
978 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

A Personalized Metasearch Engine Based on Multi-

Agent System

Meijia Wang, Qingshan Li, Yishuai Lin, Yingjian Li, and Boyu Zhou

Software Engineering Institute, Xidian University, China

Abstract: By providing unified access to multiple underlying search engines, metasearch engine is an intuitiveway to increase

the coverage of the WWW. Great progress has been made in this area, butthe previous studies ignore the perspectives of users.

This paper proposes a personalization mechanism for metasearch engine based on multi-agent system to improve precision

ratio. The proposed mechanism obtains user interests from click-through data, schedules the appropriate underlying search

engines according to the expertness model, and merges results based on user interest distribution. Moreover, it also has the

ability to provide personalized result recommendation. Compared with the baseline results, experimental results show that the

proposed personalization mechanism performs better on precision. The proposed metasearch engine is feasible for providing

useful search results more effectively.

Keywords: Metasearch engine, multi-agent system, personalized search.

Received October 29, 2016; accepted August 26, 2018

1. Introduction

In big data age, search engine is a tool to help users

find useful information on World Wide Web.

However, it has faced with problem of low recall ratio

[15]. The reasons are as follows:

1. An individual search engine only indexes a small

coverage of web documents [10].

2. The overlapping among different search engines is

very low.

Therefore, metasearch engine which integrates the

search results from multiple search engines has been

proposed to extend the information retrieval coverage

and improve recall ratio [13]. However it is still limited

by the precision. Because most of the proposed

metasearch engines use the similarity between the

query and web documents to search, ignoring the

perspectives of users. To improve precision,

personalization mechanism for metasearch engine

which takes user preferences into consideration is

significant. Generating schedule strategy, merging

results and providing recommendation based on user

interests is very helpful to meet user’s requirements.

An intelligent agent is a piece of software that is

reactive, proactive, perceptible and social. It has ability

to observe and act upon an environment [17]. A multi-

agent system is a system composed of multiple

interacting intelligent agents [1]. Using multi-agent

architecture to implement personalization mechanism

for metasearch engine has notable advantages. User

interests change overtime, agent has the ability to

perceive the change of user interests actively and

update in time. Moreover, it is also significant to

merge results and provide recommendation more

flexibly according to search context. In summary,

agent improves the adaptability of metasearch engine.

In this paper, multi-agent based architecture is

proposed to improve personalization mechanism for

metasearch engine. Intelligent agent is utilized to

analyze user interests, generate schedule strategy,

merge results and provide recommendation that user

might be interested in. Precision@N [3], DCG@N [20]

and MAP@N [19] are used to evaluate the

performance of the proposed metasearch engine.

The rest of this paper is organized as follows: In

section 2, related work is reviewed and compared. In

section 3, the architecture of the proposed agent-based

personalization mechanism for meatsearch engine is

introduced. Section 4 demonstrates the user interest

model, including the obtainment and storage of user

interest. The schedule strategy is described in section

5. Section 6 introduces our result merging method

which considers user interest distribution. The result

recommendation is described in section 7.

Experimental results will be presented in section 8.

Section 8 briefly illustrates the prototype of the

proposed system named IM Search as well. Finally, the

conclusions and further work are given in section 9.

2. Related Work

A large number of metasearch engines have been

proposed, such as Profusion [7], Saavy search [9], Web

Fusion [11, 13]. These metasearch engines can be

grossly divided into two categories, Component-based

architecture and Agent-based architecture. In this

section, an overview of metasearch engines is

investigated.

1. Component-based architecture

A Personalized Metasearch Engine Based on Multi-Agent System 979

Helios [8] is an open source metasearch engine which

consists of six components. The web interface is

designed to allow users to submit queries and select the

desired search engines. The local query parser and

Emitter dispatches query into the appropriate format

for the chosen underlying search engines. The engines

builder maintains all the settings necessary to

communicate with the underlying search engines. The

HTTP Retrievers handle the network communications.

The search results collector and parser is utilized to

collect results, and return them in using XML. Merger

and Ranker ranks all of results into a single list.

Savvysearch [9] is a metasearch engine that learns to

identify which underlying search engines are most

appropriate for different queries, reasons about

resource demands, and represents an iterative parallel

search strategy as a simple plan. Finally, the returned

results will be displayed to users. ProFusion [7]

consists of five components. The user interface is

utilized to interact with users, receiving user’s request

and providing several available options. The Duplicate

Removal is designed to remove duplicated pages, using

a few simple rules. The merge algorithms are

responsible for merging results. The intelligent search

Engine Selection allows metasearch to automatically

select the best three search engines for a given query,

based on the query's domain. The search result

presentation is responsible for displaying the final

results to users.

Component-based metasearch engines adopt the

idea of object-oriented software engineering,

encapsulating each function into function module.

Each module interacts with others through messages to

complete all functions of metasearch engine, leading to

the characteristics of “limited autonomy, fixed

encapsulation and interactive monotonicity”. Therefore

component-based meta-search engines are lack of

intelligence, dynamics and adaptability.

2. Agent-based architecture

In order to improve the intelligence and adaptability of

Profusion, Fan and Gauch [6] proposed a multi-agent

architecture for ProFusion. The architecture consists of

four kinds of agents. The dispatch agent is responsible

for communicating with users and dispatching queries

to the search agent and the learning agent. The search

agent interacts with the underlying search engines,

reporting search results, confidence factors, and time-

out values of the underlying search engines to the

dispatch agent. The learning agent is in charge of the

learning and development of the underlying search

engines. The guarding agent is invoked when a search

engine is down and it is responsible for preventing the

queries to non-responsive search engines and detecting

when the search engine is back online. WebFusion [11,

12, 13] is composed of two layers of different types of

agents. Each agent in the first layer is used to

communicate with a specific underlying search engine.

The master agent in the second layer is responsible for

collecting results which returned by agents in the first

layer. Arzanian et al. [2] proposed a multi-agent based

personalized metasearch engine using automatic fuzzy

concept networks. The metasearch engine consists of

user agent, search agents group and personalization

agents group. The user agent is responsible for

communicating with users, predefining concepts vector

and user's profile. The search agents group is

composed of four agents, Google agent, Yahoo agent,

Ask agent and Msn agent. Each of them is in charge of

communicating with a specific underlying search

engine. The personalization agents group is composed

of FCN1 agent, FCN2 agent and ranking agent. The

FCN1 agent is utilized to generate fuzzy concept

network for a user’s profile. The FCN2 agent merges

all of results and generates a fuzzy concept network for

results list. The Ranking agent receives the concept

network which was sent by FCN2 agent and completes

the ranking process.

Because of the characteristics of agent, such as

autonomy, sociality, reactivity and proactiveness [14],

the Agent-based architecture performs better than the

Component-based architecture. Some metasearch

engines based on multi-agent system have been

proposed, however the previous research is still short

of personalization level. In this paper, a multi-agent

based personalization mechanism for metasearch

engine is proposed, mining user interests and providing

the useful search results more effectively.

3. Proposed Multi-Agent Architecture

The architecture of the proposed personalization

mechanism for metasearch engine is composed of

seven roles played by seven related agents.

 Interface Role: this role is played by the

InterfaceAgent, which will be activated when the

Interface Agent is launched. Interface Role interacts

with users. It has ability to get user id and query

words, and display all of results to the current user.

 UserInterest Role: this role is played by the

UserInterest Agent, it has ability to obtain, update

and read user interests.

 UserGroup Role: this role is played by the

UserGroup Agent. The required abilities are as

follows:

1. According to user personal information and

query words, cluster users into different groups

from two dimensions, and update user group

information.

2. Read group information to which user belongs.

 ResultRecommendation Role: this role is played by

the ResultRecommendation Agent, which will be

activated when the Result Recommendation Agent

is launched. It has ability to read click through data

980 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

of group members for the current user, and generate

recommended results.

 Search Role: this role is played by the Search

Agent, which will be activated when the Search

Agent is launched. The required abilities are as

follows:

1. Calculate expertness model of underlying search

engines.

2. Record the states of underlying search engines.

3. Analyze query words of the current user.

4. Generate schedule strategy according to

expertness model.

 SE Role: this role is played by the SE Agent, which

will be activated when the Search Agent is

launched. It has ability to monitor the states of

underlying search engines, analyze query words of

the current user, and generate schedule strategy

according to expertness model.

 ResultMerge Role: this role is played by the

ResultMerge Agent, which will be activated when

the Result Merge Agent is launched. It has ability to

remove all duplicate results returned by underlying

search engines and rerank all of search results into a

single list.

The multi-agent based architecture works as shown in

Figure 1: a user requests a query to the Interface Agent.

Then Interface Agent sends the query to the Search

Agent, and the ResultRecommendation Agent. The

Search Agent receives the query, generates the

schedule strategy and sends the query to the SE Agent

which will be scheduled. After getting the query, the

SE Agents communicate with underlying search

engines to complete the search task, and then pass on

the returned results to the ResultMerge Agent.

Meanwhile, the Interface Agent also passes on user Id

to the UserGroup Agent and user interest agent. The

UserGroup Agent gets the information of groups to

which the current user belongs, and sends it to the

ResultRecommendation Agent. After getting the query

and user group information, the

ResultRecommendation Agent generates the

recommended results and sends them to the Interface

Agent. According to user Id, the UserInterest Agent

obtains user interest factor and passes it on to the

ResultMerge Agent. Then the ResultMerge Agent

merges all of results returned by the SE Agent into a

single list, and returns the list to the InterfaceAgent for

displaying. The UserInterest Agent analyzes the click-

through data to obtain user interests. After obtaining all

of results, the Interface Agent is responsible for

displaying these results to users.

Figure 1. Working diagram of the proposed multi-agent architecture.

4. User Interest Model

It has been proved that a user will click the interested

web pages in most cases. For this reason, user interest

is obtained based on click through data. For each record

of a user, word segmentation technology is used to

extract the useful information and get rid of stop words

(and, or, a, et al.). Take the words with high weight

value as the user interest words (In this paper, words

with high weight value means words appeared with

high frequency). In accordance with the Sogou corpus

for text classification, all documents could be divided

into these nine topics: literature, finance, employment,

sports, tourism, education, IT, health, and military.

The naive Bayesian formula is utilized to decide the

topic to which user’s interest words belong, as shown

in Equation (1).

𝐶𝑓 = 𝑎𝑟𝑔𝑀𝑎𝑥(𝑃(𝑐𝑗) ×∏ 𝑃(𝑥𝑖|𝑐𝑗)
𝑐

1
)

Where Cf is the final topic, P(cj) is the prior

probability of the topic𝑐𝑗 , 𝑃(𝑥𝑖|𝑐𝑗)denotes the class

conditional probability of characteristic quantities xi

which belongs to 𝑐𝑗 , and ∏ 𝑃(𝑥𝑖|𝑐𝑗)
𝑐
1 calculates the

(1)

A Personalized Metasearch Engine Based on Multi-Agent System 981

(7)

class conditional probability of characteristic quantities

xi in all topics.

Furthermore, the topic frequency corresponding to

user’s interest words is used to represent user interest

factor. User interest model is represented as user

interest tree which consists of three layers, as shown in

Figure 2. The first layer is user’s ID which identifies a

user, the second layer is the topics which user interested

in, and the third is the user interest words with weight

values.

Figure 2. User interest model.

It is proved that user interest decays with time which

is similar to human memory. Therefore, the forgetting

factor is utilized to ensure the interest words which user

focused on at present are of highest weight, as shown in

Equation (2):

𝐹(𝑘) = 𝑒
−
𝑙𝑜𝑔2(∆𝑡)

𝑓

Where f is the half-life indicating that after f days, user

interest is forgotten half. ∆𝑡 represents the time period

between latest updating of interest word k to the current

time.

The weight value𝜔(𝑘)of user interest word k will be

updated by Equation (3):

𝜔(𝑘) = 𝜔(𝑘) ∗ 𝐹(𝑘)

5. Schedule Strategy

In order to evaluate the ability of underlying search

engines, the expertness model is constructed, as shown

in Table 1, here n=9, it represents the nine topics,

including literature, finance, employment, sports,

tourism, education, IT, health, and military. m is the

number of underlying search engines. eij indicates the

expertness of underlying search engine i about topic j,

calculated from two aspects: concept lattice and click-

through data. The formula is shown in Equation (4).

𝑒𝑖𝑗 = ∑ 𝐶𝑖𝑗
𝑚
𝑖=1 ×

𝑈𝑖𝑗

∑ 𝑈𝑖𝑗
𝑚
𝑖=1

+ 𝐶𝑖𝑗

Where eij is theexpertness of the underlying search

engine i about topic j. Cij is the expertness of underlying

search engine i about topic j which is calculated based

on concept lattice. While Uij is the expertness

calculated based onclick-through data.

Table 1. The expertness model of underlying search engines.

 Topic 1 Topic 2 … Topic n

SE1 e11 e12 … e1n

SE2 e21 e22 … e2n

… … … … …

SEm em1 em2 … emn

For a query, the documents returned by most of

underlying search engines are more important than

others. Therefore, the expertness of an underlying

search engine has the characteristic as follows: The

top ranked documents retrieved by these search

engines are the same, or quite similar. Based on

concept lattice [16], the degree that search engines

support each other is calculated. The data structure of

a search result consists of URL, title and abstract.

Take the URL set of all search results as the object set

of formal context. Word segmentation is conducted

for all the titles and abstracts of the results, then take

the keywords as the attribute set of formal context.

The binary relation between the object set and the

attribute set is defined as whether the search result

corresponding to the URL in object set contained the

keywords in attribute set. The method proposed by Du

et al. [4] is used to construct concept lattice. If there

are two concept nodes in a concept lattice, concept

A=(URLA ， KeywordA) and concept B=(URLB,

KeywordB), the similarity between KeywordA and

KeywordB is calculated by Equation (5):

𝑆𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵) =

1

𝑛×𝑚
∑ ∑ 𝑠𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴𝑖 , 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵𝑖)

𝑚
𝑗=1

𝑛
𝑖=1

Where n is the number of keywords of node A, while

m is the number of keywords of node B.

The similarity between concept A and B is

calculated by Equation (6).

𝑁𝑜𝑑𝑒𝑠𝑖𝑚(𝐴,𝐵) =
|𝑈𝑅𝐿𝐴 ∩ 𝑈𝑅𝐿𝐵|

𝑚𝑎𝑥 (|𝑈𝑅𝐿𝐴|, |𝑈𝑅𝐿𝐵|)
× (1 − 𝜔)

+ 𝑠𝑖𝑚(𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐵) × 𝜔

Where 𝜔 is the weighting coefficient, this paper set 𝜔

ro 0.8.

The similarity between concept lattice A and

concept lattice B is calculated by Equation (7), that is

the degree which search engines support each other.

𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝑖𝑚(𝐴,𝐵) = 𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑎𝑥(𝐴) ,𝑚𝑎𝑥 (𝐵)) +

𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑖𝑛(𝐴) ,𝑚𝑖𝑛(𝐵)) + ∑ 𝑁𝑜𝑑𝑒_𝑠𝑖𝑚(𝑚𝑎𝑥𝑖(𝐴) ,𝑚𝑎𝑥𝑖 (𝐵))
𝐿−2
𝑖=1

Where max(A) and max(B) is the biggest node of

concept lattice A and concept lattice B respectively,

while min(A) and min(B) are the smallest nodes.

Finally, from Equation (8), the expertness score of

search engine i about topic j is obtained based on

concept lattice. SE_set is the set of search engines.

𝐶𝑖𝑗 = ∑ 𝐶𝑜𝑛𝑐𝑒𝑝𝑡_𝑠𝑖𝑚(𝑖, 𝑎)𝑎∈𝑆𝐸_𝑠𝑒𝑡−{𝑖}

For each topic, several keywords are selected and

passed on to the search engines, constructing concept

lattices according to the returned results. Then the

expertness of each underlying search engine about a

specific topic will be obtained.

Click-through data [5] reflects the users'

satisfaction of search engine. Therefore the click-

through data is also used to obtain the expertness of

underlying search engines. For each record of click-

through data, find the topic to which belongs.

(2)

(3)

(4)

(5)

(6)

(8)

982 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

According to Equation (9), for record a, the expertness

score of the search engine is calculated.

𝑊𝑎 = 0.01 × 𝑚𝑎𝑥{(100 − 𝑟𝑎𝑛𝑘), 0} /𝑐𝑙𝑖𝑐𝑘

Where click represents the click rank of this record, it is

inversely proportional to Wa. rank is the rank of the

URL of record a in all returned results. If the rank is

bigger than 100, Wa will be set to 0. 100-rank is utilized

because URLs ranked at the bottom are mostly invisible

to users.

If there are m records belonging to topic j in the

click-through data of a search engine i, the expertness

score of the search engines i about topic j is calculated

by Equation (10):

𝑈𝑖𝑗 =
1

𝑚
∑ 𝑊𝑎
𝑚
𝑎=1

Finally, based on Equation (4), the expertness model of

each underlying search engine is obtained.

When user submits a query, metasearch engine

obtains the topic to which the query belongs, then

according to the expertness model, the appropriate

underlying search engines are selected to complete the

search task.

6. Result Merging

Most search engines generate the same set of results for

an identical query from different users and display in

the same way. However, different users focus on

different topics. For instance, two users issue the same

query, “apple.” The user who is interested in mobile

phone prefers the results about iPhone. The other users

may prefer the results about fruit. In order to obtain the

personalized result list, it is necessary to organize the

same results with different order for each user.

Therefore, taking user interest into consideration is

important when ranking the documents returned by

underlying search engines. For the registered users, it is

easy to get their interests. Based on the above idea, a

personalized result merging method is proposed.

For a user, the final score assigned to document d is

calculated by Equation (11):

𝑟𝑎𝑛𝑘(𝑑) =

{

∑ 𝑟𝑖
𝑚
𝑖=1

𝑚𝑛(
𝑘
10
+1)

𝑛(1−𝑐
𝑛

𝑚
)

𝑡𝑎𝑛(𝑖𝑛𝑓𝑑)
, 𝜎 > 𝑇

∑ 𝑟𝑖
𝑚
𝑖=1

𝑚𝑛(
𝑘

10
+1)

𝑛 (1 − 𝑐
𝑛

𝑚
) (1 − 𝑖𝑛𝑓𝑑), 𝜎 < 𝑇

Where infd is user interest factor for document d,

calculated by the cosine similarity between the current

user interests and the topics of d. Moreover, if infd

equals to 0, it will be set to infinitesimal value. m is the

number of underlying search engines employed by

meta search engine, n is the number of underlying

search engines who returned d. c is the weighting

coefficient, according to experiment, c is set to 0.4,

(1 − 𝑐
𝑛

𝑚
) is intended to improve the scores of

documents which seldom appeared but are important to

the user. k is the number of documents that each

underlying search engine returned. ri is the ranking

position of d in the search engine i. σ represents the

stand deviation of user interests, calculated by

Equation (12). T is the threshold, if σ<T, it indicates

that user interests are evenly distributed on different

topics, therefore, user interests make a less impact on

document d, linear function is used to calculate the

score of d. While if σ>T if, it means that user interests

are significant for the document, tangent function is

used.

σ = √
∑ (𝑐𝑖−𝑐̅)

2𝑁
𝑖=1

𝑁

Where N is the number of topics, ci is the interest

factor about topic i, c̅ is the mean value of user interest

factor about all topics.

In the proposed method, the document which

obtains the lowest score will be best ranked.

7. Result Recommendation

Providing result recommendation will help users to

find useful information with less effort. Sharing search

experience between similar users is an effective way to

generate recommendations. Therefore, the proposed

personalized mechanism clusters users into different

groups from two dimensions: personal information and

query data. The personal information is explicit data,

which obtains from the registration of a user. When a

user registers in the metasearch engine, he/she will be

asked to providing personal information, including

gender, address, and occupation. The query log is

implicit data, users also can be clustered based on

query words.

 First, the user model is constructed, as shown in

Equation (13):

U =< 𝑄, 𝐶, 𝑃 >

Where Q represents the query data that user passed on

to metasearch engine. C represents the returned

documents which user clicked for a certain query,

came from click-through data. P is the personal

information that user submitted to the system.

For personal information, it is easy to classify users

into different groups, users with the same gender,

address and occupation are in the same group. While

for query data, take the log-likelihood rating as the

similar function, and the query similarity between

users will be obtained. Furthermore, Density-Based

Spatial Clustering of Applications with Noise

(DBCSAN) [18] is used to cluster users based on query

similarity. Above all, all of users will be clustered from

their personal information and query data respectively.

In most cases, users only click relevant documents.

Moreover, if the ith document meets user’s requirement,

he/she will never browse the next document.

Therefore, from the click-through data, the relevant

documents for a query will be found. In order to get a

better document recommendation, ranking all of the

(9)

(10)

(11)

(12)

(13)

A Personalized Metasearch Engine Based on Multi-Agent System 983

relevant documents is necessary. For user uc, the score

of recommended document r which has been clicked by

user ub is calculated by Equation (14):

𝑠𝑐𝑜𝑟𝑒(𝑟) = 𝜔𝑝 ∙ 𝑠𝑖𝑚𝑝(u𝑐 , u𝑏) + 𝜔𝑞 ∙ 𝑠𝑖𝑚𝑞(u𝑐, u𝑏) + 𝜔𝑖 ∙ 𝑠𝑖𝑚𝑖(u𝑐, u𝑏)

Where 𝜔𝑝 , 𝜔𝑞 and 𝜔𝑖 are the weight coefficients,

𝑠𝑖𝑚𝑝(u𝑐 , u𝑏) is the personality similarity between u𝑐

and ub, calculated by Equation (15). 𝑠𝑖𝑚𝑞(u𝑐, u𝑏) is the

query similarity between uc and ub, which has been

mentioned before, and 𝑠𝑖𝑚𝑖(u𝑐 , u𝑏) is the interest

similarity between uc and ub, calculated by cosine

similarity.

𝑠𝑖𝑚𝑝(𝑢𝑖, 𝑢𝑗) =
𝑑𝑢𝑖 ∙𝑑𝑢𝑗

‖𝑑𝑢𝑖‖+‖𝑑𝑢𝑗‖−𝑑𝑢𝑖 ∙𝑑𝑢𝑗

Where dui and duj represents the personal information

vector of useri and userj respectively.

In a conclusion, when user submits a query to

metasearch engine, the group to which he belongs will

be obtained. Take the documents clicked by the group

members who have requested the same query before as

the document recommendation. Then user similarity is

used to rank all of recommended documents. That is, a

user who is more similar to the current user, his/her

clicked documents will be best ranked.

8. Experimental Results

In this section, the performance of the proposed

personalization mechanism is discussed. Based on the

above architecture and methods, we implements a

WWW metasearch engine called “IM search”, which

combines the search engines “Youdao”, “Baidu”,

“Bing”, “Yahoo”, and “Sogou”. The homepage is

shown in Figure 3.

Figure 3. Homepage of IM search.

By using P@N and DCG@N metrics, the

performance of “IM search” is compared with the five

employed underlying search engines, and the two

metasearch engines, SvvySearch and VROOSH.Two

users are designed to log in IM Metasearch, User1 and

User 2. User 1 is interested in sports, finance, education

and tourism. User 2 is interested in education, sports

and military. For the same query “lincoln”, the results

pages for user1 and user2 are shown in Figures 4 and 5

respectively. It is obvious that these two users have

different retrieval results. Because a user who is in the

same group with user1 submitted the query “lincoln”

and clicked some relevant documents before, the

result list for user1 has the recommended result that

user1 might be interested in.

Figure 4. Returned pages for user 1.

Figure 5. Returned pages for user 2.

We take search engine baidu, bing, youdao, sogou,

yahoo and meta search engines Savvy Search and

VROOSH as the baselines to evaluate the

effectiveness of IM Search. 50 sample queries are

selected, including 7 navigational queries, 30

informational queries and 13 transactional queries.

Some of these queries are listed in Table 2. Six

students in our laboratory are invited to register in “IM

search”, request these selected queries and judge the

relevance of the returned results. For navigational

queries, Precision@Nis used to evaluate the accuracy

of the results. In the experiment, N is set to 1. If the

first document returned by the “IM search” is the

result that user want, then Precision@N=1, else

Precision@N=0. The experimental result is shown in

Figure 6. It is obvious that most of these engines

perform with the same accuracy. The reason is

(14)

(15)

984 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

navigational search query has a clear objective, and the

document that users want to get will be ranked at the

top by each search engine. For informational queries

and transactional queries, DCG@N(Here N=5) is used

to evaluate the performance of “IM search”. The

experimental result is shown in Figure 7. We can see,

for most of uses, “IM search” performs better than all

of other search engines. But for student 4, the result is

unlike, the reason may be that the user interest is evenly

distributed, it would slightly affect the rank positions of

all documents. “IM search” performs the same accuracy

with the underlying search engine “Baidu”.

Table 2. Sample queries.

navigational query informational query transactional query

BBC Homepage software engineering free music downloads

Cornell University mental health Online Games

Bing intellectual property download Driver Booster

Facebook android service tutorial
Thinking in Java pdf

download

YouTube industrial pollution WeTransfer app

Figure 6. Mean value of P@N for the 7 navigational queries judged

by the six students.

Figure 7. Mean value of DCG@N for the 43 non-

navigationalqueries judged by the six students.

8.1. Experimental Results of the Proposed

Schedule Strategy

To calculate the expertness model of underlying search

engines, 20 representative query items are selected for

each topic. These query items are submitted to Baidu,

Youdao, Yahoo, Bing and Sogou respectively. Take the

first 20 returned documents of each underlying search

engine as the raw data to construct the concept lattice.

Meanwhile, select 5000 click-through data from the

query log of Sogou Lab to simulate the data for these

underlying search engines. Then the expertness based

on click-through data will be obtained. The final

expertness of each underlying search engine is

illustrated in Figure 8.

The experiment is designed to evaluate the

expertness model. Selecting 20 query items randomly,

manual annotation is utilized to judge the relevance of

the first 30 returned documents for each underlying

search engine, the score is calculated by Equation (16).

𝑅 = (2𝑁𝑟𝑡𝑑 + 𝑁𝑢𝑑𝑑)/2𝑁𝑟𝑑𝑑

Where, Nrtd represents the number of relevant

documents, Nudd is refers to undecided documents, Nrdd

is refers to the number of returned documents.

Take the mean value of the selected 20 query items

as the final relevance score of each underlying search

engine for each topic, as shown in Figure 9. By

comparing Figures 8 and 9, it can be seen that in most

cases, the relevance of the underlying search engines is

proportional to the calculated expertness model. When

there is great difference in relevance between

underlying search engines the expertness model is

more able to describe this gap, find the most suitable

engine.

Figure 8. Expertness of each underlying search engine.

Figure 9. Relevance of each underlying search engine.

8.2. Experimental Results of The Proposed

Result Merging Method

In order to evaluate the performance of the proposed

result merging method, take Borda Fuse method and

method proposed by Arzanian (written as AFCN) [2]as

the baseline. Precision@N and DCG@N are used to

analyze the results. We have selected 80 sample

queries, including 12 navigational queries, 48

informational queries and 20 transactional queries. For

each kind of queries, take the mean value of the results

for different query items as the final score.

Precision@N is used to evaluate the precision of the

(16)

A Personalized Metasearch Engine Based on Multi-Agent System 985

results for navigational queries, DCG@N(Here N=10) is

used for informational queries and transactional queries,

as mentioned before. The experimental result is shown

in Table 3. It is obvious that the proposed method

outperforms Borda Fuse and AFCN for informational

queries and transactional queries. For example, for a

transactional query “java download”, Table 4 shows top

6 URL appearing in Borda list. Table 5 shows the ranks

the invited six users made. Table 6 shows the

personalized ranking of AFCN for the six users. Table

7 shows the personalized ranking of our proposed result

merging method for the six users. Shade box shows if

personalized rank is equal to user checking's. It is

obvious that our proposed method is better than Borda

Fuse and AFCN.

Table 3. Precision of the proposed result merging method.

The type of queries
The Proposed

Method(c=0.4)

Borda Fuse

Method
AFCN

navigational queries(P@N) 1 1 1

informational queries(DCG@N) 18.02 17.62 17.98

transactional queries(DCG@N) 17.25 16.97 17.10

Table 4. Top 6 URL appearing in borda list.

 URL

1
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html

2 https://www.java.com/en/download/

3
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-

138363.html

4 https://www.java.com/zh_CN/download/

5 https://www.java.com/zh_CN/

6 http://www.oracle.com/technetwork/java/javase/downloads/index.html

Table 5. Ranking of the invited six users.

User1 User2 User3 User4 User5 User6

5 6 4 1 5 2

2 3 5 4 2 3

1 4 3 2 4 1

3 2 1 3 1 4

4 1 6 6 3 6

6 5 2 5 6 5

Table 6. Personalized ranking of AFCN.

User1 User2 User3 User4 User5 User6

5 5 2 1 5 2

1 3 4 3 4 1

3 6 3 2 6 6

2 2 5 6 1 4

4 1 6 4 2 3

6 4 1 5 3 5

Table 7. Personalized ranking of our proposed result merging
method.

User1 User2 User3 User4 User5 User6

5 2 4 1 5 2

2 3 5 2 1 4

1 4 2 5 4 1

3 6 3 3 6 3

4 1 6 6 3 6

6 5 1 4 2 5

8.3. Experimental Results of The Proposed

Recommendation

To verify the quality of recommendation, six students in

our laboratory are invited to register in “IM search,”

request queries and judge the relevance of the result list

with recommendation and without recommendation.

Take MAP@5 as the estimation methods. For each

query, only first 10 documents are selected. The mean

values of MAP for different queries are calculated, as

shown in Table 8.

Table 8. The mean values of MAP for the result lists.

User
The result list

with recommendation
The result list

without recommendation
user1 0.383 0.354

user2 0.352 0.259

user3 0.344 0.332

user4 0.219 0.219

user5 0.225 0.207

user6 0.445 0.399

From the Table, we can see, for most of users, the

result list with recommendation get better

performance. But for user4, the result is unlike, the

reason is that most of query items he requested are

belongs to navigational queries. The recommended

documents are at the top of result list without

recommendation.

9. Conclusions

This paper presents personalization mechanism for

metasearch engine based on multi-agent system. By

collecting user’s click-through data, the metasearch

engine has the ability to mine user interests, schedule

the appropriate underlying search engines, and obtain

the personalized result list. According to the group

members’ behaviours, the proposed personalization

mechanism generates recommended results for users

as well. Experimental Results show that the proposed

metasearch engine performs better than the employed

underlying search engines, metasearch engine Savvy

Search and VROOSH. The personalization

mechanism improves precision for metasearch engine.

It is helpful for users to find their required information

more convenient and effectively. But there are still

open issues ahead needed to address:

 User interestsare obtained based on the click-

through data. But others user behaviors, such as the

browsing time, download history are also

significant for analyzing user interest.

 Recommend personalized query words for different

users.

Acknowledgement

This work is supported by the National Natural Science

Foundation of China (61672401 and 61373045), the

Fundamental Research Funds for the Central

Universities of China (JB171001, JBZ171004,

BDY221411, and K5051223008), the Pre-Research

Project of the “Thirteenth Five-Year-Plan” of China

(315***10101 and 315**0102), and the Technology

Program of Xi’an (2017073CG/RC036 (XDKD004)).

986 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

References

[1] Alkhateeb F., AI-Fakhry A., Maghayreh E.,

Alijawarneh S., and AI-Taani A., “A Multi-agent-

based System for Securing University Campus,”

International Journal of Research and Reviews in

Applied Sciences, vol. 2, no. 3, pp. 223-231, 2010.

[2] Arzanian B., Akhlaghian F., and Moradi P., “A

Multi-Agent Based Personalized Meta-Search

Engine Using Automatic Fuzzy Concept

Networks,” in Proceedings of 3rd International

Conference on Knowledge Discovery and Data

Mining, Phuket, pp. 208-211, 2010.

[3] Craswell N., Precision at n, Springer, 2009.

[4] Du Y., Pei Z., Xiang D., and Li K., “New Fast

Algorithm for Constructing Concept Lattice,” in

Proceedings of International Conference on

Computational Science and its Applications,

Kuala Lumpur, pp. 434-447, 2007.

[5] Dupret G., Murdock V., and Piwowarski B.,

“Web Search Engine Evaluation Using Click

Through Data and A User Model,” in

Proceedings of International Conference on

World Wide Web, Banff, 2007.

[6] Fan Y. and Gauch S., “An Adaptive Multi-Agent

Architecture for the ProFusion* Meta Search

System,” in Proceedings of Webnet 97-World

Conference on the WWW, Internet and Intranet,

Toronto, pp. 1-2, 1997.

[7] Gauch S., Wang G., and Gomez M., “ProFusion*:

Intelligent Fusion from Multiple, Distributed

Search Engines,” Journal of Universal

Computing, vol. 2, pp. 637-649, 1996.

[8] Gulli A. and Signorini A., “Building an Open

Source Meta-Search Engine,” in Proceedings of

the 14th International Conference on World Wide

Web, Chiba, pp.1004-1005, 2005.

[9] Howe A., “A MetaSearch Engine that Learns

Which Search Engines to Query,” Ai Magazine,

vol. 18, no. 2, pp. 19-25, 1997.

[10] Keyhanipour A., Moshiri B., Kazenmian M.,

Piroozmand M., and Lucas C., “Aggregation of

Web Search Engines Based on Users’ Preferences

in WebFusion,” Knowledge-Based Systems, vol.

20, no. 4, pp.321-328, 2007.

[11] Keyhanipour A., Moshiri B., Piroozmand M., and

Lucas C., “WebFusion: Fundamentals and

Principals of a Novel Meta Search Engine,” in

Proceedings of International Joint Conference on

Neural Networks, Vancouver, pp. 4126-4131,

2006.

[12] Keyhanipour A., Moshiri B., Kazenmian M.,

Piroozmand M., and Lucas C., “A Multi-Layer/

Multi-Agent Architecture for Meta-Search

Engines,” in Proceedings of International

Conference on Artificial Intelligence and Machine

Learning, Cairo, 2005.

[13] Meng W., Yu C., and Liu K., “Building Efficient

and Effective Metasearch Engines,” Acm

Computing Surveys, vol. 34, no. 1, pp. 48-89,

2001.

[14] Pan A., Yeung K., Moon K., Leung S., and Pan

A., “Exploring the Potential of Using Agent-

based Technology in Information

Communication in Apparel Supply Chain

Management,” in Proceedings of IEEE

International Conference on Industrial

Informatics, Singapore, pp. 433-438, 2006.

[15] Sahoo P. and Parthasarthy R., “An Efficient Web

Search Engine for Noisy Free Information

Retrieval,” The International Arab Journal of

Information Technology, vol. 15, no. 3, pp. 412-

418, 2018.

[16] Tonella P., “Using A Concept Lattice of

Decomposition Slices for Program

Understanding and Impact Analysis,” IEEE

Transactions on Software Engineering, vol. 29,

no. 6, pp. 495-509, 2003.

[17] Vafadar S. and Barfourosh A., “Towards

Intelligence Engineering in Agent-Based

Systems,” The International Arab Journal of

Information Technology, vol. 12, no. 1, pp. 94-

103, 2015.

[18] Wei X., Shi X., Kim S., Patrick J., Binkley J.,

Kong M., McClain C., and Zhang X., “Data

Dependent Peak Model Based Spectrum

Deconvolution for Analysis of High Resolution

LC-MS Data,” Analytical Chemistry, vol. 86, no.

4, pp. 2156-2165, 2011.

[19] Wu S. and Mcclean S., “Information Retrieval

Evaluation with Partial Relevance Judgment,” in

Proceedings of British International Conference

on Databases, Belfast, pp. 86-93, 2006.

[20] Zhou K., Zha H., Xue G., and Yu Y., “Learning

the Gain Values and Discount Factors of DCG,”

IEEE Transactions on Knowledge and Data

Engineering, vol. 26, no. 2, pp. 391-404, 2012.

A Personalized Metasearch Engine Based on Multi-Agent System 987

 Meijia Wang received the M.E.

degree in College of Information

Engineering from Northwest A&F

University. Now she is a PhD.

Candidate in Xidian University. Her

main research interests include

Agent-oriented software

engineering, data analysis, and social network analysis.

Qingshan Li received his Ph.D.

degree from Xidian University. Now

he is a professor, PhD supervisor in

Software Engineering Institute,

Xidian University. His main research

interests include agent-oriented

software engineering, self-adaptive

system, and data analysis.

Yishuai Lin received the Ph.D.

degree from Université de

Technologie de Belfort-Montbéliard.

Now, she is a lecture in Software

Engineering Institute, Xidian

University, Her main research

interests include agent-oriented

software engineering, knowledge management, and

product design.

Yingjian Li received the M.E.

degree in Software Engineering

Institute from Xidian University. His

main research interests include

Agent-oriented software engineering,

information retrieval, and data

analysis.

 Boyu Zhou received the M.E.

degree in Software Engineering

Institute from Xidian University. His

main research interests include

Agent-oriented software engineering,

and information retrieval.

