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Abstract: In the Web Service Composition (WSC) domain, Web Services (WSs) execute in a highly dynamic environment, as a 

result, the Quality of Service (QoS) of a WS is constantly evolving, and this requires tracking of the global optimization 

overtime to satisfy the users’ requirements. In order to make a WSC adapt to such QoS changes of WSs, we propose a self-

healing model for WSC. Self-healing is the automatic discovery, and healing of the failure of a composite WS by itself due to 

QoS changes without interruption in the WSC and any human intervention. To the best of our knowledge, almost all the 

existing self-healing models in this domain substitute the faulty WS with an equivalent one without paying attention to the WS 

selection processes to achieve global optimization. They focus only on the WS substitution strategy. In this paper, we propose a 

self-healing model where we use our hybrid approach to find the optimal WSC by using Parallel Genetic Algorithm based on 

Q-learning, which we integrate with K-means clustering (PGAQK). The components of this model are organized according to 

IBM’s Monitor, Analyse, Plan, Execute, and Knowledge (MAPE-K) reference model. The PGAQK approach considers as a 

module in the Execute component. WS substitution strategy has also been applied in this model that substitutes the faulty WS 

with another equivalent one from a list of candidate WSs by using the K-means clustering technique. K-means clustering is 

used to prune the WSs in the search space to find the best WSs for the environment changes. We implemented this model over 

the NET Framework using C# programming language. A series of comparable experiments showed that the proposed model 

outperforms improved GA to achieve global optimization. Our proposed model also can dynamically substitute the faulty WSs 

with other equivalent ones in a time-efficient manner. 
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1. Introduction 

Service Oriented Architecture (SOA) is an 

architectural style that uses loosely coupled, 

distributed, and adaptive software applications [19]. 

Web Service (WS) is the underpinning of SOA. With 

the popularity of WSs, Web Service Composition 

(WSC) that combines atomic WSs from different 

service providers together to satisfy users' 

requirements has become one of the challenges in the 

SOA [7]. The selection of the best WS from a lot of 

candidate WSs according to Quality of Service (QoS) 

is called QoS-aware WSC, which has become one of 

the current hot topics [7]. As far as we know, there are 

currently two main approaches proposed in the 

literature for QoS-aware WSC, namely local and 

global optimization [12]. The local optimization 

approach involves selecting the best WS from its set of 

candidate WSs for each Abstract Web Services (AWS) 

individually. Although this approach is optimized 

locally and efficient with low time complexity of 

O(m), where m is the number of concrete WSs for each 

AWS [26], the global QoS constraints of WSC may not 

be satisfactory. Therefore, there are many algorithms 

to solve the global optimization problem. The global 

optimization approach considers QoS constraints and 

preferences as a whole, for example, when the whole 

response time is constrained. Genetic Algorithms 

(GAs) are approaches commonly used for solving a 

global optimization problem in QoS-aware WSC. The 

performance of GAs depends on the initial population. 

Therefore, we attempted to address this restriction in a 

recent paper [8] by utilizing Q-learning to generate the 

initial population to improve the performance of GAs. 

The nature of GAs is time-consuming, so in another 

recent paper [9], we aimed to make the algorithm as 

time-efficient as possible by using the synchronous 

master-slave Parallel Genetic Algorithm (PGA). 

WSs execute autonomously in a highly dynamic 

environment. Accordingly, WSC is characterized by 

continuous evolution, as service providers may change 

the QoS properties of WSs, existing WSs may be 

unavailable, new WSs may become available, and 

variations in the infrastructure may affect the 

performance of the existing WSs [6]. Therefore, WSC 

should be equipped with self-healing ability, which 

means that a composite WS is automatically 

discovered and healed itself according to the QoS 
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changes without stopping the WSC process, and 

without any human intervention [18, 19]. The lack of 

an effective self-healing ability during WSC at runtime 

may violate the users’ requirements. In the literature, 

several approaches have been proposed to solve the 

QoS-aware WSC problem in a dynamic environment, 

e.g., [1, 21, 22, 23, 24, 25]. These approaches do not 

take into consideration the case of some WSs’ failures 

that can lead to a whole disability of this WSC 

workflow. Furthermore, these approaches cannot 

support self-healing execution. In a recent paper [8], 

we proposed a new hybrid approach for dynamic 

optimization of WSC by using PGA based on Q-

learning that we integrated with K-means clustering. 

We called this hybrid approach PGAQK. In this 

current paper, we propose a self-healing model that 

integrates our PGAQK approach with IBM’s 

autonomic Monitor, Analyse, Plan, Execute, and 

Knowledge (MAPE-K) reference model to fulfill the 

QoS goals of WSC when changes occur in the 

operational environment. The main focus of this model 

is to keep WSC up to date of QoS changes that occur at 

design and run times and satisfy global optimization. 

The rest of this paper is organized as follows. 

Section 2 gives a brief review of the related literature. 

Section 3 presents our proposed new self-healing 

model. Section 4 gives the evaluation of our model. 

Finally, section 5 gives the conclusion and future work. 

2. Related Work 

In this section, we review the related work of self-

healing WSC available in the literature. Angarita et al. 

[4] analysed the impact on the execution time of WSC 

using different Fault Tolerant (FT) techniques in 

different execution scenarios. This study focuses on 

backward, forward, and replication recovery 

techniques. The selection of these recovery techniques 

is dynamic based on context information, the effect of 

QoS attributes, and the execution state of composite 

WSs when the failure occurs. Gupta and Bhanodia [11] 

proposed a subset replacement mechanism for fault 

tolerance in the WSC process. The replacement policy 

of their mechanism replaces the subset of WSs that 

contains the failed WS with another equivalent subset. 

During the execution, their mechanism identifies 

subsets of the failed WSs, and the subsets of the 

equivalent ones. Then, the equivalent subsets are 

ranked, and the best subset among them is selected. 

Their mechanism, as published, was the prototype, and 

there was no implementation. Rajendran et al. [18] 

proposed a Dynamic Self-Healing (DSH) method that 

uses the substitution healing method to heal a WS in a 

dynamic environment. This method focuses on the 

response time programming and the availability of the 

WSs. Karray et al. [14] proposed an approach to 

enhance the reliability of WSs based on aspect-

oriented programming and case-based reasoning. Their 

approach implementation is in weather WSs. Li et al. 

[15] also proposed a framework based on case-based 

reasoning. Their framework is composed of a business 

process part, an extractor part, and a case-based 

reasoning part. The business process achieves the 

users’ requirements. The extractor part extracts the 

Functional Requirement (FR), Non-Functional 

Requirement (NFR), and fault information. The faulty 

information is classified into a case with a solution and 

case without a solution. Their framework is not 

efficient in complex WSC structures due to the case-

base becoming very large, and it doesn’t have 

techniques to maintain it. 

Boumhamdi and Jarir [5] presented the state of the 

art of various types of failures and recovery methods. 

They also proposed architecture for detecting and 

dynamically recovering failure of the Business Process 

Execution Language (BPEL) process based on the FR 

of a user’s preferences. This architecture is composed 

of five components. These components are request 

analyser, discovered component, constraints manager, 

selection manager, and orchestrator. When the 

composite WS failure occurs, the BPEL adapter 

substitutes the failure WS with alternative WS. 

Jayashree and Anand [13] proposed a runtime fault 

detection process for static, semi-dynamic, and 

dynamic for WSC. BPEL is used to implement and test 

static and semi-dynamic WSs; Web Ontology 

Language for Services (OWL-S) is used to implement 

and test dynamic WSs. Once faulty WSs are detected, 

the meaningful error message displays to the user to 

understand where and why the fault has occurred. The 

user takes the necessary decision that resubmits the 

service request or substitutes the failure WSs with 

equivalent ones. Their approach is tested by use a 

sample WS application. Subramanian et al. [20] extend 

BPEL with a self-healing policy to enhancement it. 

This policy monitors the BPEL activities due to 

unexpected failures in the WS process, diagnoses the 

cause of failure, and suggests a solution to this failure. 

Diagnoses part policy uses the database to store failure 

information. If failure information is not in the 

database, human intervention is required. Poonguzhali 

et al. [17] presented a self-healing approach which 

focuses on WS unavailability. Their approach is 

composed of BPEL monitor, diagnoser, and path 

substituter. Their approach alternates the routing path, 

which contains the failure WS to the nearby router to 

the composer. Their mechanism, as published, is a 

prototype, and there was no implementation.  

The substitution process in most self-healing models 

suffers from time consumption because these models 

have to search all WSs in the search space to find the 

corresponding WSs to the faulty WS. These models 

also do not consider WS selection processes to achieve 

global optimization. Therefore, we integrate our 

PGAQK approach with IBM’S MAPE-K to adjust 

WSC to appropriate a variable environment where the 
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properties of the composite WSs continue being 

variable and also achieve better global optimization.  

3. Our Proposed Self-Healing Model 

Figure 1 gives an illustration of our proposed self-

healing model. The inputs to this model are sequential 

AWS workflow and the candidate WSs that can use to 

construct the concrete WSC. The components of this 

model organize according to the MAPE-K loop. The 

explanation that underpins the components of this 

model describes in more detail below in the following 

subsections. 

3.1. The Execute Component 

The Execute component involves the PGAQK module 

and the adaptation manager module. PGAQK is a 

global optimization approach, which comprises PGA, 

Q-learning, and K-means clustering, as mentioned 

before. These techniques are integrated to generate a 

global optimal WS selection plan that results in 

concrete WSC, which can ensure the users’ QoS 

requirements. The general process of WS selection 

using PGAQK illustrates in Figure 2. The PGAQK is 

composed of creating the Q-table using Q-learning, 

encoding the Q-table to the initial population, and 

applying the master-slave PGA on the population. Our 

recent publications [6, 7] describe how to create Q-

table and encode it to the initial population. In the 

master-slave PGA, the single initial population stores 

in the master, and the fitness function is distributed and 

evaluated in the slaves. After the master receives the 

fitness value for all populations from the slave, the 

roulette wheel selection is applied to select the parent 

chromosomes. Then the crossover is applied to the 

parent chromosomes depended on the crossover rate. 

Finally, the K-means clustering mutation is applied to 

the new offspring from the crossover. PGAQK in 

detail is described in our recent publication [14].

 

 

Figure 1. The flowchart of our proposed self-healing model.
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Figure 2. The flowchart of PGAQK architecture. 

The adaptation manager receives notification from 

the adaptation policy module in the Plan component 

when a fault detects at the system. Once the fault is 

detected at design time, the PGAQK process pauses 

temporarily until the adaption action finish. Then, the 

PGAQK process resumes. At runtime, the fault can 

occur in atomic WS during the execution of the WSC. 

This atomic fault can lead to all WSC failure. It is 

mandatory to detect this failure, and the adaptation 

manager works on it based on a specified adaptation 

policy.  

3.2. The Plan Component 

The role of the Plan component is to identify the 

appropriate adaptation policy for the current situation. 

Adaptation policies correspond to self-healing features 

that enable configuration to respond to WS failure such 

as unavailability of WS and poor response. In our case, 

the adaptation action mainly focuses on substitution 

strategy in the case of unavailability of service, service 

failure, and variation in the QoS attribute of WS. The 

substitution strategy identifies the WS that replaces the 

faulty WS. The K-means clustering is applied to cluster 

the candidate WSs to identify the cluster that has the 

nearly QoS equivalent to faulty WS. In algorithm 1, the 

pseudocode for the substitution strategy is illustrated. 

Algorithm 1: The pseudocode for the substitution strategy 

Retrieve the fitness function score of the faulty WS. 

Retrieve the cluster number of the faulty WS. 

Repeat for each candidate WSs in the cluster number of the 

failure WS. 

Calculate the substitution Coefficient between the faulty WS, 

and candidate WSs by using (1): 

𝑆𝑐(𝑄𝑖 , 𝑄𝑗) =
𝐹𝑄𝑗

𝐹𝑄𝐽
−𝐹𝑄𝑖

  

Where 𝑆𝑐(𝑄𝑖 ,  𝑄𝑗) represents the substitution Coefficient 

between faulty WS𝑗, and candidate WS𝑖. 𝑄𝑖  represents candidate 

WS. 𝑄𝐽  represents the faulty WS. 𝐹𝑄𝑗
 represents the fitness 

function of faulty WS, and 𝐹𝑄𝑖
 represents the WS of candidate 

WS𝑖. 
Until all candidate WSs in the cluster have been covered. 

Select the candidate WS with the highest substitution 

Coefficient.  

End applying K-means clustering algorithm in the case of faulty 

WS. 

In the case of emerging new WS to candidate WSs, the 

fitness value of this WS calculate by using Multiple 

Criteria Decision Making (MCDM) to aggregate all 

QoS attributes to the same scale. For the negative QoS 

attributes such as response time and cost, values are 

scale according to the Equation (2). For the positive 

QoS attributes such as availability, and reliability the 

values are scale according to the Equation (3). After 

that, this WS assigns to the corresponding WS cluster 

based on fitness value. 

{
∑

(𝑄𝑖𝑗−𝐿𝑖𝑗)

(𝑈𝑖𝑗−𝐿𝑖𝑗)

𝑟
𝑗=1 ∗ 𝑤𝑗

∑ 1 ∗ 𝑤𝑗
𝑟
𝑗=1

|
𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 ≠ 0

𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 = 0
} 

{
∑

(𝑈𝑖𝑗−𝑄𝑖𝑗)

(𝑈𝑖𝑗−𝐿𝑖𝑗)

𝑟
𝑗=1 ∗ 𝑤𝑗

∑ 1 ∗ 𝑤𝑗
𝑟
𝑗=1

|
𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 ≠ 0

𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 = 0
} 

Equations (2) and (3) assume that each service has r 

QoS criteria. A Q is a QoS matrix of WSs, in which 

each row Qj corresponds to a WS i, while each column 

corresponds to a QoS dimension. Uij and Lij are the 

upper, and lower values of a QoS criterion in the matrix 

Q respectively. wj represents the weight criterion j. 

These values are provided by the users into the range of 

0 to1 based on their preferences. 

In the case of variation in QoS attributes of WS, the 

WS removes from the WS cluster and then assigns it 

into the corresponding WS cluster based on new fitness 

value. 

3.3. The Monitor, and Analysis Component 

The Monitor and Analysis component is responsible for 

capturing changes in the environment. This component 

(1) 

(2) 

(3) 
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involves the QoS monitor module and the concrete WS 

monitor module. The QoS monitor module is 

responsible for capturing changes in the candidate 

WSs. Whenever this module detects a change that 

occurs in candidate WSs, PGAQK in the Execute 

component suspends until the adaptation policy 

executes. 

The concrete WS monitor is responsible for 

capturing changes in the concrete WS at the runtime. If 

they are relevant, the trigger sends to the Plan 

component to determine the adaptation policy. 

Currently, tracked changes may include: 

1. The availability of WS may evolve as new WS 

emerge, and old WS replaces or existing WS 

temporarily disconnected due to maintenance. 

2. QoS attribute value such as price is variation. 

3.4. The Knowledge Component 

All the knowledge that other components need is stored 

in this component. It considers as a storage layer. After 

constructing the AWS workflow, the candidate WSs 

attributes for each AWSs extract from WSDL files and 

store in candidate WSs storage in 

the Knowledge component. These candidate WSs use 

in the PGAQK module in the Execute component to 

construct concrete WSs workflow. The initial 

population storage creates by using the Q-learning 

technique in the PGAQK module, and it changes in 

each PGA generation. After applying the K-means 

clustering in the candidate WSs, the K-means centroids 

and candidate WSs clusters create and store in K-

means centroids storage and candidate WSs storage. 

These storages use in the PGAQK module at K-means 

clustering mutation operator and in the adaptation 

policy module in the Plan component. 

4. Aluations 

In this section, we report the experiments that we 

carried out for evaluating our new self-healing model. 

We used the Quality of Web Service (QWS) dataset [2, 

3] in our experiments, which include 364 data records. 

The data records were collected from all kinds of 

public sources on the Web, such as Universal 

Description, Discovery, and Integration (UDDI) 

registries, search engines, and service portals. In our 

experiments, we consider three QoS attributes for 

services; namely, cost, response time, and reliability. 

The weight of the cost, response time, and reliability 

services are 0.5, 0.2, and 0.3 respectively. In order to 

evaluate our proposed model, the algorithm was 

implemented over .NET Framework platform 4.7 using 

C# programming language. The SQL server 2014 was 

used to save the Knowledge layer component. The 

experimental results were conducted on a Dell Laptop 

with an Intel Core i7 at 2.50 GHz, 8 GB Random 

Access Memory (RAM), and running Microsoft 

Windows 10.  

We held two experiments for evaluation. The first 

one compares our new model with the improved GA 

approach utilized by Liue et al. [16] to compare the 

resulting fitness value results. The second experiment 

compares our model with the PGAQK approach 

proposed in the recent paper [14] to compare time 

consumption to substitute the faulty WSs with another 

equivalent one. 

4.1. Fitness Value Results 

The first experiment aims to examine the efficiency of 

this model in the Execute component to enable WSC to 

achieve the optimal solution. In a recent paper [14], we 

showed the effectiveness of the PGAQK module in the 

Execute component compared to the traditional PGA 

and Q-learning approaches in terms of fitness values. In 

this paper, the fitness of the PGAQK module is 

evaluated by comparing it with the improved GA 

approach utilized by Liue et al. [16] which combines 

Ant Colony Optimization (ACO), and GA. In [16], GA 

is improved by utilizing ACO to generate the initial 

population. We use the parameters given in Table 1 

below to test data. We implemented the algorithm and 

recorded the best fitness value.  

Table 1. Parameters setting. 

Parameter Value 

Crossover probability 0.8 

Mutation 0.2 

∝ 0.5 

𝜸 0.8 

𝜺 −greedy 0.85 

Number of ants  70 

Alpha, and Beta 1 

Iteration  72 

The fitness function in PGAQK is the total reward 

for each AWS in a WSC path. The number of the initial 

population is the same as the episodes’ number. Figures 

3, 4, and 5 illustrate the experiment’s results for 500, 

1000, and 2000 chromosomes in the initial population 

respectively. The number of generations is 10, 20, 50, 

and 100. The WSC consists of 10 AWSs. The optimal 

solution is the chromosome with the best cumulative 

reward. As could be seen from Figures 3, 4, and 5 the 

optimal solution in the case of using PGAQK is 

generally better than the optimal solution in the case of 

using Improved GA. to As could be seen from these 

figures, the best optimal solution was 8.14. In the case 

of using PGAQK, the best optimal solution found in 

500, 1000, and 2000 chromosomes in the initial 

population while this optimal solution didn’t find in the 

case of using improved GA. 
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Figure 3. The optimal solutions for 500 chromosomes in the 

population. 

 

Figure 4. The optimal solutions for 1000 chromosomes in the 

population. 

 

Figure 5. The optimal solutions for 2000 chromosomes in the 

population. 

Figure 6 illustrates the experiment results for 500, 

1000, 2000, 2500, 3000, 3500, and 4000 chromosomes 

in the initial population. The number of generations is 

10. In the case of using PGAQK, the optimal solution 

in the initial population of 500 chromosomes was 7.86. 

Then the curve progressively increased until it reached 

the best optimal solution of 8.14 in the cases of 1500, 

and 2000 chromosomes in the initial population. After 

that, the curve went down in the case of 2500 

chromosomes in the initial population. In the cases of 

3000, 3500, and 4000 chromosomes in the initial 

population, the best optimal solution was obtained 

again. In using the improved GA approach, the best 

optimal solution was 5.9, which was obtained in the 

case of 3000 chromosomes in the initial population. 

Hence it could be deduced that PGAQK is better than 

the improved GA approach. 

 

Figure 6. The optimal solution from 500 to 4000 chromosomes in 

the initial population. 

4.2. Execution Time 

For the cost of our proposed model, we measured it by 

using the execution time for substituting the 2% of 

faulty WSs with another equivalent one. We chose to 

measure the execution time in seconds. Figure 7 

illustrates the computation time for the same 100 

chromosomes for the proposed model, and the PGAQK 

approach proposed in the recent paper [14]. The 

number of AWS is varied from 10 to 100 AWSs. As 

could be seen from Figure 5, the time consumption to 

substitute the 2% of faulty WSs with another 

equivalent one by using the PGAQK approach is much 

more effective than our proposed model when the 

AWS less than 30 AWSs. Otherwise, the time 

consumption of our proposed model is much more 

effective than the PGAQK approach. 

 

Figure 7. The total time to substitute the faulty WSs with another 

equivalent one when AWS varied from 10 to 100. 

In the second experiment, the number of the initial 

population is varied from 100 to 1000 chromosomes; 

the number of AWSs is 10 WSs. As could be seen from 

Figure 8, the time consumption to substitute the 2% of 

faulty WSs with another equivalent one by using the 

PGAQK is much more effective than our proposed 

model when the chromosome less than 300 

chromosomes. Otherwise, the time consumption of our 

proposed model is much more effective than the 

PGAQK approach. Hence, we can deduce that the time 

consumption of our proposed model is much more 

effective when the number of chromosomes more than 

200 chromosomes or in the case of AWS is more than 

30 AWSs. 
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Figure 8. The total time to substitute the faulty WSs with another 

equivalent one when the initial population varied from 100 to 1000. 

5. Conclusions, and Future Work 

This paper presents a new self-healing model for QoS-

aware WSC, which focuses on adjusting WSC to 

appropriate a variable environment where the 

properties of the composite WSs continue being 

variable and also attend to the WS selection processes 

to achieve global optimization. Therefore, this model 

integrates the PGAQK approach with IBM's MAPE-K 

reference model. The PGAQK approach is a module in 

the Execute component used to achieve global 

optimization and fulfill emerging users’ requirements. 

The PGAQK approach in this model was improved by 

clustering and preserving the candidate WSs in 

the Knowledge component. When a faulty WS occurs, 

the most appropriate cluster is determined from 

the Knowledge component, and then the equivalent WS 

to the faulty WS is determined from that specific 

cluster. Experiment results show that the PGAQK in 

the Execute component is more effective than the 

improved GA approach in terms of fitness value. In 

terms of computation time, our model improved WS 

substitution time, especially when the number of 

atomic WSs is large. In our future work, we intend to 

improve the time of our proposed model to achieve 

global optimization. We intend to investigate other 

ways of adapting compositions including changes in 

the structure of the composition’s workflow, e.g., 

replacing one WS with a set of WSs, or vice-versa. 
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