
The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019 1121

Efficient Multiple Pattern Matching Algorithm

Based on BMH: MP-BMH

Akhtar Rasool1, Gulfishan Firdose Ahmed2, Raju Barskar3, and Nilay Khare1
1Department of Computer Science and Engineering, Maulana Azad National Institute of Technology,

India
2Department of Computer Science, College of Agriculture, India

3Department of Computer Science and Engineering, University Institute of Technology RGPV, India

Abstract: String matching is playing a key role in a wide range of applications in the information computing. Due to its

importance, large numbers of different algorithms have been developed over the last 50 years. There are various standards of

single and multiple pattern string matching algorithms like Boyer-Moore (BM), Boyer-Moore-Horspool (BMH), Aho-Corasick

etc. Multiple pattern string matching is very useful in real world applications. Standard benchmark multiple pattern algorithm

Aho-Corasick and many other multiple pattern string matching algorithms are not memory and time efficient for wider length

and large number of patterns set on large text data set because they are using the concept like DFA and require full scan of

text data. Many string matching tools which are currently popular for string matching are based on these algorithms. Using

the bad character principle of BMH, a method for multiple pattern string matching is being developed. Using this method a

time and memory efficient exact multiple pattern string matching algorithm Multiple Pattern BMH (MP-BMH) is proposed.

Unlike Aho-Corasick, the proffered MP-BMH algorithm provides skipping of unnecessary matching of characters in text while

searching like BMH Algorithm. It also provides the skipping of characters in patterns using the similarity between patterns.

Along with the shifts while searching, this algorithm also provides shrewd switches among the patterns for efficacious

matching.In this paper, the aforesaid method, MP-BMH algorithm with its time, memory and experimental analysis are

described.

Keywords: String matching; multiple pattern string matching, Boyer-Moore BM,BMH, MP-BMH.

Received January 8, 2017; accepted January 16, 2018

1. Introduction

String matching is one of the important concepts for

solving problems in computer science. In the multi-

pattern string matching algorithm [9, 35, 39] all

occurrences of the desired patterns in the text string are

searched. The taxonomy and relative performance

measures of multi-pattern matching algorithms are

mentioned in [28, 51, 53]. String Matching has many

real world applications like intrusion detection system

[28, 51, 53], plagiarism detection [3], text mining

techniques [35], digital forensics technique [31] and

many more. An effective multiple string matching

algorithm can boost the performance of these

applications as these applications are widely used in

real world. An effective selection of multiple string

matching algorithms [29] can improve the efficiency of

these real world applications. The most important

benefit of multiple string matching algorithms is that

no additional search structure is needed. Only one pass

of searching is sufficient to search multiple patterns or

keywords from a given text. Knowledge of single

pattern string matching could help in better

understanding of the multiple pattern string matching

algorithms.

2. Related Work

There are various popular single pattern string

matching algorithms such as Boyer-Moore (BM) [45,

47], Knutt Morris Pratt (KMP) [49, 50], Rabin

Karp[51], Boyer-Moore-Horspool (BMH) [27, 42, 44,

50], BMHS [30, 34], BMHS2 [47], BMI [53],

Improved BMHS [44] and Backward Non-

Deterministic Dawg Matching (BNDM) [39] and Two

way Non-Deterministic Dawg Matching (TNDM) [49].

These algorithm are simple but time consuming so

move to multi-pattern string matching[16, 49] Some of

the multiple pattern string matching algorithms

subsume Multi-pattern string matching with q-

grams[29, 50], a fast algorithm for multi-pattern

searching [46], Wu Manber [31, 36, 48],commentz-

walter [22] and standard benchmark algorithm Aho-

Corasick [11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24,

30, 32, 33, 34, 38, 40, 41, 43]. Boyer-Moore-Horspool

(BMH) [50] algorithm uses the concept of Bad

Character [14] of BM algorithm [47] for shifting

through text in matching process. In BMH algorithm,

no matter the location of mismatching, the distance of

shift to right is determined by the character in the text

string which is aligned to the last character of pattern

string. It means here always the Bad Character value

1122 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

[14] of a character of text corresponding to last

character of pattern is calculated. And then the window

is shifted right by that value. BMH always provides the

jump at least one and maximum of pattern length [50].

In [50] they applied the BMH algorithm for multiple

patterns in a different way using q-grams. They called

their proposed filtering algorithm as Horspool with q-

Grams (HG) algorithm. The HG algorithm performs

faster for less than 2000 patterns and works well for

less than 10000 patterns. Here full text is scanned

when the pattern set contains more than 50000

patterns. This algorithm is a filtering method and so is

not designed for searching texts with large number of

matches.

In [46] extended the BM algorithm for handling

multiple patterns. They proposed two new algorithms

whose operations involves remembrance of previous

matches. With N as text string length and maximum

pattern length D, the first proposed algorithm

remembers maximum 1+ log4 D previous matches and

consults O(N log D) text characters. The second

algorithm, being designed for distinct time-space trade-

off, consults O (kN log D) text characters and

remembers maximum t/k non periodic matches for any

given k and t number of patterns.

Aho-Corasick [42] is standard multi-pattern string

matching algorithm [9] which is based on finite

automata. The complexity of Aho-Corasick (AC) [2]

algorithm is in linear time, which scans on character by

character basis in the text by creating finite state

machine from the patterns given at the beginning. By

taking basis of that work, Commentz-Walter [48] have

provided almost linear solution by combining Boyer-

Moore’s [47] matching with the AC machine. In

addition to the approaches of automata, researchers

have also considered bit parallelism approach (e.g.,

shift-or algorithm [4], which proved to deliver

considerable speed up in case of single pattern string

matching but it is also observed that applying bit-

parallelism for multiple pattern string matching is

tedious task [27]. By utilizing arithmetic and logical

operations and assigning numbers to different states,

Baeza-Yates and Gonnet [4] proposed searching

method, which includes all keywords of the pattern set

when computer word size is not large enough. Kim &

Kim [35] proposed an algorithm which performs

bitwise hashing operations while scanning by encoding

the patterns and text at the beginning of the process.

Timo Raita [29] improves the BMH algorithm by

introducing the dependencies between the characters

and achieved significant speed enhancement over the

well-known fastest Boyer–Moore–Horspool String

Searching Algorithm.

Yuan et al. [50] implemented the QWM which

provide the better performance by combining the QS

algorithm with Wu-manber algorithm. Improved Wu-

Manber algorithm performance turns out to be

significant as the maximum shift distance of improved

version is better than original Wu-Manber algorithm

[46]. Wu-Manber and Quadrupled Wu Manber

(QWM) algorithm is relatively not better than Aho-

Corasick and Commentz-Walter algorithm [8] when

binary text is employed rather than increased pattern

length and alphabet size. Among all four, QWM

algorithm has better performance. That’s why QWM

algorithm is applied in various fields, such as network

content analysis, intrusion detection, and text retrieval

systems.

The grep tools contributed a lot to the field of multi

pattern string matching. First implementation of grep

was given by Thompson using Nondeterministic Finite

Automaton (NFA) for regular expression [37]. Then,

Alfred Aho made egrep (enhanced grep and later

extended grep) using Deterministic Finite Automaton

(DFA) [3]. Also fgrep (fixed-string grep) tool is based

on Aho-Corasick algorithm [43]. The UNIX grep

utility searches the input and outputs the lines which

contain any of the input patterns. The UNIX egrep

supports additional operators for regular expressions

[1]. UNIX fgrep performs like grep but does not

recognize any regular expression meta-characters as

special. So, fgrep is basically a fixed pattern matching

tool, hence performs faster [1]. The original egrep and

fgrep could not perform well for more than few

hundred patterns [43]. Agrep [44] advances from egrep

and fgrep as it searches the patterns in given text

approximately, which is based on bitap algorithm. In

1964 Balint Domolki proposed the bitap algorithm for

exact string searching [9, 26] and extended by

Shyamsundar in 1977 [32], this algorithm is reinvented

by Manber and Wu [44] from exact string matching to

approximate string matching also known as fuzzy

string matching based on work done by Baeza-

Yates and Gonnet [4]. Further improvement was done

by Sunday [34] and then for long patterns Gene

Myers proposed an improved algorithm based on bitap

algorithm in 1998 [25].

In this paper, multiple pattern string matching

method is designed on the basis of BMH algorithm. By

using this method, a multiple pattern string matching

algorithm is proposed. This algorithm provides shifting

mechanism for unnecessary matched character. Here

MP-BMH algorithm, its time and space complexity

analysis and comparative analysis with other standard

tools and algorithm are described.

3. Multiple Pattern String Matching Using

BMH

In the BMH multiple pattern string matching method at

a time single pattern is consider for string matching

process. The pattern that is in the string matching is

referred as “current pattern”. Whenever mismatch is

occurred then the minimum shift is calculated. This

minimum shift is calculated by aligning the character

of text corresponding to last character of pattern which

Efficient Multiple Pattern Matching Algorithm Based on BMH: MP-BMH 1123

is same in any other patterns. In the next string

matching process the pattern through which this

minimum shift is calculated set as current pattern and

used for string matching. Suppose there are k number

of patterns and T is text in which string matching is to

be performed. There is a pattern of length mr which is

the smallest length pattern or one of the smallest length

pattern among the k patterns. For string matching any

position j, (j ≤ i) or (j ≥ i- mr) where “i” is the location

of the character in the text which is aligned to the last

character of the current pattern. If there is a mismatch

at any position j, condition is described in Figure 1.

Figure 1. Multiple Pattern Matching Using BMH Method

Mismatch Logic.

Here, character Ti is the character of text aligned to

the last character of the pattern in the string matching

process. Now, for shift search for occurrences of

character Ti in all k patterns. Suppose there is a pattern

ɤ, this character Ti could be occurred in a pattern or

not, by taking all the cases the value of shift will be

0 ≤ shift ≤ m ɤ

Shift is zero when the character Ti is at rightmost

position or last position from right. Shift is mɤ when

the character Ti is not in the pattern. If character lies in

between than shift is greater than zero and less than mɤ.

Among all the calculated shifts in different patterns,

we choose a minimum shift.

Minimum Shift = min {shift (1), shift (2),shift (3)..................,shift(k)

}

OR

Minimum Shift =min {shift (x): 1≤x≤ k}

Than new string matching process start from the

position inew , which is described in Figure 2.

inew=iold + Minimum Shift

Figure 2. Multiple pattern matching using BMH method shifting

Logic.

Here choose a pattern corresponding to this

minimum shift is calculated and that pattern is set as

“current pattern”. Now same process is executed for

next iterations. In case of fully matched pattern, same

process is executed for calculation of minimum shift

but here current pattern is not used for the calculation

because it is already having minimum value.

4. Proposed MP-BMH Algorithm

MP-BMH algorithm is based on the concept of the

Multiple Pattern Matching using BMH method.

Algorithm is a exact string matching algorithm based

on above method.

4.1. Terminologies Used:

 Current Pattern: It refers to the pattern that is in

the string matching process.

 MValue: MValue is bad character value of last

character of pattern (except last character). If that

character does not appear again in pattern then it is

equal to pattern length.

4.2. MP-BMH Algorithm

 Algorithm has two phases pre-processing and

searching. Pre-processing is further divided in two

parts phase-1 and phase-2. In pre-processing phase-1

MValue and next–to-last bad character of all the

patterns and then in pre-processing phase-2 minimum

values tables are calculated. Calculated values in pre-

processing Phase-1are not used so these values can be

removed after phase-2. These values are only used for

the calculation of phase-2. Minimum values tables

which are generated in phase-2 will be used in

searching phase.

 Pre-processing Phase-1: In pre-processing phase-I

first sort the patterns according to ascending order

of their length. Then MValue and next-to-last bad

characters values of all patterns are calculated and

stored in the form of tables.

 Pre-processing Phase-2: Using the pre-processing

phase-I values go for next level of pre-processing in

which after sorting calculate three different values

for each character for each pattern according to the

different situation. These situations are mismatch at

last character, mismatch in between and fully match

for a pattern. These values are MBCVA (minimum

of next-to-last bad character value), MBCVMV

(minimum of next-to-last bad character value of all

patterns except “current pattern” and MValue of

“current pattern”) and NMBCVA (Non zero

minimum of next-to-last bad character value).

MBCVA table used in the case of mismatch at last

character. Whereas MBCVMV and NMBCVA are

used in case of mismatched in between and fully

matched pattern. If the multiple patterns of same

(1)

(2)

(3)

(4)

1124 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

suffixes are present then analogy function is used.

Analogy function is used to achieve better

performance by skipping unnecessary matching of

characters by seeing the similarity between the

patterns. This function holds patterns of common

suffixes.

Algorithm 1 MP-BMH

1. Start

#Pre-Processing Phase:

2. Pre-Processing Phase I:

o Sort the pattern in ascending order of length

and calculate next to last bad characters

table MValue for each pattern.

3. Pre-Processing Phase II:

o Calculate MBVCA, MBCVMV and NMBCVA

tables and analogy function

#Search Phase:

4. Start as first pattern as “current pattern” in sorted list,

which is smallest length pattern or may be one of the

smallest length patterns among all the patterns.

5. Index=Start index of the Text.

6. While (Index<Length of Text) do

 (a) If (Index < Length of “current pattern”) then

o Shift by smallest pattern length

o Set “current pattern”=smallest length

pattern

 (b) Align the “current pattern “with text and start

matching from right to left like BMH.

 (c) If Mismatch occurs at last character then

o Shift using shift value of table MBCVA.

o Set the “current pattern”=pattern of MBCVA.

o Goto step 6.

 (d) If Mismatch occurs in between then

o Shift using shift value of table MBCVMV

o If shift non-zero then Set the “current

pattern”=pattern in the pattern field of MBCVMV and

goto step 6.

 Else

o (iii) Search all patterns in the pattern field of

MBCVMV using the analogy function for

efficient matching, if occurs then report the

occurrence.

o (iv) Shift using shift value of NMBCVA.

o (v) Set the “current pattern”=pattern in the pattern

field of NMBCVA.

o (vi) Goto step 6.

(e) If Full match occurs then

o Report occurrence and (pattern position)

o Shift using shift value of Table MVCVMV

o If shift is non zero then (set “current pattern”=pattern

in the pattern field of MBCVMV and goto Step-6

Else

o Search all patterns in the pattern field of MBCVMV

using the analogy function for efficient matching,if

occurs then report the occurrence.

o Shift using shift value of NMBCVA.

o Set the “current pattern”=pattern in the pattern field

of NMBCVA

o Goto step 6.

END

5. Example of MP-BMH Algorithm

Patterns: ABC, ABCD, ZABC, YZABC, EDE. Text:

XYZABCDABCCDE

5.1. Pre-processing Phase-1

The patterns are sorted in ascending order of their

length shown Table 1.

Table 1. Sorted list of patterns.

Index Pattern

0 ABC

1 EDE

2 ABCD

3 ZABC

4 YZABC

MValue and next-to-last bad character table for each

of the patterns are calculated in first phase of pre-

processing shown in Table 2. In below Table 2, the

character is represented by “Ch” shift is represented by

“Sh”, and others is represented by “O” respectively.

Table 2. MValue and next-to-last bad character table for each
pattern.

Pattern:

ABC

MValue: 3

Pattern: EDE

MValue: 2

Pattern: ABCD

MValue: 4

Pattern: ZABC

MValue: 4

Pattern:

YZABC

MValue: 5

 Ch Sh

C 0

B 1

A 2

Ot 3

 Ch Sh

E 0

D 1

Ot 3

Ch Sh

D 0

C 1

B 2

A 3

Ot 4

Ch Sh

C 0

B 1

A 2

Z 3

Ot 4

Ch Sh

C 0

B 1

A 2

Z 3

Y 4

Ot 5

5.2. Pre-processing Phase-2

The results after pre-processing phase-II for above

example are shown in Table 3. In below Table 3, the

character is represented by “Ch” shift is represented by

“Sh”, others is represented by “Ot” and pattern is

represented by “Pat” respectively.

Table 3. Pre-processing Phase-II Tables MBCVA, MBCVMV and
NMBCVA.

Pattern:

ABC

MValue: 3

Pattern: EDE

MValue: 2

Pattern: ABCD

MValue: 4

Pattern: ZABC

MValue: 4

Pattern:

YZABC

MValue: 5

Ch Sh

C 0

B 1

A 2

Ot 3

Ch Sh

E 0

D 1

Ot 3

Ch Sh

D 0

C 1

B 2

A 3

Ot 4

Ch Sh

C 0

B 1

A 2

Z 3

Ot 4

Ch Sh

C 0

B 1

A 2

Z 3

Y 4

Ot 5

5.3. Searching Phase

For the above example given text is

“XYZABCDABCCDE”. Then in searching process,

comparison starts from smallest length pattern, which

is ABC. Character C of pattern ABC is compared with

character Z of text, it mismatches so for Z go to shift

MBCVA Table which is 3 here for pattern ABC, then

Efficient Multiple Pattern Matching Algorithm Based on BMH: MP-BMH 1125

shift by 3. Now compare C of ABC with C of text, they

matches, compare next until mismatch or fully match,

here all characters of ABC are matched, means ABC is

found. Now go to MBCVMV Table for ABC, here the

shift is zero so match all the patterns in the pattern

field of this Table with the corresponding characters of

text and if match found then report occurrence. After

this go to NMBCVA Table for character C and shift by

the shift value of this Table and continue searching as

follows. The full searching phase is shown in Figure 3.

Figure 3. Example of MP-BMH Searching Phase('.' shows where

matching is performed).

6. Time and Memory Analysis

6.1. Time Complexity Analysis

 Consider that there is K number of distinct patterns of

pattern length {m1, m2,mk} and n is the size of

text. Suppose smallest length pattern length is ms.

There is a set T = {t1, t2,,tt} contains t distinct

characters appears in the text and P ={p1, p2,...., pp}

contains p distinct characters appears in the K patterns.

Now, here the time complexity of algorithm among

various stages is explained such as pre-processing

phase-1, pre-processing phase-2 and searching phase.

 Pre-processing Phase: In pre-processing phase-1

there are two tasks. First, to sort all K patterns

according to their lengths in ascending order and

second are to calculate bad character table and

MValue for all pattern. For sorting of K patterns we

can choose any of the sorting algorithm. Since time

complexity of sorting algorithms lies between O (K

log2K) to O (K2) choose worst case time that is O

(K2).Time required for calculating next-to-last bad

character values of K patterns is O (Kt).Calculating

MValue for all patterns takes O (m1+m2+.....+mk)

time, if mavg is the average length of K patterns then

it can be written as O (Kmavg). Then the total time

required for the pre-processing phase-I is O

(K2+Kt+Kmavg). In pre-processing phase-2

MBCVA, MBCVMV and NMBCVA table values

are calculated. MBCVA Table contains values for

all the distinct characters available in text. For

calculating, these values scan each character in all

the other patterns. So the time complexity is O (Kt).

For MBCVMV table search next-to-last values of

last character of each pattern in the other entire K-1

patterns so the time complexity is O (K (K-1)) i.e.,

O (K2).As MBCVA table, NMBCVA also contains

values for all distinct characters of text. And

similarly the time complexity for NMBCVA table is

O (Kt).So the total time of phase-II is O(Kt+K2+Kt)

i.e., O (K2+Kt). Overall time complexity of pre-

processing that include phase-I and phase-II is

O(Kt+Kmavg+K2+Kt) i.e., O (K2+Kt+Kmavg).

 Searching: In searching best case, average case, and

worst case is possible based on different type of text

irrespective of pattern set.

a) Best Case: It is the case where It is the case where

no pattern exists in the text and minimum pattern

length is larger. When all the character of T and P

are different. This is a no pattern found condition. It

means T∩P=Null. Here at each mismatch condition

we get a jump of ms. so time complexity is O(n/ms).

If msis large then we get more fast search results.

This case is shown in the Figure-4. Here Patterns

are ABCD,DEFG,FGJIJ and Text is

“XYZXWYZXWZXWXYWZ”.

Figure 4. Best Case of MP-BMH algorithm.

Here MP-BMH always gives maximum shift i.e.,

minimum pattern length shift while scanning the text.

b) Average Case: It is a case where some patterns may

exists in the text and chances for getting zero to

pattern length shift. When some of the characters of

T and P are same or T is a superset of P. It means

T∩P=Q, Q is the subset of P and T both. Here we

always get the jump from one to minimum pattern

length. So time complexity lies between O (n/ms) to

O (n). In general total jump is (1+2+......+ ms)/ ms

i.e., ms (ms+1)/ 2msor (ms+1)/ 2then the average

time is O (2n/(ms+1)). This case is shown in Figure

5.

Figure 5. Average Case of MP-BMH algorithm.

1126 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Here Patterns are ABCD, DEFG, FGJIJ and Text is

“XYZABCDWXYZNMWYXDEFGXYJZW”.

c) Worst Case: It is the case where maximum pattern

exists in text and chances of always getting one

shift. When all the characters of T and P are same. It

means T∩P=P. In this case for each char in text it is

possible to match each and every character of all the

patterns. So “n” times O(Kmavg)could be the

complexity. This should be O(mavgnK). This case is

marginally similar to the Figure 6. This case

practically almost impossible in real world. Here

patterns are ABCD, XABCD, XYABCD, YXZZX

and Text

“WXYABCDMNYXZZXNNBXDMNNM”.

Figure 6. Worst Case of MP-BMH algorithm.

Here MP-BMH always rematch the characters

approximately equal to the minimum pattern length or

it is similar to getting one shift in each iteration here

complexity is just equal to the O (nK).

6.2. Space Complexity Analysis

 In MP-BMH memory requirement is only in the pre-

processing information storage. In Pre-processing

phase-I sorting of patterns requires O(K) space

complexity. The space complexity is O (K) for the

MValue calculation and O (Kt) for next-to-last bad

character values calculations. Then the total space

complexity for the pre-processing phase-I is O

(K+Kt+K). In the pre-processing phase-II For

MBCVA and NMBCVA tables, space complexity for

each of them is O(t). For MBCVMV table, in worst

case, total K (K-1) values to be saved. So, this will take

O (K2) space complexity for the table. Then total space

complexity for pre-processing phase-II is O (t+t+K2)

i.e. O (K2+t). Now total space complexity for the pre-

processing phase is O (K+Kt+K2+t)i.e. O(K2+Kt+t).

Whereas DFA based Aho-Corasick algorithm takes

O((m1+ m2+.....+ mk+1) t) worst case space

complexity. If mavg is the average length of K pattern

then O (K mavg t) is the space complexity in the worst

case.

7. Experimental Results and Analysis of

MP-BMH Algorithm

In this section MP-BMH algorithm is compared to

various types of string matching tools based on

different string matching algorithms. These

comparisons are based on number of patterns and size

of patterns. MP-BMH algorithm has shown significant

good results in compared to other tools for large

pattern size as well as on small pattern size. The

experiments shown here were tested on Intel(R)

Core(TM) i52430M CPU 2.4GHz with installed

memory(RAM) 4 GB, running 64-bit version of

Windows7 operating system and ubantu12.04. All

times are execution times on a lightly loaded system

getting more than 90% of the CPU. These times given

in seconds; each experiment was performed 20 times

and then the averages are given. For all the experiment

shown in this paper we have used text file from Bible

[36] whose size is 101 MB. All the patterns used in

experiments are taken corresponding to the above text

file.

Table 4 shows comparison of different types of

string searching tools like egrep(DFA based), fgrep

(Aho-Corasick based) and agrep (bitap based) with the

proposed algorithm MP-BMH. MP-BMH is showing

significant relative speed up. We have tested all these

tools on different variants of patterns ranging from

minimum pattern length=2 to minimum pattern

length=10. Table 1 shows the result of running time

(assuming average case for all tools) from m=4 pattern

length for number of patterns ranging from 100 to

1000.

Table 4. Comparison of different search routines on a 101 MB text.

OF PATTERNS EGREP FGREP AGREP MP-BMH

100 6.105 6.239 5.981 1.982

200 9.914 11.059 9.719 3.432

300 12.738 14.395 11.931 5.226

500 18.173 19.599 16.560 9.079

1000 70.154 27.171 23.240 22.979

0

10

20

30

40

50

60

70

80

100 200 300 500 1000

EGREP

FGREP

AGREP

MP-BMH

Number of patterns

T
im

e
 i
n
 S

e
c
o
n
d
s

Figure 7. Comparison of running times for different number of
patterns.

In Figure 7, we have plotted graph for MP-BMH for

different number of patterns ranging from 100 to 1000.

Here y-axis shows the running time in seconds and x-

axis shows the number of patterns viz.

Efficient Multiple Pattern Matching Algorithm Based on BMH: MP-BMH 1127

100,200,300,500 and 1000 in MP-BMH from different

string searching tools. It is seen from the Table 4 and

graph as shown in Figure 6, above that when number

of patterns taken are 100 then percentage increase of

MP-BMH from egrep, fgrep and agrep is 67.53%,

68.23% and 66.86% respectively, when number of

patterns taken are 300 then percentage increase of MP-

BMH from egrep, fgrep and agrep is 58.97%, 63.7%

and 56.19% respectively and when number of patterns

taken are 1000 then percentage increase of MP-BMH

from egrep, fgrep and agrep is 67.24%, 15.42% and

1.12% respectively. So it is obvious from the facts that

although percentage improvement of MP-BMH is

decreasing with respect to egrep,fgrep and agrep when

number of patterns increases gradually but relative

running time of MP-BMH in comparison to other tools

like agrep, fgrep and egrep is still good.

The Figure 8, shows the graph plotting of average

case running time for MP-BMH algorithm. The

numbers of patterns are 500 and minimum pattern size

ranges from 2 to 10. It is obvious from the graph as

shown in Figure 3, that average case of running time is

significantly improves from minimum pattern size 2 to

minimum pattern size 10 like other tools egrep, fgrep

and agrep.

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10

MP-BMH

running time

T
im

e
 i
n
 S

e
c
o
n
d
s

Minimum Pattern Size
Figure 8. The effect of the minimum pattern length on the running

time.

8. Conclusions

MP-BMH is better and more efficient in terms of time

and memory requirements while comparing with

standard benchmark algorithms like Aho-Corasick and

Shift-OR with q-grams. Experiments r showed that

MP-BMH is faster than the standard string matching

tools like egrep, fgrep and agrep because of its shifting

mechanism. It is significantly faster with up to 1000

number of patterns. Its performance improvement is

also based on the minimum pattern length. As the

minimum pattern length increase algorithm provides

larger shift and overall performance will be increased.

MP-BMH is more efficient in memory and it requires

less memory for providing hashing. In conclusion, MP-

BMH can provide great improvement in the string

matching process which plays major role in many real

world applications.

References

[1] Abou-Assaleh T. and Ai W., “Survey of Global

Regular Expression Print (Grep) Tools,” in

Proceedings of Citeseer, Topics in Program

Comprehension, Nova Scotia, pp. 1-8, 2004.

[2] Aho A. and Corasick M., “Efficient String

Matching: An Aid to Bibliographic Search,”

Communications of the ACM, vol. 18, no. 6, pp.

333-340, 1975.

[3] Alzahrani S., Salim N., and Abraham A.,

“Understanding Plagiarism Linguistic Patterns,

Textual Features, and Detection Methods,” IEEE

Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 42, no.

2, pp. 133-149, 2012.

[4] Baeza-Yates R. and Gonnet G., “A New

Approach to Text Searching,” Communications

of the ACM, vol. 35, no. 10, pp. 74-82, 1992.

[5] Baeza-Yates R. and Navarro G., “A Faster

Algorithm for Approximate String Matching,” in

Proceedings of Annual Symposium on

Combinatorial Pattern Matching, Berlin, pp. 1-

23, 1996.

[6] Boyer R. and Moore J., “A Fast String Searching

Algorithm,” Communications of the ACM, vol.

20, no. 10, pp. 762-772, 1977.

[7] Brođanac P., Budin L., and Jakobović D.,

“Parallelized Rabin-Karp Method for Exact

String Matching,” in Proceedings of 33rd

International Conference on of Information

Technology Interfaces, Dubrovnik, pp. 585-590,

2011.

[8] Commentz-Walter B., “A String Matching

Algorithm Fast on the Average,” in Proceedings

of 6th International Colloquium on Automata,

Languages, and Programming, Berlin, pp. 118-

132, 1979.

[9] Dolmiki B., “A Universal Compiler System

Based on Production Rules,” BIT Numerical

Mathematics, vol. 8, no. 4, pp. 262-275, 1968.

[10] Domolki B., an Algorithm for Syntactical

Analysis, Computational Linguistics, 1964.

[11] Fethallah H. and Amine C., “Automated

Retrieval of Semantic Web Services: A Matching

Based on Conceptual Indexation,” The

International Arab Journal of Information

Technology, vol. 10, no. 1, pp. 61-66, 2013.

[12] Han Y. and Xu G., “Improved Algorithm of

Pattern Matching Based on BMHS,” in

Proceedings of IEEE International Conference

on Information Theory and Information Security,

Beijing, pp. 238-241, 2010.

[13] Horspool R., “Practical Fast Searching in

Strings,” Software Practice and Experience, vol.

10, pp. 501-506, 1980.

1128 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

[14] Hume A., “A Tale of Two Greps,” Software

Practice and Experience, vol. 18, no. 11, pp.

1063-1072, 1988.

[15] Ke X., Yong C., and Hong Y., “An Improved

Wu-Manber Multiple Patterns Matching

Algorithm,” in Proceedings of 25th IEEE

International Performance, Computing, and

Communications Conference, Phoenix, 2006.

[16] Khancome C. and Boonjing V., “New Hashing-

Based Multiple String Pattern Matching

Algorithms,” in Proceedings of 9th International

Conference on Information Technology: New

Generations (ITNG), Las Vegas, pp. 195-200,

2012.

[17] Kim B. and Kim I., “Kernel Based Intrusion

Detection System,” in Proceedings of 4th Annual

ACIS International Conference on Computer and

Information Science, Jeju Island, pp. 13-18,

2005.

[18] Kim S. and Kim Y., “A Fast Multiple String-

Pattern Matching Algorithm,” in Proceedings of

17th AoM/IAoM Conference on Computer

Science, pp. 1-8, 1999.

[19] Knuth D., Morris J., and Pratt V., “Fast Pattern

Matching in Strings,” SIAM Journal on

Computing, vol. 6, no. 2, pp. 323-350, 1977.

[20] Kouzinopoulos C. and Margaritis K., “A

Performance Evaluation of the Pre-processing

Phase of Multiple Keyword Matching

Algorithms,” in Proceedings of 15th Panhellenic

Conference on Informatics, Kastonia, pp. 85-89,

2011.

[21] Lee T., “Generalized Aho-Corasick Algorithm

for Signature Based Anti-Virus Applications,” in

Proceedings of 16th International Conference on

Computer Communications and Networks,

Honolulu, pp. 792-797, 2007.

[22] Marturana F., Me G., and Tacconi S., “A Case

Study on Digital Forensics in the Cloud,” in

Proceedings of International Conference on

Cyber-Enabled Distributed Computing and

Knowledge Discovery, Sanya, pp. 111-116, 2012.

[23] Miao C., Chang G., and Wang X., “Filtering

Based Multiple String Matching Algorithm

Combining q-Grams and BNDM,” in

Proceedings of 4th International Conference on

Genetic and Evolutionary Computing, Shenzhen,

pp. 582-585, 2010.

[24] Muth R. and Manber U., “Approximate Multiple

String Search,” in Proceedings of Combinatorial

Pattern Matching, Lecture Notes in Computer

Science, Berlin, pp. 75-86, 1996.

[25] Myers G., “A Fast Bit-Vector Algorithm for

Approximate String Matching Based on Dynamic

Programming,” Journal of the ACM, vol. 46, no.

3, pp. 395-415, 1999.

[26] Navarro G. and Raffinot M., “Fast and Flexible

String Matching by Combining Bit-Parallelism

and Suffix Automata,” Journal of Experimental

Algorithmics, vol. 5, no. 4, 2000.

[27] Peltola H. and Tarhio J., “Alternative Algorithms

for Bit-Parallel String Matching,” in Proceedings

of International Symposium on String Processing

and Information Retrieval, Berlin, pp. 80-93,

2003.

[28] Qiang Z., “An Improved Multiple Patterns

Matching Algorithm for Intrusion Detection,” in

Proceedings of IEEE International Conference

on Intelligent Computing and Intelligent Systems,

Xiamen, pp. 124-127, 2010.

[29] Raita T., “Tuning the Boyer-Moore-Horspool

String Searching Algorithm,” Software Practice

and Experience, vol. 22, no. 10, pp. 879-884,

1992.

[30] Salmela L., Tarhio J., and Kytojoki J., “Multi

Pattern String Matching with Q-Grams,” Journal

of Experimental Algorithmic, vol. 11, pp. 1-19,

2006.

[31] Sánchez D., Martín-Bautista M., Blanco I., and

de la Torre C., “Text Knowledge Mining: An

Alternative to Text Data Mining,” in Proceedings

of IEEE International Conference on Data

Mining Workshops, Pisa, pp. 664-672, 2008.

[32] Shyamasundar R., “Precedence Parsing Using

Domolki's Algorithm,” International Journal of

Computer Mathematics, vol. 6, no. 2, pp. 105-

114, 1977.

[33] Sridhar M., Efficient Algorithms for Multiple

Pattern Matching, Doctoral Dissertations, the

University of Wisconsin, 1986.

[34] Sunday D., “A Very Fast Substring Search

Algorithm,” Communications of the ACM, vol.

33, no. 8, pp. 132-142, 1990.

[35] Tao T. and Mukherjee A., “Multiple-Pattern

Matching in LZW Compressed Files Using Aho-

Corasick Algorithm,” in Proceedings of

International Conference on Information

Technology: Coding and Computing, Las Vegas,

pp. 482, 2005.

[36] The Bible-Pdf E-Book Version of the Bible,

www.holybooks.com/download-bible, Last

Visited, 2017.

[37] Thompson K., “Programming Techniques:

Regular Expression Search Algorithm,”

Communications of the ACM, vol. 11, no. 6, pp.

419-422, 1968.

[38] Wang Y., “A New Method to Obtain The Shift-

Table in Boyer-Moore’s String Matching

Algorithm,” in Proceedings of 19th International

Conference on Pattern Recognition, Tampa, pp.

1-4, 2008.

[39] Watson B. and Zwaan G. “A Taxonomy Of Sub

Linear Multiple Keyword Pattern Matching

Algorithms,” Science of Computer Programming,

vol. 27, no. 2, pp. 85-118, 1996.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6209062
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6209062
https://www.holybooks.com/download-bible/
http://www.holybooks.com/download-bible

Efficient Multiple Pattern Matching Algorithm Based on BMH: MP-BMH 1129

[40] Watson B., “Taxonomies and Toolkits of Regular

Language Algorithms,” Ph.D. Dissertation,

Faculty of Computer Science, Eindhoven

University of Technology, 1995.

[41] Watson B., “The Performance of Single-

Keyword and Multiple-Keyword Pattern

Matching Algorithms,” Eindhoven University of

Technology, Computing Science Section, 1994.

[42] Wu P. and Shen H., “The Research and

Amelioration of Pattern-matching Algorithm in

Intrusion Detection System,” in Proceedings of

IEEE 14th International Conference on High

Performance Computing and Communication

and IEEE 9th International Conference on

Embedded Software and Systems, Liverpool, pp.

1712-1715, 2012.

[43] Wu S. and Manber U., “Fast Text Searching:

Allowing Errors,” Communications of the ACM,

vol. 35, no. 10, pp. 83-91, 1992.

[44] Wu S. and Manber U., “Agrep-A Fast

Approximate Pattern- Matching Tool,” in

Proceedings of Usenix Winter Technical

Conference, San Francisco, pp.153-162, 1992.

[45] Wu S. and Manber U., “Fast Text Searching

With Errors,” Technical Report, Department of

Computer Science, University of Arizona,

Tucson, 1991.

[46] Wu S. and Manber U., “A Fast Algorithm for

Multi-Pattern Searching,” Technical Report,

Department of Computer Science, 1994.

[47] Xiangyan F., Tinggang X., Yidong D., and

Youguang Y., “The Research And Improving For

Multi-Pattern String Matching Algorithm,” in

Proceedings of IEEE International Conference

on Intelligent Computing and Intelligent Systems,

Xiamen, pp. 266-270, 2010.

[48] Xie L., Liu X., and Yue G., “Improved Pattern

Matching Algorithm of BMHS,” in Proceedings

of 3rd International Symposium on Information

Science and Engineering, Shanghai, pp. 616-619,

2010.

[49] Xiong Z., “A Composite Boyer-Moore

Algorithm for the String Matching Problem,” in

Proceedings of International Conference on

Parallel and Distributed Computing,

Applications and Technologies, Wuhan, pp. 492-

496, 2010.

[50] Yuan J., Yang J., and Ding S., “An Improved

Pattern Matching Algorithm Based on BMHS,”

in Proceedings of 11th International Symposium

on Distributed Computing and Applications to

Business, Engineering and Science, Guilin, 2012.

[51] Yuan J., Zheng J., and Ding S., “An Improved

Pattern Matching Algorithm,” in Proceedings of

3rd International Symposium on Intelligent

Information Technology and Security

Informatics, Jinggangshan, pp. 599-603,2010.

[52] Zha X. and Sahni S., “GPU-to-GPU and Host-to-

Host Multipattern String Matching on a GPU,”

IEEE Transactions on Computers, vol. 62, no. 6,

pp. 1156-1169, 2013.

[53] Zhang B., Chen X., Ping L., and Wu Z.,

“Address Filtering Based Wu-Manber Multiple

Patterns Matching Algorithm,” in Proceedings of

2nd International Workshop on Computer Science

and Engineering, Qingdao, pp. 406-412, 2009.

http://en.wikipedia.org/wiki/University_of_Arizona

1130 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Akhtar Rasool is an Assistant

Professor, at Maulana Azad

National Institute of Technology.

He did M.Tech and PhD in

Computer Science and Engineering

from Maulana Azad National

Institute of Technology. He has

published more than 20 research papers in

international/national journals and conferences. His

research areas include String Matching Algorithms,

Parallel Computing, Artificial Intelligence, Big Data

Analysis, Software Engineering, Analysis and Design

of Algorithms, Cluster and Grid Computing.

Gulfishan Firdose Ahmed is an

Assistant Professor at College of

Agriculture, Powarkheda, affiliated

by JNKVV Jabalpur. She did

M.Tech from RGPV Bhopal and she

received PhD in Computer Science

and Engineering from Maulana

Azad National Institute of Technology. She has

published more than 20 research papers in

international/national journals and conferences. Her

research areas include wireless network, string

Matching Algorithms and high performance

computing.

Raju Barskar is an Assistant

Professor at UIT RGPV Bhopal. He

did M.Tech and pursuing PhD in

Computer Science and Engineering

from Maulana Azad National

Institute of Technology. He has

published more than 20 research

papers in international/national journals and

conferences. His research areas include wireless

network, VANET, string Matching Algorithms and

image processing.

Nilay Khare is an associate

professor at Maulana Azad National

Institute of Technology. He did

M.Tech. in Computer Science and

Engineering from IIT Delhi. He

received Ph.D degree in Computer

Science and Engineering. He has

been professor in Department of Technical Education,

Government of Madhya Pradesh, India. He has also

worked as head of State Project Facilitation Unit,

Government of Madhya Pradesh, India and as head of

department of Computer Science and Engineering,

Rajiv Gandhi Technological University, Bhopal,

Madhya Pradesh, India. He has published more than 50

research papers in national and international journals.

He is also member of Indian Society of Technical

Education (ISTE) and Computer Society of India

(CSI). His research areas include Wireless Networks,

High performance computing and Theoretical

Computer Science.

