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Abstract: By providing unified access to multiple underlying search engines, metasearch engine is an intuitiveway to increase 

the coverage of the WWW. Great progress has been made in this area, butthe previous studies ignore the perspectives of users. 

This paper proposes a personalization mechanism for metasearch engine based on multi-agent system to improve precision 

ratio. The proposed mechanism obtains user interests from click-through data, schedules the appropriate underlying search 

engines according to the expertness model, and merges results based on user interest distribution. Moreover, it also has the 

ability to provide personalized result recommendation. Compared with the baseline results, experimental results show that the 

proposed personalization mechanism performs better on precision. The proposed metasearch engine is feasible for providing 

useful search results more effectively. 
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1. Introduction 

In big data age, search engine is a tool to help users 

find useful information on World Wide Web. 

However, it has faced with problem of low recall ratio 

[15]. The reasons are as follows: 

1. An individual search engine only indexes a small 

coverage of web documents [10]. 

2. The overlapping among different search engines is 

very low. 

Therefore, metasearch engine which integrates the 

search results from multiple search engines has been 

proposed to extend the information retrieval coverage 

and improve recall ratio [13]. However it is still limited 

by the precision. Because most of the proposed 

metasearch engines use the similarity between the 

query and web documents to search, ignoring the 

perspectives of users. To improve precision, 

personalization mechanism for metasearch engine 

which takes user preferences into consideration is 

significant. Generating schedule strategy, merging 

results and providing recommendation based on user 

interests is very helpful to meet user’s requirements.  

An intelligent agent is a piece of software that is 

reactive, proactive, perceptible and social. It has ability 

to observe and act upon an environment [17]. A multi-

agent system is a system composed of multiple 

interacting intelligent agents [1]. Using multi-agent 

architecture to implement personalization mechanism 

for metasearch engine has notable advantages. User 

interests change overtime, agent has the ability to 

perceive the change of user interests actively and 

update in time. Moreover, it is also significant to 

merge results and provide recommendation more  

flexibly according to search context. In summary, 

agent improves the adaptability of metasearch engine. 

In this paper, multi-agent based architecture is 

proposed to improve personalization mechanism for 

metasearch engine. Intelligent agent is utilized to 

analyze user interests, generate schedule strategy, 

merge results and provide recommendation that user 

might be interested in. Precision@N [3], DCG@N [20] 

and MAP@N [19] are used to evaluate the 

performance of the proposed metasearch engine. 

The rest of this paper is organized as follows: In 

section 2, related work is reviewed and compared. In 

section 3, the architecture of the proposed agent-based 

personalization mechanism for meatsearch engine is 

introduced. Section 4 demonstrates the user interest 

model, including the obtainment and storage of user 

interest. The schedule strategy is described in section 

5. Section 6 introduces our result merging method 

which considers user interest distribution. The result 

recommendation is described in section 7. 

Experimental results will be presented in section 8. 

Section 8 briefly illustrates the prototype of the 

proposed system named IM Search as well. Finally, the 

conclusions and further work are given in section 9. 

2. Related Work 

A large number of metasearch engines have been 

proposed, such as Profusion [7], Saavy search [9], Web 

Fusion [11, 13]. These metasearch engines can be 

grossly divided into two categories, Component-based 

architecture and Agent-based architecture. In this 

section, an overview of metasearch engines is 

investigated. 

1. Component-based architecture 
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Helios [8] is an open source metasearch engine which 

consists of six components. The web interface is 

designed to allow users to submit queries and select the 

desired search engines. The local query parser and 

Emitter dispatches query into the appropriate format 

for the chosen underlying search engines. The engines 

builder maintains all the settings necessary to 

communicate with the underlying search engines. The 

HTTP Retrievers handle the network communications. 

The search results collector and parser is utilized to 

collect results, and return them in using XML. Merger 

and Ranker ranks all of results into a single list. 

Savvysearch [9] is a metasearch engine that learns to 

identify which underlying search engines are most 

appropriate for different queries, reasons about 

resource demands, and represents an iterative parallel 

search strategy as a simple plan. Finally, the returned 

results will be displayed to users. ProFusion [7] 

consists of five components. The user interface is 

utilized to interact with users, receiving user’s request 

and providing several available options. The Duplicate 

Removal is designed to remove duplicated pages, using 

a few simple rules. The merge algorithms are 

responsible for merging results. The intelligent search 

Engine Selection allows metasearch to automatically 

select the best three search engines for a given query, 

based on the query's domain. The search result 

presentation is responsible for displaying the final 

results to users. 

Component-based metasearch engines adopt the 

idea of object-oriented software engineering, 

encapsulating each function into function module. 

Each module interacts with others through messages to 

complete all functions of metasearch engine, leading to 

the characteristics of “limited autonomy, fixed 

encapsulation and interactive monotonicity”. Therefore 

component-based meta-search engines are lack of 

intelligence, dynamics and adaptability. 

2. Agent-based architecture 

In order to improve the intelligence and adaptability of 

Profusion, Fan and Gauch [6] proposed a multi-agent 

architecture for ProFusion. The architecture consists of 

four kinds of agents. The dispatch agent is responsible 

for communicating with users and dispatching queries 

to the search agent and the learning agent. The search 

agent interacts with the underlying search engines, 

reporting search results, confidence factors, and time-

out values of the underlying search engines to the 

dispatch agent. The learning agent is in charge of the 

learning and development of the underlying search 

engines. The guarding agent is invoked when a search 

engine is down and it is responsible for preventing the 

queries to non-responsive search engines and detecting 

when the search engine is back online. WebFusion [11, 

12, 13] is composed of two layers of different types of 

agents. Each agent in the first layer is used to 

communicate with a specific underlying search engine. 

The master agent in the second layer is responsible for 

collecting results which returned by agents in the first 

layer. Arzanian et al. [2] proposed a multi-agent based 

personalized metasearch engine using automatic fuzzy 

concept networks. The metasearch engine consists of 

user agent, search agents group and personalization 

agents group. The user agent is responsible for 

communicating with users, predefining concepts vector 

and user's profile. The search agents group is 

composed of four agents, Google agent, Yahoo agent, 

Ask agent and Msn agent. Each of them is in charge of 

communicating with a specific underlying search 

engine. The personalization agents group is composed 

of FCN1 agent, FCN2 agent and ranking agent. The 

FCN1 agent is utilized to generate fuzzy concept 

network for a user’s profile. The FCN2 agent merges 

all of results and generates a fuzzy concept network for 

results list. The Ranking agent receives the concept 

network which was sent by FCN2 agent and completes 

the ranking process. 

Because of the characteristics of agent, such as 

autonomy, sociality, reactivity and proactiveness [14], 

the Agent-based architecture performs better than the 

Component-based architecture. Some metasearch 

engines based on multi-agent system have been 

proposed, however the previous research is still short 

of personalization level. In this paper, a multi-agent 

based personalization mechanism for metasearch 

engine is proposed, mining user interests and providing 

the useful search results more effectively. 

3. Proposed Multi-Agent Architecture 

The architecture of the proposed personalization 

mechanism for metasearch engine is composed of 

seven roles played by seven related agents.  

 Interface Role: this role is played by the 

InterfaceAgent, which will be activated when the 

Interface Agent is launched. Interface Role interacts 

with users. It has ability to get user id and query 

words, and display all of results to the current user. 

 UserInterest Role: this role is played by the 

UserInterest Agent, it has ability to obtain, update 

and read user interests. 

 UserGroup Role: this role is played by the 

UserGroup Agent. The required abilities are as 

follows:  

1. According to user personal information and 

query words, cluster users into different groups 

from two dimensions, and update user group 

information. 

2. Read group information to which user belongs. 

 ResultRecommendation Role: this role is played by 

the ResultRecommendation Agent, which will be 

activated when the Result Recommendation Agent 

is launched. It has ability to read click through data 
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of group members for the current user, and generate 

recommended results. 

 Search Role: this role is played by the Search 

Agent, which will be activated when the Search 

Agent is launched. The required abilities are as 

follows: 

1. Calculate expertness model of underlying search 

engines. 

2. Record the states of underlying search engines.  

3. Analyze query words of the current user. 

4. Generate schedule strategy according to 

expertness model. 

 SE Role: this role is played by the SE Agent, which 

will be activated when the Search Agent is 

launched. It has ability to monitor the states of 

underlying search engines, analyze query words of 

the current user, and generate schedule strategy 

according to expertness model. 

 ResultMerge Role: this role is played by the 

ResultMerge Agent, which will be activated when 

the Result Merge Agent is launched. It has ability to 

remove all duplicate results returned by underlying 

search engines and rerank all of search results into a 

single list. 

The multi-agent based architecture works as shown in 

Figure 1: a user requests a query to the Interface Agent. 

Then Interface Agent sends the query to the Search 

Agent, and the ResultRecommendation Agent. The 

Search Agent receives the query, generates the 

schedule strategy and sends the query to the SE Agent 

which will be scheduled. After getting the query, the 

SE Agents communicate with underlying search 

engines to complete the search task, and then pass on 

the returned results to the ResultMerge Agent. 

Meanwhile, the Interface Agent also passes on user Id 

to the UserGroup Agent and user interest agent. The 

UserGroup Agent gets the information of groups to 

which the current user belongs, and sends it to the 

ResultRecommendation Agent. After getting the query 

and user group information, the 

ResultRecommendation Agent generates the 

recommended results and sends them to the Interface 

Agent. According to user Id, the UserInterest Agent 

obtains user interest factor and passes it on to the 

ResultMerge Agent. Then the ResultMerge Agent 

merges all of results returned by the SE Agent into a 

single list, and returns the list to the InterfaceAgent for 

displaying. The UserInterest Agent analyzes the click-

through data to obtain user interests. After obtaining all 

of results, the Interface Agent is responsible for 

displaying these results to users. 

 

 

Figure 1. Working diagram of the proposed multi-agent architecture.

4. User Interest Model 

It has been proved that a user will click the interested 

web pages in most cases. For this reason, user interest 

is obtained based on click through data. For each record 

of a user, word segmentation technology is used to 

extract the useful information and get rid of stop words 

(and, or, a, et al.). Take the words with high weight 

value as the user interest words (In this paper, words 

with high weight value means words appeared with 

high frequency). In accordance with the Sogou corpus 

for text classification, all documents could be divided 

into these nine topics: literature, finance, employment, 

sports, tourism, education, IT, health, and military. 

The naive Bayesian formula is utilized to decide the 

topic to which user’s interest words belong, as shown 

in Equation (1). 

𝐶𝑓 = 𝑎𝑟𝑔𝑀𝑎𝑥(𝑃(𝑐𝑗) ×∏ 𝑃(𝑥𝑖|𝑐𝑗)
𝑐

1
) 

Where Cf is the final topic, P(cj) is the prior 

probability of the topic𝑐𝑗 , 𝑃(𝑥𝑖|𝑐𝑗)denotes the class 

conditional probability of characteristic quantities xi 

which belongs to 𝑐𝑗 , and ∏ 𝑃(𝑥𝑖|𝑐𝑗)
𝑐
1 calculates the 

(1) 
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(7) 

class conditional probability of characteristic quantities 

xi in all topics. 

Furthermore, the topic frequency corresponding to 

user’s interest words is used to represent user interest 

factor. User interest model is represented as user 

interest tree which consists of three layers, as shown in 

Figure 2. The first layer is user’s ID which identifies a 

user, the second layer is the topics which user interested 

in, and the third is the user interest words with weight 

values.  

 

Figure 2. User interest model. 

It is proved that user interest decays with time which 

is similar to human memory. Therefore, the forgetting 

factor is utilized to ensure the interest words which user 

focused on at present are of highest weight, as shown in 

Equation (2):  

𝐹(𝑘) = 𝑒
−
𝑙𝑜𝑔2(∆𝑡)

𝑓   

Where f is the half-life indicating that after f days, user 

interest is forgotten half. ∆𝑡 represents the time period 

between latest updating of interest word k to the current 

time. 

The weight value𝜔(𝑘)of user interest word k will be 

updated by Equation (3): 

𝜔(𝑘) = 𝜔(𝑘) ∗ 𝐹(𝑘)  

5. Schedule Strategy 

In order to evaluate the ability of underlying search 

engines, the expertness model is constructed, as shown 

in Table 1, here n=9, it represents the nine topics, 

including literature, finance, employment, sports, 

tourism, education, IT, health, and military. m is the 

number of underlying search engines. eij indicates the 

expertness of underlying search engine i about topic j, 

calculated from two aspects: concept lattice and click-

through data. The formula is shown in Equation (4).  

𝑒𝑖𝑗 = ∑ 𝐶𝑖𝑗
𝑚
𝑖=1 ×

𝑈𝑖𝑗

∑ 𝑈𝑖𝑗
𝑚
𝑖=1

+ 𝐶𝑖𝑗  

Where eij is theexpertness of the underlying search 

engine i about topic j. Cij is the expertness of underlying 

search engine i about topic j which is calculated based 

on concept lattice. While Uij is the expertness 

calculated based onclick-through data. 

Table 1. The expertness model of underlying search engines. 

 Topic 1 Topic 2 … Topic n 

SE1 e11 e12 … e1n 

SE2 e21 e22 … e2n 

… … … … … 

SEm em1 em2 … emn 

For a query, the documents returned by most of 

underlying search engines are more important than 

others. Therefore, the expertness of an underlying 

search engine has the characteristic as follows: The 

top ranked documents retrieved by these search 

engines are the same, or quite similar. Based on 

concept lattice [16], the degree that search engines 

support each other is calculated. The data structure of 

a search result consists of URL, title and abstract. 

Take the URL set of all search results as the object set 

of formal context. Word segmentation is conducted 

for all the titles and abstracts of the results, then take 

the keywords as the attribute set of formal context. 

The binary relation between the object set and the 

attribute set is defined as whether the search result 

corresponding to the URL in object set contained the 

keywords in attribute set. The method proposed by Du 

et al. [4] is used to construct concept lattice. If there 

are two concept nodes in a concept lattice, concept 

A=(URLA ， KeywordA) and concept B=(URLB, 

KeywordB), the similarity between KeywordA and 

KeywordB is calculated by Equation (5): 

𝑆𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵) =

 
1

𝑛×𝑚
∑ ∑ 𝑠𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴𝑖 , 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵𝑖)

𝑚
𝑗=1

𝑛
𝑖=1   

Where n is the number of keywords of node A, while 

m is the number of keywords of node B. 

The similarity between concept A and B is 

calculated by Equation (6). 

𝑁𝑜𝑑𝑒𝑠𝑖𝑚(𝐴,𝐵) =
|𝑈𝑅𝐿𝐴 ∩ 𝑈𝑅𝐿𝐵|

𝑚𝑎𝑥 (|𝑈𝑅𝐿𝐴|, |𝑈𝑅𝐿𝐵|)
× (1 − 𝜔)

+ 𝑠𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵) × 𝜔  

Where 𝜔 is the weighting coefficient, this paper set 𝜔 

ro 0.8. 

The similarity between concept lattice A and 

concept lattice B is calculated by Equation (7), that is 

the degree which search engines support each other. 

𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝑖𝑚(𝐴,𝐵) = 𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑎𝑥(𝐴) ,𝑚𝑎𝑥 (𝐵)) +

𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑖𝑛(𝐴) ,𝑚𝑖𝑛(𝐵)) + ∑ 𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑎𝑥𝑖(𝐴) ,𝑚𝑎𝑥𝑖  (𝐵))
𝐿−2
𝑖=1   

Where max(A) and max(B) is the biggest node of 

concept lattice A and concept lattice B respectively, 

while min(A) and min(B) are the smallest nodes.  

Finally, from Equation (8), the expertness score of 

search engine i about topic j is obtained based on 

concept lattice. SE_set is the set of search engines. 

𝐶𝑖𝑗 = ∑ 𝐶𝑜𝑛𝑐𝑒𝑝𝑡_𝑠𝑖𝑚(𝑖, 𝑎)𝑎∈𝑆𝐸_𝑠𝑒𝑡−{𝑖}  

For each topic, several keywords are selected and 

passed on to the search engines, constructing concept 

lattices according to the returned results. Then the 

expertness of each underlying search engine about a 

specific topic will be obtained. 

Click-through data [5] reflects the users' 

satisfaction of search engine. Therefore the click-

through data is also used to obtain the expertness of 

underlying search engines. For each record of click-

through data, find the topic to which belongs. 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 
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According to Equation (9), for record a, the expertness 

score of the search engine is calculated. 

𝑊𝑎 = 0.01 × 𝑚𝑎𝑥{(100 − 𝑟𝑎𝑛𝑘), 0} /𝑐𝑙𝑖𝑐𝑘  

Where click represents the click rank of this record, it is 

inversely proportional to Wa. rank is the rank of the 

URL of record a in all returned results. If the rank is 

bigger than 100, Wa will be set to 0. 100-rank is utilized 

because URLs ranked at the bottom are mostly invisible 

to users. 

If there are m records belonging to topic j in the 

click-through data of a search engine i, the expertness 

score of the search engines i about topic j is calculated 

by Equation (10): 

𝑈𝑖𝑗 =
1

𝑚
∑ 𝑊𝑎
𝑚
𝑎=1  

Finally, based on Equation (4), the expertness model of 

each underlying search engine is obtained. 

When user submits a query, metasearch engine 

obtains the topic to which the query belongs, then 

according to the expertness model, the appropriate 

underlying search engines are selected to complete the 

search task.  

6. Result Merging 

Most search engines generate the same set of results for 

an identical query from different users and display in 

the same way. However, different users focus on 

different topics. For instance, two users issue the same 

query, “apple.” The user who is interested in mobile 

phone prefers the results about iPhone. The other users 

may prefer the results about fruit. In order to obtain the 

personalized result list, it is necessary to organize the 

same results with different order for each user. 

Therefore, taking user interest into consideration is 

important when ranking the documents returned by 

underlying search engines. For the registered users, it is 

easy to get their interests. Based on the above idea, a 

personalized result merging method is proposed. 

For a user, the final score assigned to document d is 

calculated by Equation (11): 

𝑟𝑎𝑛𝑘(𝑑) =   

{
 
 

 
 

∑ 𝑟𝑖
𝑚
𝑖=1

𝑚𝑛(
𝑘
10
+1)

𝑛(1−𝑐
𝑛

𝑚
)

𝑡𝑎𝑛(𝑖𝑛𝑓𝑑)
,                                 𝜎 > 𝑇

∑ 𝑟𝑖
𝑚
𝑖=1

𝑚𝑛(
𝑘

10
+1)

𝑛 (1 − 𝑐
𝑛

𝑚
) (1 − 𝑖𝑛𝑓𝑑), 𝜎 < 𝑇

 

Where infd is user interest factor for document d, 

calculated by the cosine similarity between the current 

user interests and the topics of d. Moreover, if infd 

equals to 0, it will be set to infinitesimal value. m is the 

number of underlying search engines employed by 

meta search engine, n is the number of underlying 

search engines who returned d. c is the weighting 

coefficient, according to experiment, c is set to 0.4, 

(1 − 𝑐
𝑛

𝑚
) is intended to improve the scores of 

documents which seldom appeared but are important to 

the user. k is the number of documents that each 

underlying search engine returned. ri is the ranking 

position of d in the search engine i. σ represents the 

stand deviation of user interests, calculated by 

Equation (12). T is the threshold, if σ<T, it indicates 

that user interests are evenly distributed on different 

topics, therefore, user interests make a less impact on 

document d, linear function is used to calculate the 

score of d. While if σ>T if, it means that user interests 

are significant for the document, tangent function is 

used. 

σ = √
∑ (𝑐𝑖−𝑐̅)

2𝑁
𝑖=1

𝑁
 

Where N is the number of topics, ci is the interest 

factor about topic i, c̅ is the mean value of user interest 

factor about all topics. 

In the proposed method, the document which 

obtains the lowest score will be best ranked. 

7. Result Recommendation 

Providing result recommendation will help users to 

find useful information with less effort. Sharing search 

experience between similar users is an effective way to 

generate recommendations. Therefore, the proposed 

personalized mechanism clusters users into different 

groups from two dimensions: personal information and 

query data. The personal information is explicit data, 

which obtains from the registration of a user. When a 

user registers in the metasearch engine, he/she will be 

asked to providing personal information, including 

gender, address, and occupation. The query log is 

implicit data, users also can be clustered based on 

query words. 

 First, the user model is constructed, as shown in 

Equation (13): 

U =< 𝑄, 𝐶, 𝑃 > 

Where Q represents the query data that user passed on 

to metasearch engine. C represents the returned 

documents which user clicked for a certain query, 

came from click-through data. P is the personal 

information that user submitted to the system. 

For personal information, it is easy to classify users 

into different groups, users with the same gender, 

address and occupation are in the same group. While 

for query data, take the log-likelihood rating as the 

similar function, and the query similarity between 

users will be obtained. Furthermore, Density-Based 

Spatial Clustering of Applications with Noise 

(DBCSAN) [18] is used to cluster users based on query 

similarity. Above all, all of users will be clustered from 

their personal information and query data respectively. 

In most cases, users only click relevant documents. 

Moreover, if the ith document meets user’s requirement, 

he/she will never browse the next document. 

Therefore, from the click-through data, the relevant 

documents for a query will be found. In order to get a 

better document recommendation, ranking all of the 

(9) 

(10) 

(11) 

(12) 

 

(13) 
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relevant documents is necessary. For user uc, the score 

of recommended document r which has been clicked by 

user ub is calculated by Equation (14): 

𝑠𝑐𝑜𝑟𝑒(𝑟) = 𝜔𝑝 ∙ 𝑠𝑖𝑚𝑝(u𝑐 , u𝑏) + 𝜔𝑞 ∙ 𝑠𝑖𝑚𝑞(u𝑐, u𝑏) + 𝜔𝑖 ∙ 𝑠𝑖𝑚𝑖(u𝑐, u𝑏) 

Where 𝜔𝑝 , 𝜔𝑞  and 𝜔𝑖  are the weight coefficients, 

𝑠𝑖𝑚𝑝(u𝑐 , u𝑏)  is the personality similarity between u𝑐 

and ub, calculated by Equation (15). 𝑠𝑖𝑚𝑞(u𝑐, u𝑏) is the 

query similarity between uc and ub, which has been 

mentioned before, and 𝑠𝑖𝑚𝑖(u𝑐 , u𝑏)  is the interest 

similarity between uc and ub, calculated by cosine 

similarity. 

𝑠𝑖𝑚𝑝(𝑢𝑖, 𝑢𝑗) =
𝑑𝑢𝑖 ∙𝑑𝑢𝑗

‖𝑑𝑢𝑖‖+‖𝑑𝑢𝑗‖−𝑑𝑢𝑖 ∙𝑑𝑢𝑗

 

Where dui and duj represents the personal information 

vector of useri and userj respectively. 

In a conclusion, when user submits a query to 

metasearch engine, the group to which he belongs will 

be obtained. Take the documents clicked by the group 

members who have requested the same query before as 

the document recommendation. Then user similarity is 

used to rank all of recommended documents. That is, a 

user who is more similar to the current user, his/her 

clicked documents will be best ranked. 

8. Experimental Results 

In this section, the performance of the proposed 

personalization mechanism is discussed. Based on the 

above architecture and methods, we implements a 

WWW metasearch engine called “IM search”, which 

combines the search engines “Youdao”, “Baidu”, 

“Bing”, “Yahoo”, and “Sogou”. The homepage is 

shown in Figure 3. 

 
Figure 3. Homepage of IM search. 

By using P@N and DCG@N metrics, the 

performance of “IM search” is compared with the five 

employed underlying search engines, and the two 

metasearch engines, SvvySearch and VROOSH.Two 

users are designed to log in IM Metasearch, User1 and 

User 2. User 1 is interested in sports, finance, education 

and tourism. User 2 is interested in education, sports 

and military. For the same query “lincoln”, the results 

pages for user1 and user2 are shown in Figures 4 and 5 

respectively. It is obvious that these two users have 

different retrieval results. Because a user who is in the 

same group with user1 submitted the query “lincoln” 

and clicked some relevant documents before, the 

result list for user1 has the recommended result that 

user1 might be interested in. 

 
Figure 4. Returned pages for user 1. 

 
Figure 5. Returned pages for user 2. 

We take search engine baidu, bing, youdao, sogou, 

yahoo and meta search engines Savvy Search and 

VROOSH as the baselines to evaluate the 

effectiveness of IM Search. 50 sample queries are 

selected, including 7 navigational queries, 30 

informational queries and 13 transactional queries. 

Some of these queries are listed in Table 2. Six 

students in our laboratory are invited to register in “IM 

search”, request these selected queries and judge the 

relevance of the returned results. For navigational 

queries, Precision@Nis used to evaluate the accuracy 

of the results. In the experiment, N is set to 1. If the 

first document returned by the “IM search” is the 

result that user want, then Precision@N=1, else 

Precision@N=0. The experimental result is shown in 

Figure 6. It is obvious that most of these engines 

perform with the same accuracy. The reason is 

(14) 

(15) 
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navigational search query has a clear objective, and the 

document that users want to get will be ranked at the 

top by each search engine. For informational queries 

and transactional queries, DCG@N(Here N=5) is used 

to evaluate the performance of “IM search”. The 

experimental result is shown in Figure 7. We can see, 

for most of uses, “IM search” performs better than all 

of other search engines. But for student 4, the result is 

unlike, the reason may be that the user interest is evenly 

distributed, it would slightly affect the rank positions of 

all documents. “IM search” performs the same accuracy 

with the underlying search engine “Baidu”. 

Table 2. Sample queries. 

navigational query informational query transactional query 

BBC Homepage software engineering free music downloads 

Cornell University mental health Online Games 

Bing intellectual property download Driver Booster 

Facebook android service tutorial 
Thinking in Java pdf 

download 

YouTube industrial pollution WeTransfer app 

 
Figure 6. Mean value of P@N for the 7 navigational queries judged 

by the six students. 

 
Figure 7. Mean value of DCG@N for the 43 non-

navigationalqueries judged by the six students. 

8.1. Experimental Results of the Proposed 

Schedule Strategy 

To calculate the expertness model of underlying search 

engines, 20 representative query items are selected for 

each topic. These query items are submitted to Baidu, 

Youdao, Yahoo, Bing and Sogou respectively. Take the 

first 20 returned documents of each underlying search 

engine as the raw data to construct the concept lattice. 

Meanwhile, select 5000 click-through data from the 

query log of Sogou Lab to simulate the data for these 

underlying search engines. Then the expertness based 

on click-through data will be obtained. The final 

expertness of each underlying search engine is 

illustrated in Figure 8.  

The experiment is designed to evaluate the 

expertness model. Selecting 20 query items randomly, 

manual annotation is utilized to judge the relevance of 

the first 30 returned documents for each underlying 

search engine, the score is calculated by Equation (16).  

𝑅 = (2𝑁𝑟𝑡𝑑 + 𝑁𝑢𝑑𝑑)/2𝑁𝑟𝑑𝑑   

Where, Nrtd represents the number of relevant 

documents, Nudd is refers to undecided documents, Nrdd 

is refers to the number of returned documents. 

Take the mean value of the selected 20 query items 

as the final relevance score of each underlying search 

engine for each topic, as shown in Figure 9. By 

comparing Figures 8 and 9, it can be seen that in most 

cases, the relevance of the underlying search engines is 

proportional to the calculated expertness model. When 

there is great difference in relevance between 

underlying search engines the expertness model is 

more able to describe this gap, find the most suitable 

engine. 

 

Figure 8. Expertness of each underlying search engine. 

 

Figure 9. Relevance of each underlying search engine. 

8.2. Experimental Results of The Proposed 

Result Merging Method 

In order to evaluate the performance of the proposed 

result merging method, take Borda Fuse method and 

method proposed by Arzanian (written as AFCN) [2]as 

the baseline. Precision@N and DCG@N are used to 

analyze the results. We have selected 80 sample 

queries, including 12 navigational queries, 48 

informational queries and 20 transactional queries. For 

each kind of queries, take the mean value of the results 

for different query items as the final score. 

Precision@N is used to evaluate the precision of the 

(16) 
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results for navigational queries, DCG@N(Here N=10) is 

used for informational queries and transactional queries, 

as mentioned before. The experimental result is shown 

in Table 3. It is obvious that the proposed method 

outperforms Borda Fuse and AFCN for informational 

queries and transactional queries. For example, for a 

transactional query “java download”, Table 4 shows top 

6 URL appearing in Borda list. Table 5 shows the ranks 

the invited six users made. Table 6 shows the 

personalized ranking of AFCN for the six users. Table 

7 shows the personalized ranking of our proposed result 

merging method for the six users. Shade box shows if 

personalized rank is equal to user checking's. It is 

obvious that our proposed method is better than Borda 

Fuse and AFCN. 

Table 3. Precision of the proposed result merging method. 

The type of queries 
The Proposed 

Method(c=0.4) 

Borda Fuse 

Method 
AFCN 

navigational queries(P@N) 1 1 1 

informational queries(DCG@N) 18.02 17.62 17.98 

transactional queries(DCG@N) 17.25 16.97 17.10 

Table 4. Top 6 URL appearing in borda list. 

 URL 

1 
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html 

2 https://www.java.com/en/download/ 

3 
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-

138363.html 

4 https://www.java.com/zh_CN/download/ 

5 https://www.java.com/zh_CN/ 

6 http://www.oracle.com/technetwork/java/javase/downloads/index.html 

Table 5. Ranking of the invited six users. 

User1 User2 User3 User4 User5 User6 

5 6 4 1 5 2 

2 3 5 4 2 3 

1 4 3 2 4 1 

3 2 1 3 1 4 

4 1 6 6 3 6 

6 5 2 5 6 5 

Table 6. Personalized ranking of AFCN. 

User1 User2 User3 User4 User5 User6 

5 5 2 1 5 2 

1 3 4 3 4 1 

3 6 3 2 6 6 

2 2 5 6 1 4 

4 1 6 4 2 3 

6 4 1 5 3 5 

Table 7. Personalized ranking of our proposed result merging 
method. 

User1 User2 User3 User4 User5 User6 

5 2 4 1 5 2 

2 3 5 2 1 4 

1 4 2 5 4 1 

3 6 3 3 6 3 

4 1 6 6 3 6 

6 5 1 4 2 5 

8.3. Experimental Results of The Proposed 

Recommendation 

To verify the quality of recommendation, six students in 

our laboratory are invited to register in “IM search,” 

request queries and judge the relevance of the result list 

with recommendation and without recommendation. 

Take MAP@5 as the estimation methods. For each 

query, only first 10 documents are selected. The mean 

values of MAP for different queries are calculated, as 

shown in Table 8. 

Table 8. The mean values of MAP for the result lists. 

User 
The result list  

with recommendation  
The result list  

without recommendation 
user1 0.383 0.354 

user2 0.352 0.259 

user3 0.344 0.332 

user4 0.219 0.219 

user5 0.225 0.207 

user6 0.445 0.399 

From the Table, we can see, for most of users, the 

result list with recommendation get better 

performance. But for user4, the result is unlike, the 

reason is that most of query items he requested are 

belongs to navigational queries. The recommended 

documents are at the top of result list without 

recommendation. 

9. Conclusions 

This paper presents personalization mechanism for 

metasearch engine based on multi-agent system. By 

collecting user’s click-through data, the metasearch 

engine has the ability to mine user interests, schedule 

the appropriate underlying search engines, and obtain 

the personalized result list. According to the group 

members’ behaviours, the proposed personalization 

mechanism generates recommended results for users 

as well. Experimental Results show that the proposed 

metasearch engine performs better than the employed 

underlying search engines, metasearch engine Savvy 

Search and VROOSH. The personalization 

mechanism improves precision for metasearch engine. 

It is helpful for users to find their required information 

more convenient and effectively. But there are still 

open issues ahead needed to address: 

 User interestsare obtained based on the click-

through data. But others user behaviors, such as the 

browsing time, download history are also 

significant for analyzing user interest. 

 Recommend personalized query words for different 

users. 
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