F reads

as “in some future state”, and G reads as “in all future

states”. A structure M is a model of a LTL formula ø

iff . In general, a given LTL formula ø has

many models. The behaviours of network flooding in

different contexts (e.g., in different network

topologies) is a set of models. This research specifies

such network flooding in temporal logic by giving a

LTL formula ø whose models correspond exactly to

these behaviours of network flooding. We can then use

this ø to construct further LTL formulae (called ‘proof

obligations’) that will assert properties of ø such as

when the behaviour of flooding leads to termination.

4. Specification of The Synchronous

Flooding Algorithm

In the specification here, temporal logic states will

correspond to rounds in the progression of network

flooding. Successive rounds change the state of the

network, for example the nodes in the network that are

(a) Round 0 (b) Round 1 (c) Round 3

(d) Round 4 (e) Round 5

Figure 2: Flooding example 2

Specification of Synchronous Network Flooding in Temporal Logic 869

receiving messages in a particular round. Let N be the

set of nodes in the size of network under consideration.

The following subsections give the propositions and

constraints on them that define the behaviour of

rounds.

4.1. Edge Propositions

The set of graph edge propositions is given by:

 ,
{ | , , }

g h
E g h N g h

Intuitively, E{g,h} is true iff there is an edge between the

distinct nodes g and h in the graph. Notice that this

research have used a set {g,h} as a subscript in E{g,h}.

This is to indicate that E{g,h} is the same proposition as

E{g,h}, i.e., edges in N are undirected, and to say that

there is an edge from g to h is the same as saying that

there is an edge from h to g. We can specify whether or

not two nodes g and h have an edge between them by

specifying if E{g,h} is True or False. In this way a

specific graph topology can be defined one edge at a

time. Secondly, we can give general Boolean

constraints on the edge propositions. The set of

solutions of the constraints is a set of combinations of

edge propositions being true corresponding to a set of

graph topologies for N. As a third possibility, we may

choose not to specify any Boolean constraints on edge

propositions if we want to prove some property of

network flooding for all graph topologies on N.

However, the use of edge propositions does require a

basic temporal constraint on them, that is that the

Boolean value of an edge variable is time-independent.

Nodes g and h have an edge between them either

always or never, as edges represent physical

connections that do not change with time. This

temporal constraint is given by:

 , ,

, ,

()e g h g h

g h N

g h

E E

 G G

4.2. Send-Message Propositions

Messages may be sent between nodes g and h in both

directions. So, we have send propositions

,{ | , , }g hS g h N g h

 Where Sg,h

is true in a particular round iff node g sends

a message to node h in that round. As the sending of

messages between nodes is directional, Sg,h

and Sg,h

are

different propositions which may differ on their

respective truth values in each round. Also, the sending

of messages is time-dependent so the truth value of a

particular send will vary over time. The basic

constraint on send propositions relates to the edge

propositions, as messages can only be sent from node g

to node h along an edge from g to h, and so E{g,h}has to

be True. The constraint is:

 , ,

, ,

()s g h g h

g h N

g h

S E

 G

This states that, at any given point in time, if a message

is sent from node g to node h, i.e., Sg,h

 is True, then

there must be an edge between g and h at that point in

time, ie., E{g,h} is True. This constraint and, indeed,

edge propositions are only needed when a class of

graph topologies for N is being considered where edges

may be present in some topologies in the class and

absent in others. If a fixed graph topology is under

consideration, we do not need edge propositions as we

can restrict, once and for all, the set of send

propositions to pairs of nodes between which we know

we have edges.

4.3. Message-Received Propositions

This research has a set of propositions Mg

for the nodes

g N

{ | }gM g N

Such that, in any given round, Mg is True iff node g

receives a message. In our model of the flooding

algorithm, after the initial round, node g holds a

message iff a message is received by g in that round,

i.e., some neighbour node h sends a message to g in

that round-see the first conjunct in øm below. However,

node h will only send a message to g if g did not send a

message to h in the previous round-see the second

conjunct in øm
below.

,

,

, ,

, ,

(())

((()))

m g h g
g N

h N

h g

g h g h g

g h N

g h

M S

S M S

XG

XG Y

4.4. Initial Conditions

The initial temporal state corresponds to the initial

round when some initial node holds a message which

is then sent to all its neighbours in the next round, thus

triggering network flooding. Therefore, Mg will be true

for exactly one 0i N

and, as our send-message

propositions are true in the round that the

corresponding message is received, no send-message

proposition is true in the initial round. These two

conditions are captured in the two outer-level

conjuncts below:

0
0

,
, ,

() ()i i g g h
g N g i g h N

M M S

To vary the initial node, one can use the following

variable version:

,
, ,

() ()
vi i g g h

i M g N g i g h N
M M S

870 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

4.5. Topological Constraints

Section 4.1stated that edges of N can be defined in one

of three ways:

1. Define a single topology for N explicitly by listing

the edges.

2. Define a class of topologies for N implicitly by

defining constraints on edges in N.

3. Allow for all topologies on N.

Case (3) means that there are no constraints. This

research gives a worked example of case (1) later in

the paper. Here, the research considers case (2) and

show how common classes of network topologies, that

are of interest in network flooding, can be defined by

Boolean constraints on the propositions

 ,
(,)

g h
E g h N .

4.5.1. Regular Graphs

Suppose that N has n nodes

 1, , nN g g

A regular graph with nodes N has degree m, where 1 ≤

m ≤ n − 1, i.e., every node g N has m neighbours.

The class of all regular topologies on N is specified by

the following condition on the edge propositions

below. This research denotes the cardinality of a set H

by H .

 , ,

1 1
,

()top g h g h
m n g N h H h H

H N g

H m

E E

For the set of nodes 1,2,3,4 , topN instantiates

to:

((𝐸{1,2} ∧ ¬𝐸{1,3} ∧ ¬𝐸{1,4}) ∨ (𝐸{1,3} ∧ ¬𝐸{1,2} ∧ ¬𝐸{1,4})

∨ (𝐸{1,4} ∧ ¬𝐸{1,2} ∧ ¬𝐸{1,3})) ∧ ((𝐸{2,1} ∧ ¬𝐸{2,3} ∧ ¬𝐸{2,4})

∨ (𝐸{2,3} ∧ ¬𝐸{2,1} ∧ ¬𝐸{2,4}) ∨ (𝐸{2,4} ∧ ¬𝐸{2,1} ∧ ¬𝐸{2,3}))

∧ ((𝐸{3,1} ∧ ¬𝐸{3,2} ∧ ¬𝐸{3,4}) ∨ (𝐸{3,2} ∧ ¬𝐸{3,1} ∧ ¬𝐸{3,4})

∨ (𝐸{3,4} ∧ ¬𝐸{3,1} ∧ ¬𝐸{3,2})) ∧ ((𝐸{4,1} ∧ ¬𝐸{4,2} ∧ ¬𝐸{4,3})

∨ (𝐸{4,2} ∧ ¬𝐸{4,1} ∧ ¬𝐸{4,3}) ∨ (𝐸{4,3} ∧ ¬𝐸{4,1} ∧ ¬𝐸{4,2})))

∨ (((𝐸{1,2} ∧ 𝐸{1,3} ∧ ¬𝐸{1,4}) ∨ (𝐸{1,3} ∧ ¬𝐸{1,2} ∧ 𝐸{1,4})

∨ (𝐸{1,4} ∧ 𝐸{1,2} ∧ ¬𝐸{1,3})) ∧ ((𝐸{2,1} ∧ 𝐸{2,3} ∧ ¬𝐸{2,4})

∨ (𝐸{2,3} ∧ ¬𝐸{2,1} ∧ 𝐸{2,4}) ∨ (𝐸{2,4} ∧ 𝐸{2,1} ∧ ¬𝐸{2,3}))

∧ ((𝐸{3,1} ∧ 𝐸{3,2} ∧ ¬𝐸{3,4}) ∨ (𝐸{3,2} ∧ ¬𝐸{3,1} ∧ 𝐸{3,4})

∨ (𝐸{3,4} ∧ 𝐸{3,1} ∧ ¬𝐸{3,2})) ∧ ((𝐸{4,1} ∧ 𝐸{4,2} ∧ ¬𝐸{4,3})

∨ (𝐸{4,2} ∧ ¬𝐸{4,1} ∧ 𝐸{4,3}) ∨ (𝐸{4,3} ∧ 𝐸{4,1} ∧ ¬𝐸{4,2})))

4.5.2. Expander Graphs

Expanders are a very important class of graphs (having

the property of being simultaneously sparse and well

connected) that have applications in various areas of

computer science and mathematics-in the design and

analysis of communication networks, cryptography,

error correcting codes, pseudo randomness,

complexity, coding theory, metric embeddings etc (for

details, see this well-knownsurvey [10]. For example,

in the context of distributed computer networks, they

have been used for building censorship resistant

networks [5, 6], fault tolerant networks [24], efficient

(Byzantine) agreement and leader election algorithms

[4, 13, 15, 26] and analysing information spreading etc.

[8]. Thus, even efficient construction (in static or

dynamic fault-tolerant settings) of expander networks

is an important line of research [7, 16, 20, 21, 22].

Intuitively, an ‘expander’ graph N is one where

every subset S N of vertices expands ‘quickly’.

How quickly it expands is determined by an

‘expansion parameter’. A graph N has expansion

parameter if, for every subsetS N with

S £ N / 2 , the set of edges connecting nodes in S

with nodes not in S is greater than or equal to 𝜖|S|. To

constrain the network N to topologies with expansion

parameter, use the following Boolean constraint on

propositions:

,
,

, ,

/ 2

((,)

(,))

top g h
g h T

S N T N N

S N T S

E g h S

g h S

Here, the set N{×}N is the set of ordered pairs of nodes

(g, h) in the cartesian product N×N viewed as two-

element sets {g, h} (so that {g, h} = {h, g}, whereas (g,

h) 6= (h, g)). Also, {g, h} ∪ S ∅ and {g, h} S are

evaluated to True or False accordingly in each

respective conjunct. The constraint essentially states

that corresponding to every subset of nodes S, with |S|

≤ |N|/2, there is a set of edges T, where |T| ≥ |S|, each

of which connects a node in S with a node not in S.

4.6. Termination

The required property that first comes to mind in

network flooding is termination. Termination occurs if,

in some round, no node in the system receives a

message. In our temporal model, this means that no

message-received proposition mg will be true. So, if

network flooding is modelled by øe,øs,øm,øi and øtop as

above, then the proof obligation for termination is:

e s m i top g
g N

m

 F

5. Applications

This research uses its specification of flooding to

compare the time it takes for the flooding algorithm to

terminate in different topologies. Whilst standard LTL

is not designed for resolving timing issues, we can

determine which network topology takes fewer rounds

to terminate by superimposing the temporal behaviour

of the network in one topology over the behaviour in

the other topology. So, the temporal model has two

Specification of Synchronous Network Flooding in Temporal Logic 871

cases of network flooding, on the same set of nodes but

with different connections, proceeding together in

rounds in lock-step fashion, and with two messages-

one for each topological case-circulating in the

network. We can illustrate this model with a simple

example. Suppose that N={0, 1, 2} and the two

topologies are as in the following figure:

a) Topology 1. b) Topology 2.

Figure 3. Flooding on two topologies.

Assume 0 is the initial node in both cases. We

illustrate the progression of the rounds in terms of the

send-message propositions Sg,h and message-received

propositions Mg. Distinguishing these propositions for

the two topologies, we have the following

propositions:

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦1: 𝑆0,1
1 , 𝑆0,2

1 , 𝑆1,2
1 , 𝑀0

1, 𝑀1
1, 𝑀2

1

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦2: 𝑆0,1
2 , 𝑆1,2

2 , 𝑀0
2, 𝑀1

2, 𝑀2
2

The propositions that are true in successive rounds in

the two models are shown in Figures 4-a to 4-d below.

Nodes which hold a message are circled.

Figure 4. Flooding rounds on two topologies.

Notice that in round 3 1

0M

is True, whereas none of

2 2

0 1,M M , or 2

2M is True. So, Topology2 terminates

before Topology1 as there is a round where no node

holds a message in Topology2, whereas a node still

holds a message in Topology1. We give the formal

proof that has to be carried out in the general case next.

Given two topologies Topology1 and Topology2 on

a set of nodes N, the proof obligation that Topology1

terminates before Topology2 is:

1 1 1 1 1 2 2 2 2 2

1 2

() ()

(() ())

e s m i top e s m i top

g g
g N g N

M M

 F

Here, 1 1,e s

and 1

m
relabel the propositional variables

from ,e s

and m of subsections 4.1, 4.2, 4.3

respectively, adding a superscript 1, and 2 2,e s

and 2

m

do the same but with a superscript 2. The formulae 1

i

and 2

i also possibly differ in their respective initial

nodes, and 1

top and 2

top according as to the topologies

that they define. In (1) we check for validity. So, if 1

top

and 2

top each define a range of topologies, (1) is True

(valid) iff all topologies of 1

top terminate before all

topologies of 2

top . If (1) returns False, then some

topology of 2

top terminates before some topology of 1

top

. We could then proceed to test if all topologies of 2

top

terminate before all those of 1

top , by checking the

validity of:

2 2 2 2 2 1 1 1 1 1

2 1

() ()

(() ())

e s m i top e s m i top

g g
g N g N

M M

 F

It is possible that (2) would also return False, in which

case some topologies of 1

top would terminate before

some topologies of 2

top and also some topologies of
2

top would terminate before some topologies of 1

top .

Apart from varying topologies on the network N, we

could also vary the initial node. This can be achieved

by replacing initial conditions øi that have a fixed

initial node, by initial conditions
vi

 that vary the initial

node, in the proof obligation. Thus,

1 1 1 1 1 2 2 2 2 2

1 2

() ()

(() ())

v ve s m i top e s m i top

g g
g N g N

M M

 F

is valid iff, for all topologies 1

top starting from any

initial node, flooding terminates before flooding

terminates in any topology 2

top with any initial node.

6. Worked Example

Here, we compare termination for two topologies on a

network of five nodes by the use of formal proofs. The

two network topologies for this example are depicted

(2)

(3)

(1)

b) Round 1.

a) Round 0.

d) Round 3.

c) Round 2.

872 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

in Figure 5.

a) Topology 1. b) Topology 2.

Figure 5. Two topologies of five nodes.

Firstly, we will test to see if one topology terminates

before the other, with both having initial node 0. As

mentioned in 4.2 we may optimize the number of

propositions used, by only having send-message

propositions for the edges that are present in each of

the respective topologies, as we are comparing two

fixed topologies. This restriction of send-message

variables for each topology also defines the topology

and no additional variable edge propositions Ei,j

are

required. Thus, we have the following propositions for

the two topologies in Figure 5 above:

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦1: 𝑆0,1
1 , 𝑆1,0

1 , 𝑆0,2
1 , 𝑆2,0

1 , 𝑆0,3
1 , 𝑆3,0

1 ,

𝑆0,4
1 , 𝑆4,0

1 , 𝑆1,4
1 , 𝑆4,1

1 , 𝑆2,3
1 , 𝑆3,2

1 ,

𝑀0
1, 𝑀1

1, 𝑀2
1, 𝑀3

1, 𝑀4
1

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦2: 𝑆0,1
2 , 𝑆1,0

2 , 𝑆1,2
2 , 𝑆2,1

2 , 𝑆2,3
2 , 𝑆3,2

2 , 𝑆3,4
2 ,

𝑆4,3
2 , 𝑆0,4

2 , 𝑆4,0
2 , 𝑀0

2, 𝑀2
2, 𝑀2

2, 𝑀3
2, 𝑀4

2

As there are no edge propositions, we ignore øe, øs and

øtop

and only consider øi
and øm

for each topology.

Instantiating the definitions of øi and øm
of subsections

4.4 and 4.3 respectively, yields:

𝜙𝑖
1 ≡ 𝑀0

1 ∧ ¬𝑀1
1 ∧ ¬𝑀2

1 ∧ ¬𝑀3
1 ∧ ¬𝑀4

1 ∧

¬(𝑆0,1
1 ∨ 𝑆1,0

1 ∨ 𝑆0,2
1 ∨ 𝑆2,0

1 ∨ 𝑆0,3
1 ∨ 𝑆3,0

1 ∨

𝑆0,4
1 ∨ 𝑆4,0

1 ∨ 𝑆1,4
1 ∨ 𝑆4,1

1 ∨ 𝑆2,3
1 ∨ 𝑆3,2

1)

𝜙𝑚
1 ≡ (XG((𝑀0

1 ⇔ 𝑆1,0
1 ∨ 𝑆2,0

1 ∨ 𝑆3,0
1 ∨ 𝑆4,0

1) ∧

(𝑀1
1 ⇔ 𝑆0,1

1 ∨ 𝑆4,1
1) ∧

(𝑀2
1 ⇔ 𝑆0,2

1 ∨ 𝑆3,2
1) ∧

(𝑀3
1 ⇔ 𝑆0,3

1 ∨ 𝑆2,3
1) ∧

(𝑀4
1 ⇔ 𝑆0,4

1 ∨ 𝑆1,4
1))) ∧

(XG((𝑆0,1
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆1,0
1)) ∧

(𝑆1,0
1 ⇔ Y(𝑀1

1 ∧ ¬𝑆0,1
1)) ∧

(𝑆2,0
1 ⇔ Y(𝑀2

1 ∧ ¬𝑆0,2
1)) ∧

(𝑆0,2
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆2,0
1)) ∧

(𝑆0,3
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆3,0
1)) ∧

(𝑆3,0
1 ⇔ Y(𝑀3

1 ∧ ¬𝑆0,3
1)) ∧

(𝑆0,4
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆4,0
1)) ∧

(𝑆4,0
1 ⇔ Y(𝑀4

1 ∧ ¬𝑆0,4
1)) ∧

(𝑆1,4
1 ⇔ Y(𝑀1

1 ∧ ¬𝑆4,1
1)) ∧

(𝑆4,1
1 ⇔ Y(𝑀4

1 ∧ ¬𝑆1,4
1)) ∧

(𝑆2,3
1 ⇔ Y(𝑀2

1 ∧ ¬𝑆3,2
1)) ∧

(𝑆3,2
1 ⇔ Y(𝑀3

1 ∧ ¬𝑆2,3
1))))

𝜙𝑖
2 ≡ 𝑀0

2 ∧ ¬𝑀1
2 ∧ ¬𝑀2

2 ∧ ¬𝑀3
2 ∧ ¬𝑀4

2 ∧

¬(𝑆0,1
2 ∨ 𝑆1,0

2 ∨ 𝑆1,2
2 ∨ 𝑆2,1

2 ∨

𝑆2,3
2 ∨ 𝑆3,2

2 ∨ 𝑆3,4
2 ∨ 𝑆4,3

2 ∨ 𝑆0,4
2 ∨ 𝑆4,0

2)

𝜙𝑚
2 ≡ (XG((𝑀0

2 ⇔ 𝑆1,0
2 ∨ 𝑆4,0

2) ∧

(𝑀1
2 ⇔ 𝑆0,1

2 ∨ 𝑆2,1
2) ∧

(𝑀2
2 ⇔ 𝑆1,2

2 ∨ 𝑆3,2
2) ∧

(𝑀3
2 ⇔ 𝑆2,3

2 ∨ 𝑆4,3
2) ∧

(𝑀4
2 ⇔ 𝑆3,4

2 ∨ 𝑆0,4
2))) ∧

(XG((𝑆0,1
2 ⇔ Y(𝑀0

2 ∧ ¬𝑆1,0
2)) ∧

(𝑆1,0
2 ⇔ Y(𝑀1

2 ∧ ¬𝑆0,1
2)) ∧

(𝑆1,2
2 ⇔ Y(𝑀1

2 ∧ ¬𝑆2,1
2)) ∧

(𝑆2,1
2 ⇔ Y(𝑀2

2 ∧ ¬𝑆1,2
2)) ∧

(𝑆2,3
2 ⇔ Y(𝑀2

2 ∧ ¬𝑆3,2
2)) ∧

(𝑆3,2
2 ⇔ Y(𝑀3

2 ∧ ¬𝑆2,3
2)) ∧

(𝑆3,4
2 ⇔ Y(𝑀3

2 ∧ ¬𝑆4,3
2)) ∧

(𝑆4,3
2 ⇔ Y(𝑀4

2 ∧ ¬𝑆3,4
2)) ∧

(𝑆4,0
2 ⇔ Y(𝑀4

2 ∧ ¬𝑆0,4
2)) ∧

(𝑆0,4
2 ⇔ Y(𝑀0

2 ∧ ¬𝑆4,0
2))))

To prove that Topology1 terminates before Topology2

with initial node 0 for both, we need to prove (by (2) of

section 5 above, ignoring øe, øs, and øtop):

1 1 2 2

1 1 1 1 1

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

() ()

(()

())

m i m i

M M M M M

M M M M M

F

This proof has been carried out using NuSMV and

does return true, showing that Topology1 terminates

before Topology2 with initial node 0 for both. As a

check of our specification, we have also used NuSMV

to prove that the following expression, which states

that Topology2 terminates before Topology1 with

initial node 0 for both,

2 2 1 1

2 2 2 2 2

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

() ()

(()

())

m i m i

M M M M M

M M M M M

F

Is False. Indeed, NuSMV does return False. As

Topology1 has been proved to terminate before

Topology2 with initial nodes 0, we consider the

possibility of Topology1 terminating before Topology2

whichever initial node is chosen for each. By the

discussion in subsection 4.4, this means replacing 1

i

and 2

i by the following 1

vi
 and f

i
v

2
respectively:

1 1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

(

)

vi
M M M M M

M M M M M

M M M M M

M M M M M

M M M M M

Specification of Synchronous Network Flooding in Temporal Logic 873

2 2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

(

)

vi
M M M M M

M M M M M

M M M M M

M M M M M

M M M M M

So, the proof obligation for Topology1 always

terminating before Topology2, for all initial nodes, is

to check validity of:

1 1 2 2

1 1 1 1 1

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

() ()

(()

())

v vm i m i

M M M M M

M M M M M

F

Where we substitute the 1

vi

and 2

vi

given above. The

result of executing the proof in NuSMV is true, i.e.,

Topology1 terminates before Topology2 wherever we

start in each.

7. Conclusions

We have provided a specification of network flooding

in propositional linear temporal logic suitable for

proving termination properties. The specification can

cater for any class of graph topologies of a given size

of network. It does not cater for networks of arbitrary

size. A temporal-logic specification of flooding for

networks of arbitrary size would need to use first-order

temporal logic. Although, first-order temporal logic

can specify problems of unlimited size-for example the

specification of a transactional system over an

unbounded number of data items in [11]-there are

practical and theoretical obstacles to formal

verification in such logics. Even with the specifications

here, and the use of one of the most powerful model

checkers available, NuSMV, proofs will only be

possible in practice for fairly small sizes of network.

Nevertheless, experimentation with network topologies

on a small scale can provide insight into the design of

networks on a larger scale. The intended use of the

approach here is to facilitate such design of network

hardware and software by experimentation with

different topologies and also different code/algorithms

at nodes. The flooding problem gives an example of a

very basic algorithm at a network node - on receipt of a

message a node sends on the message to all neighbours

from which it did not receive the message. In the same

way as network topologies can easily be changed by

changing the topological constraints, so also can the

code/algorithm at nodes be changed by supplying new,

possibly more sophisticated, message processing

constraints which can then be verified.

References

[1] Attiya H. and Welch J., Distributed Computing:

Fundamentals, Simulations, and Advanced

Topics, John Wiley and Sons, 2004.

[2] Cardelli L. and Gordon A., “Mobile Ambients,”

Theoretical Computer Science, vol. 240, no. 1,

pp. 177-213, 2000.

[3] Comer D. and Droms R., Computer Networks

and Internets, Prentice-Hall, 2003.

[4] Dwork C., Peleg D., Pippenger N., and Upfal E.,

“Fault Tolerance in Networks of Bounded

Degree,” Society for Industrial and Applied

Mathematics, vol. 17, no. 5, pp. 975-988, 1988.

[5] Fiat A. and Saia J., “Censorship resistant peer-to-

Peer Content Addressable Networks,” in

Proceedings of the 30th Annual ACM-SIAM

Symposium on Discrete Algorithm, USA, pp. 94-

103, 2002.

[6] Fiat A. and Saia J., “Censorship Resistant Peer-

To-Peer Networks,” Theory of Computing, vol. 3,

no. 1, pp.1-23, 2007.

[7] Gkantsidis C., Mihail M., and Saberi A.,

“Random Walks in Peer-To-Peer Networks:

Algorithms and Evaluation,” Performance

Evaluation, vol. 63, no. 3, pp. 241-263, 2006.

[8] Hillel K. and Shachnai H., “Partial Information

Spreading with Application to Distributed

Maximum Coverage,” in Proceedings of the 29th

ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, New York, pp. 161-

170, 2010.

[9] Hoare C., Communicating Sequential Processes,

Prentice Hall, 1985.

[10] Hoory S., Linial N., and Wigderson A.,

“Expander Graphs and their Applications,”

Bulletin of the AMS, vol. 43, no. 04, pp. 439-562,

2006.

[11] Hussak W., “The Serializability Problem for A

Temporal Logic of Transaction Queries,” Journal

of Applied Non-Classical Logics, vol. 18, no. 1,

pp. 67-78, 2008.

[12] Khan S. and Waheed A., “Modeling and Formal

Verification of IMPP,” The International Arab

Journal of Information Technology, vol. 2, no. 3,

pp. 192-198, 2005.

[13] King V., Saia J., Sanwalani V., and Vee E.,

“Towards Secure And Scalable Computation in

Peer-To-Peer Networks,” in Proceedings of 47th

Annual IEEE Symposium on Foundations of

Computer Science, Berkeley, pp.87-98, 2006.

[14] Kutten S., Pandurangan G., Peleg D., Robinson

P., and Trehan A., “On The Complexity of

Universal Leader Election,” Journal of the ACM,

vol. 62, no. 1, pp. 1-27, 2015.

[15] Kutten S., Pandurangan G., Peleg D., Robinson

P., and Trehan A., “Sublinear Bounds for

Randomized Leader Election,” Theoretical

Computer Science, vol. 561, pp. 134-143, 2015.

[16] Law C. and Siu K., “Distributed Construction of

Random Expander Networks,” in Proceedings of

20nd Annual Joint Conference of the IEEE

874 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Computer and Communications Societies, San

Francisco, pp. 2133-2143, 2003.

[17] Lynch N. and Tuttle M., “Hierarchical

Correctness Proofs for Distributed Algorithms,”

in Proceedings of the 6th Annual ACM

Symposium on Principles of Distributed

computing, New York, pp. 137-151, 1987.

[18] Milner R., Communication and Concurrency

International Series in Computer Science,

Prentice Hall Englewood Cliffs, 1989.

[19] Milner R., Communicating and Mobile Systems:

the Pi Calculus, Cambridge University Press,

1999.

[20] Pandurangan G., Raghavan P., and Upfal E.,

“Building Low-Diameter P2P Networks,” in

Proceedings of the 42nd IEEE symposium on

Foundations of Computer Science, USA, pp.

492-499, 2001.

[21] Pandurangan G., Robinson P., and Trehan A.,

“DEX: Self-Healing Expanders,” Distributed

Computing, vol. 29, no. 3, pp. 163-185, 2016.

[22] Pandurangan G. and Trehan A., “Xheal: A

Localized Self-Healing Algorithm Using

Expanders,” Distributed Computing, vol. 27, no

1, pp. 39-54, 2014.

[23] Peleg D., “Distributed Computing,” SIAM

Monographs on Discrete Mathematics and

Applications, vol. 5, 2000.

[24] Pippenger N. and Lin G., “Fault-Tolerant Circuit-

Switching Networks,” SIAM Journal on Discrete

Mathematics, vol. 7, no. 1, pp. 108-118, 1994.

[25] Raynal M., Distributed Algorithms for Message-

Passing Systems, Springer, 2013.

[26] Upfal E., “Tolerating a Linear Number of Faults

in Networks of Bounded Degree,” Information

and Computation, vol. 115, no. 2, pp. 312-320,

1994.

[27] Wan J., Yuan D., and Xu X., “A Review of

Routing Protocols In Wireless Sensor Networks,”

in Proceedings of 4th International Conference on

Wireless Communications, Networking and

Mobile Computing, Dalian, pp. 1-4, 2008.

Ra’ed Bani Abdelrahman is an

Assistant Professor of Software

Engineering at Ajloun National

University, Jordan. He has a Ph.D

from Loughborough University, UK

and his MSc. and BSc. from

Yarmouk University, Jordan. His

interest is in modelling safety and liveness properties

of critical systems. His other interests are in the area of

concurrent systems, network algorithms and protocols.

Rafat Alshorman is an associate

professor in the department of

computer science at Yarmouk

University/Jordan. He completed his

Ph.D. at Loughborough

University/UK and his

undergraduate studies at Yarmouk

University/Jordan. His research interests lie in the area

of algorithms and mathematical models, ranging from

theory to implementation, with a focus on checking the

correctness conditions of concurrent and reactive

systems. In recent years, he has focused on theoretical

computer science such as Graph theory and Numerical

analysis. Dr. Alshorman research interests are: 1.

Mathematical methods in computer science, 2.

Temporal logics, 3. Concurrent systems, 4. machine

learning 5. Numerical analysis.

Walter Hussak is an Honorary

Fellow in the Department of

Computer Science at Loughborough

University, UK. Who has retired

from lecturing but continues with

research and project supervision. He

has an MSc in Systems Design and a

PhD in Mathematics. As such, he has broad interests in

theoretical computer science and mathematics. Most of

his work has been in the theory and applications of

temporal logics, concurrent systems and graph theory.

Amitabh Trehan is a Lecturer (i.e.,

Assistant Professor) of Computer

Science at Loughborough

University, UK. His research

interests center around designing

provably efficient algorithms

and modelling and reasoning about

multi-agent dynamic scenarios using tools such as

graph theory and game theory. In particular, he has a

large body of work on distributed algorithms - in static

networks (e.g. Leader Election and flooding) and on

dynamic scenarios, in particular, developing self-

healing algorithms.

https://www.siam.org/publications/journals/siam-journal-on-discrete-mathematics-sidma
https://www.siam.org/publications/journals/siam-journal-on-discrete-mathematics-sidma
https://ieeexplore.ieee.org/xpl/conhome/4677908/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4677908/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4677908/proceeding
http://www.lboro.ac.uk/
http://www.lboro.ac.uk/
http://www.lboro.ac.uk/
http://www.lboro.ac.uk/

