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1. Introduction 

Distributed systems can be specified as a composition 

of the specifications of constituent components using 

well-studied process-calculi approaches such as 
Communicating Sequential Processes (CSP) [9], CCS 

[18], the π-calculus [19], the Ambient Calculus [2] and 

I/O automata [17]. These methods are useful when 

components have significant internal actions/state that 

affect external actions but need to be abstracted away 

to prove properties of external behaviour. Our interest 

in this paper is the network flooding algorithm where 

individual components, in this case physical nodes in 

the network, have minimal internal state. The global 

properties to be proved derive their complexity from 

the topology of the network graph. It may be difficult 

to achieve a desired global topology as some kind of 

composition of components may necessitate an extra 

proof to show that the topology is indeed achieved.  

This research chooses a more direct logic-based 

approach specifying the overall system-algorithm and 

network topology-as a set of temporal logic constraints 

in order to prove required properties. This has the 

added benefit that a different topology for the network 

can be specified easily by changing a single constraint, 

rather than many components, in order to achieve the 

same effect. This paper is structured as follows. 

Section 2 describes the synchronous flooding 

algorithm. Section 3 defines the temporal logic and 

operators used in the specification. The specification of 

the network flooding is in section 4 along with the 

proof obligation for the basic property of termination. 

This is applied to comparing termination in different 

network topologies in section 5. A worked example is 

described in section 6, as well as its proof in NuSMV.  

The conclusions are in section 7. 

2. The Synchronous Flooding Algorithm  

Distributed networks routing algorithms deal with 

directing and redirecting messages between the 

different network routers and end points [3]. This 

research refers to routers and endpoints as nodes. The 

router’s job is to send the message to one of its 

neighbours that has a connection to in order to deliver 

the message to its destination [3]. A fundamental 

algorithm which can also be also be used for routing is 

the flooding algorithm [1]. Flooding forms the basis of 

many important distributed processes, for example, 

construction of BFS trees which are used example in 

one of the author’s work on distributed Leader Election 

[14]. The flooding algorithm is an algorithm which 

utilizes every path in the network [23]. In flooding, a 

message is sent from one node to all of its neighbours. 

 A neighbour which receives a message, will 

forward the message to all of its neighbours except the 

one(s) from which it originally received the message 

[1, 23, 25, 27]. Synchronous distributed algorithms 

assume a ‘global clock’ where actions happen in clock 

ticks or rounds. This means that the network has 

bounded link delays and lockstep synchronization with 

pulses of the global clock. In the message 

synchronization property, a message sent from node 𝑣 

to neighbour 𝑢 at pulse 𝑝 of 𝑣 must be delivered to u 

before pulse p+1 of 𝑢 [23]. 

In the first round, a message sent from the initial 

node to its neighbours as shown in Figure 1-b). In the 

second round, a neighbour which received this 

message will forward the message to all of its 

neighbours except the ones which it received it from. 
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Eventually, all nodes in the network will receive a 

message in a certain round. 

This paper investigates ‘memoryless’ flooding i.e., a 

node does not explicitly remember if it has previously 

taken part in the process or who it interacted with 

before. This may happen, for example, if the node does 

not have enough memory to store past history or there 

are multiple flooding operations going on which it does 

not want to, or cannot, distinguish. It does, however, 

know which node(s) sent it the message in the present 

round and forwards copies of the message to all the 

neighbours apart from the one(s) it received from.  

Notice that if any round, a node receives the 

message from all its neighbours, the node does not 

need to do anything. If at some point, no node forwards 

the message, we say, flooding has terminated. It is hard 

to know if the flooding process will ever terminate 

especially in complicated topologies with cycles. 

Figure 1-a and Figure 1-c demonstrates the 

synchronous flooding algorithm in a network of four 

nodes. Nodes which hold a message “M” are double-

circled. Figure 2-a and Figure 2-e demonstrates another 

example of the synchronous flooding algorithm in a 

network of three nodes. Nodes which hold a message 

“M” are double-circled. 

a) Round 0.                     b) Round 1.                        c) Round 2. 

Figure 1. Flooding example 1. 

 
a) Round 0.                  b) Round 1.                      c) Round 2. 

 
d) Round 3.                                                e) Round 4. 

Figure 2. Flooding example 2. 

3. Linear Temporal Logic  

This chapter and the next will use standard Linear 

Temporal Logic (LTL) with the temporal operators 

defined below as it has approved to be a successful 

approach in networking applications as in [12]. 

3.1. Syntax of LTL 

The alphabet of LTL consists of a set of propositional 

symbols Pi,i=0,1,2,… (this paper will use different 

capital letters to P in different contexts), Booleans 

 and temporal operators X, Y, F, G. 

Formulae in LTL are those generated by: 

1 2:: iP X Y F G         
 

The Boolean 

connectives ∨, ⇒ and ⇔ will be defined in terms of ¬ 

and ∧ in the usual way. 

3.2. Semantics of LTL  

LTL is interpreted over a sequence of temporal states 

(which this research sometimes refers to as ‘points in 

time’, even though they may not represent real time) 

 
An interpretation for LTL, I, (Sa), 

at a given state Sa assigns truth values ( )aIs

iP
 
to the 

propositional symbols Pi. A structure M is a sequence 

of interpretations I, (S0),…, I, (Sa)… for the sequence 

of states. The semantics of a LTL formula ø
 
is given by 

a truth relationship 
 

which means that ø 

holds at state Sa in the structure M. The relation is 

defined inductively as follows: 

 

Intuitively, the temporal operator X reads as “in the 

next state”, Y reads as “in the previous state”, F reads 

as “in some future state”, and G reads as “in all future 

states”. A structure M is a model of a LTL formula ø 

iff . In general, a given LTL formula ø has 

many models. The behaviours of network flooding in 

different contexts (e.g., in different network 

topologies) is a set of models. This research specifies 

such network flooding in temporal logic by giving a 

LTL formula ø whose models correspond exactly to 

these behaviours of network flooding. We can then use 

this ø to construct further LTL formulae (called ‘proof 

obligations’) that will assert properties of ø such as 

when the behaviour of flooding leads to termination. 

4. Specification of The Synchronous 

Flooding Algorithm 

In the specification here, temporal logic states will 

correspond to rounds in the progression of network 

flooding. Successive rounds change the state of the 

network, for example the nodes in the network that are 

(a) Round 0 (b) Round 1 (c) Round 3

(d) Round 4 (e) Round 5

Figure 2: Flooding example 2
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receiving messages in a particular round. Let N be the 

set of nodes in the size of network under consideration. 

The following subsections give the propositions and 

constraints on them that define the behaviour of 

rounds. 

4.1. Edge Propositions 

The set of graph edge propositions is given by: 

 ,
{ | , , }

g h
E g h N g h   

Intuitively, E{g,h} is true iff there is an edge between the 

distinct nodes g and h in the graph. Notice that this 

research have used a set {g,h} as a subscript in E{g,h}. 

This is to indicate that E{g,h} is the same proposition as 

E{g,h}, i.e., edges in N are undirected, and to say that 

there is an edge from g to h is the same as saying that 

there is an edge from h to g. We can specify whether or 

not two nodes g and h have an edge between them by 

specifying if E{g,h} is True or False. In this way a 

specific graph topology can be defined one edge at a 

time. Secondly, we can give general Boolean 

constraints on the edge propositions. The set of 

solutions of the constraints is a set of combinations of 

edge propositions being true corresponding to a set of 

graph topologies for N. As a third possibility, we may 

choose not to specify any Boolean constraints on edge 

propositions if we want to prove some property of 

network flooding for all graph topologies on N. 

However, the use of edge propositions does require a 

basic temporal constraint on them, that is that the 

Boolean value of an edge variable is time-independent. 

Nodes g and h have an edge between them either 

always or never, as edges represent physical 

connections that do not change with time. This 

temporal constraint is given by: 

   , ,

, ,

( )e g h g h

g h N

g h

E E




   G G  

4.2. Send-Message Propositions  

Messages may be sent between nodes g and h in both 

directions. So, we have send propositions 

,{ | , , }g hS g h N g h 

 Where Sg,h
 
is true in a particular round iff node g sends 

a message to node h in that round. As the sending of 

messages between nodes is directional, Sg,h
 
and Sg,h

 
are 

different propositions which may differ on their 

respective truth values in each round. Also, the sending 

of messages is time-dependent so the truth value of a 

particular send will vary over time. The basic 

constraint on send propositions relates to the edge 

propositions, as messages can only be sent from node g 

to node h along an edge from g to h, and so E{g,h}has to 

be True. The constraint is: 

 , ,

, ,

( )s g h g h

g h N

g h

S E




  G

 

This states that, at any given point in time, if a message 

is sent from node g to node h, i.e., Sg,h
 
 is True, then 

there must be an edge between g and h at that point in 

time, ie., E{g,h} is True. This constraint and, indeed, 

edge propositions are only needed when a class of 

graph topologies for N is being considered where edges 

may be present in some topologies in the class and 

absent in others. If a fixed graph topology is under 

consideration, we do not need edge propositions as we 

can restrict, once and for all, the set of send 

propositions to pairs of nodes between which we know 

we have edges. 

4.3. Message-Received Propositions 

This research has a set of propositions Mg
 
for the nodes 

g N  

{ | }gM g N  

Such that, in any given round, Mg is True iff node g 

receives a message. In our model of the flooding 

algorithm, after the initial round, node g holds a 

message iff a message is received by g in that round, 

i.e., some neighbour node h sends a message to g in 

that round-see the first conjunct in øm below. However, 

node h will only send a message to g if g did not send a 

message to h in the previous round-see the second 

conjunct in øm 
below. 

,

,

, ,

, ,

( ( ))

( ( ( )))

m g h g
g N

h N

h g

g h g h g

g h N

g h

M S

S M S












    

  

XG

XG Y

 

4.4. Initial Conditions 

The initial temporal state corresponds to the initial 

round when some initial node holds a message which 

is then sent to all its neighbours in the next round, thus 

triggering network flooding. Therefore, Mg will be true 

for exactly one 0i N
 

and, as our send-message 

propositions are true in the round that the 

corresponding message is received, no send-message 

proposition is true in the initial round. These two 

conditions are captured in the two outer-level 

conjuncts below: 

0
0

,
, ,

( ) ( )i i g g h
g N g i g h N

M M S
  

        

To vary the initial node, one can use the following 

variable version: 

,
, ,

( ) ( )
vi i g g h

i M g N g i g h N
M M S
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4.5. Topological Constraints 

Section 4.1stated that edges of N can be defined in one 

of three ways:  

1. Define a single topology for N explicitly by listing 

the edges. 

2. Define a class of topologies for N implicitly by 

defining constraints on edges in N.  

3. Allow for all topologies on N. 

Case (3) means that there are no constraints. This 

research gives a worked example of case (1) later in 

the paper. Here, the research considers case (2) and 

show how common classes of network topologies, that 

are of interest in network flooding, can be defined by 

Boolean constraints on the propositions 

 ,
( , )

g h
E g h N . 

4.5.1. Regular Graphs 

Suppose that N has n nodes 

 1, , nN g g   

A regular graph with nodes N has degree m, where 1 ≤ 

m ≤ n − 1, i.e., every node g N has m neighbours. 

The class of all regular topologies on N is specified by 

the following condition on the edge propositions 

below. This research denotes the cardinality of a set H 

by H . 

 
   , ,

1 1
,

( )top g h g h
m n g N h H h H

H N g

H m

E E
     

 



         

For the set of nodes  1,2,3,4 , topN  instantiates 

to: 

((𝐸{1,2} ∧ ¬𝐸{1,3} ∧ ¬𝐸{1,4}) ∨ (𝐸{1,3} ∧ ¬𝐸{1,2} ∧ ¬𝐸{1,4})

∨ (𝐸{1,4} ∧ ¬𝐸{1,2} ∧ ¬𝐸{1,3})) ∧ ((𝐸{2,1} ∧ ¬𝐸{2,3} ∧ ¬𝐸{2,4})

∨ (𝐸{2,3} ∧ ¬𝐸{2,1} ∧ ¬𝐸{2,4}) ∨ (𝐸{2,4} ∧ ¬𝐸{2,1} ∧ ¬𝐸{2,3}))

∧ ((𝐸{3,1} ∧ ¬𝐸{3,2} ∧ ¬𝐸{3,4}) ∨ (𝐸{3,2} ∧ ¬𝐸{3,1} ∧ ¬𝐸{3,4})

∨ (𝐸{3,4} ∧ ¬𝐸{3,1} ∧ ¬𝐸{3,2})) ∧ ((𝐸{4,1} ∧ ¬𝐸{4,2} ∧ ¬𝐸{4,3})

∨ (𝐸{4,2} ∧ ¬𝐸{4,1} ∧ ¬𝐸{4,3}) ∨ (𝐸{4,3} ∧ ¬𝐸{4,1} ∧ ¬𝐸{4,2})))

∨ (((𝐸{1,2} ∧ 𝐸{1,3} ∧ ¬𝐸{1,4}) ∨ (𝐸{1,3} ∧ ¬𝐸{1,2} ∧ 𝐸{1,4})

∨ (𝐸{1,4} ∧ 𝐸{1,2} ∧ ¬𝐸{1,3})) ∧ ((𝐸{2,1} ∧ 𝐸{2,3} ∧ ¬𝐸{2,4})

∨ (𝐸{2,3} ∧ ¬𝐸{2,1} ∧ 𝐸{2,4}) ∨ (𝐸{2,4} ∧ 𝐸{2,1} ∧ ¬𝐸{2,3}))

∧ ((𝐸{3,1} ∧ 𝐸{3,2} ∧ ¬𝐸{3,4}) ∨ (𝐸{3,2} ∧ ¬𝐸{3,1} ∧ 𝐸{3,4})

∨ (𝐸{3,4} ∧ 𝐸{3,1} ∧ ¬𝐸{3,2})) ∧ ((𝐸{4,1} ∧ 𝐸{4,2} ∧ ¬𝐸{4,3})

∨ (𝐸{4,2} ∧ ¬𝐸{4,1} ∧ 𝐸{4,3}) ∨ (𝐸{4,3} ∧ 𝐸{4,1} ∧ ¬𝐸{4,2})))

 

4.5.2. Expander Graphs 

Expanders are a very important class of graphs (having 

the property of being simultaneously sparse and well 

connected) that have applications in various areas of 

computer science and mathematics-in the design and 

analysis of communication networks, cryptography, 

error correcting codes, pseudo randomness, 

complexity, coding theory, metric embeddings etc (for 

details, see this well-knownsurvey [10]. For example, 

in the context of distributed computer networks, they 

have been used for building censorship resistant 

networks [5, 6], fault tolerant networks [24], efficient 

(Byzantine) agreement and leader election algorithms 

[4, 13, 15, 26] and analysing information spreading etc. 

[8]. Thus, even efficient construction (in static or 

dynamic fault-tolerant settings) of expander networks 

is an important line of research [7, 16, 20, 21, 22].  

Intuitively, an ‘expander’ graph N is one where 

every subset S N of vertices expands ‘quickly’. 

How quickly it expands is determined by an 

‘expansion parameter’. A graph N has expansion 

parameter  if, for every subsetS N with

S £ N / 2 , the set of edges connecting nodes in S 

with nodes not in S is greater than or equal to 𝜖|S|. To 

constrain the network N to topologies with expansion 

parameter, use the following Boolean constraint on 

propositions: 

 
     

 

,
,

, ,

/ 2

( ( , )

( , ))

top g h
g h T

S N T N N

S N T S

E g h S

g h S




  

 

      





 

Here, the set N{×}N is the set of ordered pairs of nodes 

(g, h) in the cartesian product N×N viewed as two-

element sets {g, h} (so that {g, h} = {h, g}, whereas (g, 

h) 6= (h, g)). Also, {g, h} ∪ S  ∅ and {g, h} S are 

evaluated to True or False accordingly in each 

respective conjunct. The constraint essentially states 

that corresponding to every subset of nodes S, with |S| 

≤ |N|/2, there is a set of edges T, where |T| ≥ |S|, each 

of which connects a node in S with a node not in S. 

4.6. Termination  

The required property that first comes to mind in 

network flooding is termination. Termination occurs if, 

in some round, no node in the system receives a 

message. In our temporal model, this means that no 

message-received proposition mg will be true. So, if 

network flooding is modelled by øe,øs,øm,øi and øtop as 

above, then the proof obligation for termination is: 

e s m i top g
g N

m    


      F

 

5. Applications  

This research uses its specification of flooding to 

compare the time it takes for the flooding algorithm to 

terminate in different topologies. Whilst standard LTL 

is not designed for resolving timing issues, we can 

determine which network topology takes fewer rounds 

to terminate by superimposing the temporal behaviour 

of the network in one topology over the behaviour in 

the other topology. So, the temporal model has two 
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cases of network flooding, on the same set of nodes but 

with different connections, proceeding together in 

rounds in lock-step fashion, and with two messages-

one for each topological case-circulating in the 

network. We can illustrate this model with a simple 

example. Suppose that N={0, 1, 2} and the two 

topologies are as in the following figure: 

 
a) Topology 1.                                             b) Topology 2. 

Figure 3. Flooding on two topologies. 

Assume 0 is the initial node in both cases. We 

illustrate the progression of the rounds in terms of the 

send-message propositions Sg,h and message-received 

propositions Mg. Distinguishing these propositions for 

the two topologies, we have the following 

propositions: 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦1: 𝑆0,1
1 , 𝑆0,2

1 , 𝑆1,2
1 , 𝑀0

1, 𝑀1
1, 𝑀2

1 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦2: 𝑆0,1
2 , 𝑆1,2

2 , 𝑀0
2, 𝑀1

2, 𝑀2
2 

The propositions that are true in successive rounds in 

the two models are shown in Figures 4-a to 4-d below. 

Nodes which hold a message are circled. 

 

 

 

 

 
 

 

 

Figure 4. Flooding rounds on two topologies. 

Notice that in round 3 1

0M
 
is True, whereas none of

2 2

0 1,M M , or 2

2M  is True. So, Topology2 terminates 

before Topology1 as there is a round where no node 

holds a message in Topology2, whereas a node still 

holds a message in Topology1. We give the formal 

proof that has to be carried out in the general case next.  

Given two topologies Topology1 and Topology2 on 

a set of nodes N, the proof obligation that Topology1 

terminates before Topology2 is: 

1 1 1 1 1 2 2 2 2 2

1 2

( ) ( )

(( ) ( ))

e s m i top e s m i top

g g
g N g N

M M

         

 

         

   F

 

Here, 1 1,e s 
 
and 1

m  
relabel the propositional variables 

from ,e s 
 

and m of subsections 4.1, 4.2, 4.3 

respectively, adding a superscript 1, and 2 2,e s 
 
and 2

m  

do the same but with a superscript 2. The formulae 1

i

and 2

i also possibly differ in their respective initial 

nodes, and 1

top and 2

top according as to the topologies 

that they define. In (1) we check for validity. So, if 1

top

and 2

top each define a range of topologies, (1) is True 

(valid) iff all topologies of 1

top terminate before all 

topologies of 2

top . If (1) returns False, then some 

topology of 2

top terminates before some topology of 1

top

. We could then proceed to test if all topologies of 2

top  

terminate before all those of 1

top , by checking the 

validity of: 

2 2 2 2 2 1 1 1 1 1

2 1

( ) ( )

(( ) ( ))

e s m i top e s m i top

g g
g N g N

M M

         

 

         

   F

 

It is possible that (2) would also return False, in which 

case some topologies of 1

top would terminate before 

some topologies of 2

top  and also some topologies of 
2

top  would terminate before some topologies of 1

top . 

Apart from varying topologies on the network N, we 

could also vary the initial node. This can be achieved 

by replacing initial conditions øi that have a fixed 

initial node, by initial conditions 
vi

 that vary the initial 

node, in the proof obligation. Thus, 

1 1 1 1 1 2 2 2 2 2

1 2

( ) ( )

(( ) ( ))

v ve s m i top e s m i top

g g
g N g N

M M

         

 

         

   F

 

is valid iff, for all topologies 1

top starting from any 

initial node, flooding terminates before flooding 

terminates in any topology 2

top with any initial node. 

6. Worked Example  

Here, we compare termination for two topologies on a 

network of five nodes by the use of formal proofs. The 

two network topologies for this example are depicted 

(2) 

(3) 

(1) 

b) Round 1. 

a) Round 0. 

d) Round 3. 

c) Round 2. 
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in Figure 5. 

 

 
a) Topology 1.                                                 b) Topology 2. 

Figure 5. Two topologies of five nodes. 

Firstly, we will test to see if one topology terminates 

before the other, with both having initial node 0. As 

mentioned in 4.2 we may optimize the number of 

propositions used, by only having send-message 

propositions for the edges that are present in each of 

the respective topologies, as we are comparing two 

fixed topologies. This restriction of send-message 

variables for each topology also defines the topology 

and no additional variable edge propositions Ei,j
 
are 

required. Thus, we have the following propositions for 

the two topologies in Figure 5 above: 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦1: 𝑆0,1
1 , 𝑆1,0

1 , 𝑆0,2
1 , 𝑆2,0

1 , 𝑆0,3
1 , 𝑆3,0

1 ,

𝑆0,4
1 , 𝑆4,0

1 , 𝑆1,4
1 , 𝑆4,1

1 , 𝑆2,3
1 , 𝑆3,2

1 ,

𝑀0
1, 𝑀1

1, 𝑀2
1, 𝑀3

1, 𝑀4
1

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦2: 𝑆0,1
2 , 𝑆1,0

2 , 𝑆1,2
2 , 𝑆2,1

2 , 𝑆2,3
2 , 𝑆3,2

2 , 𝑆3,4
2 ,

𝑆4,3
2 , 𝑆0,4

2 , 𝑆4,0
2 , 𝑀0

2, 𝑀2
2, 𝑀2

2, 𝑀3
2, 𝑀4

2

 

As there are no edge propositions, we ignore øe, øs and 

øtop
 

and only consider øi 
and øm 

for each topology. 

Instantiating the definitions of øi and øm 
of subsections 

4.4 and 4.3 respectively, yields: 

𝜙𝑖
1 ≡ 𝑀0

1 ∧ ¬𝑀1
1 ∧ ¬𝑀2

1 ∧ ¬𝑀3
1 ∧ ¬𝑀4

1 ∧

¬(𝑆0,1
1 ∨ 𝑆1,0

1 ∨ 𝑆0,2
1 ∨ 𝑆2,0

1 ∨ 𝑆0,3
1 ∨ 𝑆3,0

1 ∨

𝑆0,4
1 ∨ 𝑆4,0

1 ∨ 𝑆1,4
1 ∨ 𝑆4,1

1 ∨ 𝑆2,3
1 ∨ 𝑆3,2

1 )
 

𝜙𝑚
1 ≡ (XG( (𝑀0

1 ⇔ 𝑆1,0
1 ∨ 𝑆2,0

1 ∨ 𝑆3,0
1 ∨ 𝑆4,0

1 ) ∧

(𝑀1
1 ⇔ 𝑆0,1

1 ∨ 𝑆4,1
1 ) ∧

(𝑀2
1 ⇔ 𝑆0,2

1 ∨ 𝑆3,2
1 ) ∧

(𝑀3
1 ⇔ 𝑆0,3

1 ∨ 𝑆2,3
1 ) ∧

(𝑀4
1 ⇔ 𝑆0,4

1 ∨ 𝑆1,4
1 ))   )   ∧

(XG( (𝑆0,1
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆1,0
1 )) ∧

(𝑆1,0
1 ⇔ Y(𝑀1

1 ∧ ¬𝑆0,1
1 )) ∧

(𝑆2,0
1 ⇔ Y(𝑀2

1 ∧ ¬𝑆0,2
1 )) ∧

(𝑆0,2
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆2,0
1 )) ∧

(𝑆0,3
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆3,0
1 )) ∧

(𝑆3,0
1 ⇔ Y(𝑀3

1 ∧ ¬𝑆0,3
1 )) ∧

(𝑆0,4
1 ⇔ Y(𝑀0

1 ∧ ¬𝑆4,0
1 )) ∧

(𝑆4,0
1 ⇔ Y(𝑀4

1 ∧ ¬𝑆0,4
1 )) ∧

(𝑆1,4
1 ⇔ Y(𝑀1

1 ∧ ¬𝑆4,1
1 )) ∧

(𝑆4,1
1 ⇔ Y(𝑀4

1 ∧ ¬𝑆1,4
1 )) ∧

(𝑆2,3
1 ⇔ Y(𝑀2

1 ∧ ¬𝑆3,2
1 )) ∧

(𝑆3,2
1 ⇔ Y(𝑀3

1 ∧ ¬𝑆2,3
1 )))   )

 

𝜙𝑖
2 ≡ 𝑀0

2 ∧ ¬𝑀1
2 ∧ ¬𝑀2

2 ∧ ¬𝑀3
2 ∧ ¬𝑀4

2 ∧

¬(𝑆0,1
2 ∨ 𝑆1,0

2 ∨ 𝑆1,2
2 ∨ 𝑆2,1

2 ∨

𝑆2,3
2 ∨ 𝑆3,2

2 ∨ 𝑆3,4
2 ∨ 𝑆4,3

2 ∨ 𝑆0,4
2 ∨ 𝑆4,0

2 )
 

𝜙𝑚
2 ≡ (XG( (𝑀0

2 ⇔ 𝑆1,0
2 ∨ 𝑆4,0

2 ) ∧

(𝑀1
2 ⇔ 𝑆0,1

2 ∨ 𝑆2,1
2 ) ∧

(𝑀2
2 ⇔ 𝑆1,2

2 ∨ 𝑆3,2
2 ) ∧

(𝑀3
2 ⇔ 𝑆2,3

2 ∨ 𝑆4,3
2 ) ∧

(𝑀4
2 ⇔ 𝑆3,4

2 ∨ 𝑆0,4
2 ))   )   ∧

(XG( (𝑆0,1
2 ⇔ Y(𝑀0

2 ∧ ¬𝑆1,0
2 )) ∧

(𝑆1,0
2 ⇔ Y(𝑀1

2 ∧ ¬𝑆0,1
2 )) ∧

(𝑆1,2
2 ⇔ Y(𝑀1

2 ∧ ¬𝑆2,1
2 )) ∧

(𝑆2,1
2 ⇔ Y(𝑀2

2 ∧ ¬𝑆1,2
2 )) ∧

(𝑆2,3
2 ⇔ Y(𝑀2

2 ∧ ¬𝑆3,2
2 )) ∧

(𝑆3,2
2 ⇔ Y(𝑀3

2 ∧ ¬𝑆2,3
2 )) ∧

(𝑆3,4
2 ⇔ Y(𝑀3

2 ∧ ¬𝑆4,3
2 )) ∧

(𝑆4,3
2 ⇔ Y(𝑀4

2 ∧ ¬𝑆3,4
2 )) ∧

(𝑆4,0
2 ⇔ Y(𝑀4

2 ∧ ¬𝑆0,4
2 )) ∧

(𝑆0,4
2 ⇔ Y(𝑀0

2 ∧ ¬𝑆4,0
2 )))   )

 

To prove that Topology1 terminates before Topology2 

with initial node 0 for both, we need to prove (by (2) of 

section 5 above, ignoring øe, øs, and øtop): 

1 1 2 2

1 1 1 1 1

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

( ) ( )

(( )

( ))

m i m i

M M M M M

M M M M M

      

     

   

F

 

This proof has been carried out using NuSMV and 

does return true, showing that Topology1 terminates 

before Topology2 with initial node 0 for both. As a 

check of our specification, we have also used NuSMV 

to prove that the following expression, which states 

that Topology2 terminates before Topology1 with 

initial node 0 for both, 

2 2 1 1

2 2 2 2 2

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

( ) ( )

(( )

( ))

m i m i

M M M M M

M M M M M

     

      

   

F

 

Is False. Indeed, NuSMV does return False. As 

Topology1 has been proved to terminate before 

Topology2 with initial nodes 0, we consider the 

possibility of Topology1 terminating before Topology2 

whichever initial node is chosen for each. By the 

discussion in subsection 4.4, this means replacing 1

i

and 2

i by the following 1

vi
 and f

i
v

2
respectively: 

1 1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

(

)

vi
M M M M M

M M M M M

M M M M M

M M M M M

M M M M M
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2 2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

(

)

vi
M M M M M

M M M M M

M M M M M

M M M M M

M M M M M

      

     

     

     

    

 

So, the proof obligation for Topology1 always 

terminating before Topology2, for all initial nodes, is 

to check validity of: 

1 1 2 2

1 1 1 1 1

0 1 2 3 4

2 2 2 2 2

0 1 2 3 4

( ) ( )

(( )

( ))

v vm i m i

M M M M M

M M M M M

      

     

   

F

 

Where we substitute the 1

vi


 
and 2

vi


 
given above. The 

result of executing the proof in NuSMV is true, i.e., 

Topology1 terminates before Topology2 wherever we 

start in each. 

7. Conclusions  

We have provided a specification of network flooding 

in propositional linear temporal logic suitable for 

proving termination properties. The specification can 

cater for any class of graph topologies of a given size 

of network. It does not cater for networks of arbitrary 

size. A temporal-logic specification of flooding for 

networks of arbitrary size would need to use first-order 

temporal logic. Although, first-order temporal logic 

can specify problems of unlimited size-for example the 

specification of a transactional system over an 

unbounded number of data items in [11]-there are 

practical and theoretical obstacles to formal 

verification in such logics. Even with the specifications 

here, and the use of one of the most powerful model 

checkers available, NuSMV, proofs will only be 

possible in practice for fairly small sizes of network. 

Nevertheless, experimentation with network topologies 

on a small scale can provide insight into the design of 

networks on a larger scale. The intended use of the 

approach here is to facilitate such design of network 

hardware and software by experimentation with 

different topologies and also different code/algorithms 

at nodes. The flooding problem gives an example of a 

very basic algorithm at a network node - on receipt of a 

message a node sends on the message to all neighbours 

from which it did not receive the message. In the same 

way as network topologies can easily be changed by 

changing the topological constraints, so also can the 

code/algorithm at nodes be changed by supplying new, 

possibly more sophisticated, message processing 

constraints which can then be verified. 
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