
The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019 1063

Correlation Dependencies between Variables in

Feature Selection on Boolean Symbolic Objects

Djamal Ziani

 College of Business and Administration, Al Yamamah University, Saudi Arabia

Abstract: Feature selection is an important process in data analysis and data mining. The increasing size, complexity, and

multi-valued nature of data necessitate the use of Symbolic Data Analysis (SDA), which utilizes symbolic objects instead of

classical tables, for data analysis. The symbolic objects are created by using abstraction or generalization techniques on

individuals. They are a representation of concepts or clusters. To improve the description of these objects, and to eliminate

incoherencies and over-generalization, using dependencies between variables is crucial in SDA. This study shows how

correlation dependencies between variables can be processed on Boolean Symbolic Objects (BSOs) in feature selection. A new

feature selection criterion that considers the dependencies between variables, and a method of dealing with computation

complexity is also presented.

Keywords: Feature selection, dependencies; symbolic data analysis, discrimination criteria.

Received September 13, 2016; accepted July 23, 2017

1. Introduction

In Symbolic Data Analysis (SDA), Boolean Symbolic

Objects (BSOs) are used to represent groups or classes

of individuals. The variables used in symbolic objects

are multi-valued; they can handle single quantitative

values, single categorical values, intervals, and sets of

values. The description of a BSO is created via a

generalization of the description of all individuals

belonging to the class represented by that BSO.

However, in general, the generalization introduces

incoherence and overgeneralization, which weaken

further analysis. Consider the following example of an

animal class with two individuals described by three

variables: “animal type,” “number of wings,” and

“number of legs.” The first individual is a bird, it is

represented as (Bird, 2, 2); the second individual is a

cat, it is represented as (Feline, 0, 4). The BSO rep-

resenting the class of animals is described by [Animal

type = {Bird, Feline}]∧[Number of wings = {0,

2}]∧[Number of legs={2, 4}]. This BSO implies that

this class of animals can contain a feline with two

wings and four legs, which is completely false. Thus,

to be more precise and to avoid this kind of

incoherence, we need to add a dependency between the

variables “animal type” and “number of wings”: if

[animal type=feline] then [number of wings=NA]

(where NA means not applicable).

This paper addresses feature selection on BSOs with

dependencies between variables. Much research has

been conducted on the problem of feature selection in

classical data analysis, and many algorithms and

feature selection criteria have been proposed. However,

very little research, such as studies in [11, 12, 14, 16,

21, 22] been conducted in the area of SDA. The

dependencies between variables problem has been

studied extensively in classical data analysis.

Hierarchical dependencies have been introduced [8, 10,

11, 13]; and the dependencies of semantic

presence/absence (applicable or not) have also been

treated [9, 15, 17]. The dependencies of the correlation

semantic are used to indicate how the values taken by

some variables influence the values taken by other

variables; these dependencies have also been treated by

researchers such as [1, 3, 19]. Dependencies in SDA

were more recently introduced by [4, 7, 20, 23, 24].

2. Symbolic Objects and Dependencies

2.1. Boolean Symbolic Object

Y={y1,...,yn} is the set of variables. For example,

Y={age, weight, illness, …}.

d=(d1,...,dn) is the description of the object, where di

is the value taken by the variable yi. For example, d =

([20, 25], [80,90], {diabetes, cholesterol}).

Ω{w1, …, wp} is the set of elementary observed

objects.

O={O1,...,On} is the set of domains where each

variable takes its values.

Ω′ = 𝑂1 × … × 𝑂𝑛} is the set of all possible

elementary observed objects.

R={R1,...,Rp} is a set of relations, where Ri is the

relation used by the variable 𝑦𝑖. For example, 𝑅1 =⊆.

A symbolic object is defined as a triplet s=(a,R,d);

this explanatory expression defines a symbolic object

called an assertion [21]. A BSO is an assertion

represented by a symbolic expression:

1064 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

𝑎(𝑤) = ⋀ [𝑦𝑖(𝑤)𝑅𝑖 𝑑𝑖]𝑖=1,𝑛

Where ∧ is the standard logic operator “AND,” and 𝑤

is an elementary observed object.

For example, a(w) =[age(w) =[20, 25]] ∧

[weight(w) = [80, 90]] ∧ [illness(w) = {diabetes,

cholesterol}].

An elementary event is represented by the symbolic

expression ei=[yi=vi], where 𝑣𝑖 ⊂ 𝑂𝑖; it is defined by,
𝑒𝑖: Ω → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 𝑎𝑠 𝑒𝑖(𝑤) = 𝑡𝑟𝑢𝑒 → 𝑦𝑖(𝑤) ∈ 𝑣𝑖 .
For example, the elementary event 𝑒1 = [hair =

{brown, black}] is such that e1(Alain)= true, because

hair(Alain) = brown ∈ {brown, black}.

We distinguish two types of extents: We distinguish

two types of extents:

 The real extent of the symbolic object a is defined

referring to Ω, and represents the set of elementary

observed objects (individuals) that satisfy the

expression 𝑒𝑥𝑡𝛺(𝑎) = {𝑤𝑙 ∈ 𝛺|𝑎(𝑤𝑙) = 𝑡𝑟𝑢𝑒}.

 The virtual extent of symbolic object a is defined

referring to Ω′, and represents the set of virtual

elementary objects that satisfy the expression

𝑒𝑥𝑡𝛺′(𝑎) = {𝑤𝑙
′ ∈ 𝛺′|𝑎(𝑤𝑙

′) = 𝑡𝑟𝑢𝑒}; for example,

∀𝑦𝑖 , 𝑦𝑖(𝑤𝑙
′) = 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑖 ∈ 𝑉𝑖}, where vi is a value

taken by variable yi in object wl
′ and vi is a value

taken by variable yi in assertion.

 Example 1: Let Ω={Alain, John, Sam}, age(Alain)

=20 and weight(Alain)=85,age(John)=25 and

weight(John)=80, age (Sam)=26 and weight (Sam)

=86,a(w)=[age(w)=[20, 25]] ∧ [weight(w)=[80, 85]

],extΩ(a) ={Alain, John}.

Then, extΩ’(a)={Alain, John and all virtual individuals

with age between 20 and 25 and weight between 80

and 85}.

For each BSO, we associate a description space

calculated by the function μ that is defined below:

We are given al(w) = [y1 = vl1] ⋀ … ⋀[yn = vln],
where w is an individual.

 On=O1×..×On is the Cartesian product of all

variables, A is the set of symbolic objects, al is a

symbolic object.

We define the function μ as follows:𝜇

𝜇: 𝐴 → 𝑂𝑛 𝜇(𝑎𝑙) = 𝑣𝑙1 ×. . .× 𝑣𝑙𝑛

 Example 2: Given two variables, age, defined in [18,

30], and weight, defined in [75, 85], let the BSO a

be defined as a(w) = [age(w) =[20, 25]] ∧

[weight(w) = [80, 85]]; then, the description space

of “a” is as shown in Figure 1.

Figure 1. Description space of the object.

2.2. Variable Dependencies

There are two types of dependencies, correlation and

hierarchical:

 Correlation Dependency (CD): This type of

dependency is used to predict the values taken by

some variables when the values taken by other

variables are known. For example, [triangle=

Equilateral] ⇒ [angle = 60].

 Hierarchical Dependency (HD): This type of

dependency is used to predict the inefficacy of some

variables, when the values taken by other variables

are known.

In this paper, we focus only on CD. (HD will be

treated in another paper.)

A dependency between variables is defined as

follows:

𝑅: {𝑂} → {𝑂} ⋀ [𝑦𝑖 = 𝑣𝑖]
,

⇒ ⋀ [𝑦𝑗 = 𝑣𝑗]𝑗=𝑙,𝑝𝑖=𝑘,𝑚

To facilitate the writing and processing of

dependencies, we use only the AND operator (˄) in the

premises and conclusions of the dependencies. This is

not a simplification of the problem, but only

conversion of the dependencies using the properties of

logical operators. Thus, a dependency that uses the OR

operator (˅) is replaced by a set of dependencies using

only the AND operator (˄). When OR operators are

used in the premise of the dependency, we use the

following rules to change the dependencies: When the

OR operators are used in the premise of the

dependency, a dependency of the form ⋁ [𝑦𝑖 =𝑖=𝑘,𝑚

𝑣𝑖]
,

⇒ 𝑄 will be replaced by a set of m dependencies:

{[𝑦1 = 𝑣1]

⇒ 𝑄, … , [𝑦𝑚 = 𝑣𝑚]
,

⇒ 𝑄}

 A dependency of the form ⋁ [𝑦𝑖 = 𝑣𝑖]𝑖=𝑘,𝑚
,

⇒ 𝑄 is

replaced by a set of m dependencies:

{𝑃
,

⇒ [𝑦1 = 𝑣1], … , 𝑃
,

⇒ [𝑦𝑚 = 𝑣𝑚]}

The real extent of a dependency is the set of

individuals that verifies the condition of this

dependency. The dependency can be written in the

form 𝑅: 𝑃 ⟹ 𝑄, thus R(w)=true iff P(w)=false or

Q(w)= true. Consequently, we calculate the real extent

of a dependency R, as follows:

 (1)

 (2)

(3)

(4)

(5)

Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects 1065

𝑒𝑥𝑡𝛺(𝑅) = (𝛺 ∖ 𝑒𝑥𝑡𝛺(𝑃)) ∪ 𝑒𝑥𝑡𝛺(𝑄)

The virtual extent of a dependency is the set of virtual

elementary objects that verifies the condition of this

dependency. We calculate the virtual extent of

dependency R as follows:

extΩ′(R) = (Ω′ ∖ extΩ′(P)) ∪ extΩ′(Q)

We define the description space of a variable

dependency as follows below. Given a CD 𝑅: 𝑃 ⟹ 𝑄,

where 𝒟 is the set of dependencies, we define the

function μ as follows:

μ: Ɗ → On μ(R) = μ(¬P) ∪ μ(P ∧ Q),

Where μ(¬P) = Ω′ ∖ μ(P).

 Example 3: Given a dependency (CD) R1 = [x = [3,

5]] ⇒ [y = [2, 4]], and O = [1, 7] × [1, 7], the

description space of R1 is as shown in Figure 2.

Figure 2. Description space of a CD.

2.3. Description Space of A Symbolic Object

Verifying Dependencies

A BSO usually represents an individual cluster, with

its description a generalization of the description of all

individuals belonging to that cluster. The monothetic

descriptive nature of BSOs often results in

overgeneralization. This overgeneralization can be

reduced and the quality of the description of the

clusters consequently improved by inserting

dependencies between variables in the dataset. The

following example illustrates how dependencies

between variables can help to solve the

overgeneralization problem.

 Example 4: We are given two variables X (defined

in [0, 5]) and Y (defined in [0, 6]) and a cluster C1,

described by the BSO a1. Cluster C1 represents all

individuals where, when X is in [1, 2], Y is in [1, 5],

and when X is in [2, 4], Y is in [1, 2] or in [5, 6].

Thus, 𝑎1 = [𝑋 = [0, 3]] ∧ [𝑌 = [0, 5]].
Figure 3-a shows the description space of BSO a1. It

can be seen that a significant portion of the space is

overgeneralized. We can solve the overgeneralization

problem by adding a dependency (CD) 𝑅1 = [𝑋 = [2,
4]] ⇒ [𝑌 = [1, 2], [5, 6]], as shown in Figure 3-b.

a) Description space of a1.

b) Description space of a1 taking into account the dependency.

Figure 3. Object Description Space and Dependencies.

An individual w that belongs to the extent of a BSO

“a”, and verifies a dependency R:P 𝑅: 𝑃
,

⇒ 𝑄, should

verify this condition: a(w)=true and R(w)=true. Thus,

the description space of a BSO “a” taking into

consideration a dependency R is:𝜇(𝑎 ∧ 𝑅). The

following formula will be used in order to calculate

with less complex operations the description space of a

BSO taking into consideration a dependency:

𝜇(𝑎 ∧ 𝑅) = 𝜇(𝑎 ∧ ¬(𝑎 ∧ 𝑃 ∧ ¬𝑄)) = 𝜇(𝑎) ∖ 𝜇(𝑎 ∧ 𝑃 ∧ ¬𝑄)

3. Processing Dependencies between

Variables

3.1. Different Ways for Processing

Dependencies

Various methods have been proposed to process the

dependencies between variables. We will use the same

notations for all measures.

Let vik and vjk be the values taken by variable yk in

assertions ai and aj.

 Weighting trend: The idea in this trend is to give

weighting for variables when they are involved in a

dependency.

 Klin and Sassone in [13] proposed to label the

implication by using the total weigh of the variables

in the premise. This weighting is the basis of how

the dependencies will be executed.

 Vignes in [20] uses a binary weighting in the

calculation of the dissimilarity. Vignes calculates

the dissimilarity between two BSOs as follows:

𝑑(𝑎𝑖 , 𝑎𝑗) = ∑ 𝑐𝑜𝑚𝑝(𝑣𝑖𝑘 , 𝑣𝑗𝑘) × 𝛿(𝑣𝑖𝑘, 𝑣𝑗𝑘)

𝑛

𝑘=1

,

where 𝑐𝑜𝑚𝑝(𝑣𝑖𝑘 , 𝑣𝑗𝑘) = {
 1 𝑖𝑓 𝑣𝑖𝑘 ∩ 𝑣𝑗𝑘 = ∅,

0 𝑒𝑙𝑠𝑒

and 𝛿(𝑣𝑖𝑘 , 𝑣𝑗𝑘) = {
 1 𝑖𝑓 𝑣𝑖𝑘 ≠ 𝑁𝐴 𝑎𝑛𝑑 𝑣𝑗𝑘 ≠ 𝑁𝐴

0 𝑒𝑙𝑠𝑒.
.

 Counting trend: A number of researchers use

codification and counting systems to calculate

similarity and dissimilarity measures:

 Gower in [9] defines a dissimilarity between two

objects ai and aj, described by n variables, as

(6)

(7)

(8)

(9)

(10)

1066 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

(15)

follows:

𝑑𝑖𝑗 = ∑ 𝑑𝑖𝑗𝑘
𝑛
𝑙=1 ∑ 𝛿𝑖𝑗𝑘

𝑛
𝑙=1⁄ ,

Where 𝑑𝑖𝑗𝑘 = {
1 𝑖𝑓 𝑣𝑖𝑘 = 𝑣𝑗𝑘 ,

 0 𝑒𝑙𝑠𝑒.
and

𝛿𝑖𝑗𝑘 = {
 1 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎𝑖 𝑎𝑛𝑑 𝑎𝑗

0 𝑒𝑙𝑠𝑒.

 Dependency structure: Ben-Bassat in [1] used

segmentation tree to process hierarchical logical

dependencies. Vignes in [20] used graphs of

dependencies, a structure more complex than the

tree used by Ben-Bassat, because in a graph a

variable can be a premise in many dependencies. De

Carvalho in [4] used graphs of dependencies to

process hierarchical dependencies and correlation

dependencies.

 Decomposition trend: In this trend, the

dependencies are used to decompose the description

space of the BSOs in a set of many sub-space parts,

in which each one should describe a symbolic object

that either satisfies all variable dependencies or does

not [4, 5]. Given a BSO 𝑎 = ⋀ 𝑒𝑖𝑖=1,𝑛 , with ei=[yi=vi],

a set of dependencies R={R1,...,Rp}, and a function

π, which calculates the length of an object, the

decomposition of dependencies leads to an

exponential computation time value depending on

the number of rules, as shown in the following:

Let have a BSO 𝑎 = ⋀ 𝑒𝑖𝑖=1,𝑛 , with ei=[yi=vi]. Let have

a set of dependencies: R={R1,...,Rp}. And let use a

function π, which calculate the length of an object.

𝑑(𝑎 𝑅1⁄ ∧ … ∧ 𝑅𝑡) = ∏ 𝜋(𝑒𝑖

𝑛

𝑖=1

)

− ∑ 𝜋(𝑎 ∧ ¬𝑅𝑗)

𝑡

𝑗=1

+ ∑ 𝜋 ((𝑎 ∧ ¬𝑅𝑗) ∧ … ∧ ¬𝑅𝑘) + ⋯

𝑗<𝑘

+ (−1)𝑡+1𝜋((𝑎 ∧ ¬𝑅1) ∧ ¬𝑅2 … ∧ ¬𝑅𝑡).

 Normal Symbolic Form (NSF): In this case, the idea

is to represent the data in a manner that only

coherent descriptions are represented, and the

dependencies are not needed in the process. To

accomplish this, the original tables, representing the

symbolic objects, are decomposed into several

tables, according to the number of different premise

variables. The variables not associated with the

dependencies remain in the original table and so the

new tables contain variables on which the

dependencies are applied [2].

The idea of NSF has been used by De Carvalho [6] to

cluster symbolic objects constrained by a set of

dependencies. To accomplish this, a graph of

dependencies was used to generate NSFs, and then a

dissimilarity measure was applied to the generated

NSFs. The complexity involved in processing the

dependencies using NSF is polynomial. However,

decomposing the main symbolic tables into many

tables completely changes the design of the symbolic

object database, from the star schema to a normalized

database.

3.2. Processing Dependencies Using Description

Space

In this section, we present a new method that utilizes

only the calculation of the description spaces to

process the dependencies between variables. This

method is inspired by research conducted on

decomposition trend and in NSF; however, the

symbolic objects are not decomposed. We propose

three optimization methods to reduce the complexity:

optimization of the description space calculation,

optimization of the dissimilarity measure calculation,

and optimization of the feature selection algorithm.

We calculate the description space of a BSO, a,

given a set of dependencies 𝒟 = {𝑅1, … , 𝑅𝑡}, by

removing from the description space of BSO a, the part

of the description space of BSO a that does not verify

the dependencies. This is achieved by using the

function Original Discriminant Power (ODP), which is

defined as follows:

𝜇(𝑎 ∧ (𝑅1 ∧ … ∧ 𝑅𝑡)) = 𝜇(𝑎) ∖ (𝜇(𝑎 ∧ ¬𝑅1) ∪ … 𝜇(𝑎 ∧ ¬𝑅𝑡))

Where

𝜇(𝑎 ∧ ¬𝑅𝑘) = 𝜇(𝑎) ∖ 𝜇(𝑎 ∧ 𝑃𝑘 ∧ ¬𝑄𝑘)

Before discussing the complexity of Equations (13)

and (11), let us look at the mathematical properties of

function μ:

1. 𝜇(𝐴 ∧ 𝐵) = 𝜇(𝐴) ∩ 𝜇(𝐵)
2. 𝜇(𝐴 ∨ 𝐵) = 𝜇(𝐴) ∪ 𝜇(𝐵)

3. 𝜇(¬𝐴) = 𝜇(𝐴)𝑐 = 𝑂 ∖ 𝜇(𝐴)

4. The description space of an object not described by

all variables is calculated by using as value, for each

absent variable, the domain of the variable. For

instance, if an object a is described by the first d

variables, among a total of n variables, then the

description space of a will be:

𝜇 (𝑎 = ⋀ [𝑦𝑖 = 𝑣𝑖]
𝑖=1,𝑑

) = 𝑣1 × … × 𝑣𝑑 × 𝑜𝑑+1 × … × 𝑜𝑛

Here, vi is a value taken by variable yi in assertion a,

and Od is the domain of variable yd.

5. Let have two BSOs: a𝑖 = ⋀ [𝑦𝑖 = 𝑣𝑖𝑘]𝑘=1,𝑛 and

a𝑗 = ⋀ [𝑦𝑖 = 𝑣𝑗𝑘]𝑘=1,𝑛 :

 If ∀k ∈ {1, . . , n}, vjk ⊆ vik then μ(ai ∧ aj) = μ(aj).

 If ∀k ∈ {1, . . , n}, vjk ⊆ vik then μ(ai ∨ aj) = μ(ai).

 If ∃k ∈ {1, . . , n}, vjk ∩ vik = ∅ then: μ(ai ∧ aj) = ∅.

Theoretically, calculating the description space of a

BSO, given a set of dependencies is complex, as seen

in Equation (13). It is based on the calculation of the

union parts of description spaces. The part of a

description space used in calculations, representing the

(11)

(13)

(14)

Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects 1067

space where the BSO does not verify the dependency,

is also a complex operation, as seen in Equation (14).

This is because it is using a subtraction operation

between description spaces. However, in practice, a

dependency is usually created to be used by one or

only some objects of the dataset (see Figure 4).

Figure 4. Dependencies in a whole object dataset.

This means that the calculation will be reduced to

only the description space where the object is

concerned. This check can be done using property 5.

 Example 5: This example shows how the description

spaces, displayed in Figure 4, are calculated using

Equation (13):

𝜇 (𝑎1 ∧ (⋀ 𝑅𝑖
4
𝑖=1)) = 𝜇(𝑎1) ∖ (⋃ 𝜇(𝑎1 ∧ ¬𝑅𝑖)4

𝑖=1)

= 𝜇(𝑎1) ∖ (𝜇(𝑎1 ∧ ¬𝑅1) ∪ ∅ ∪ ∅ ∪ ∅)

= 𝜇(𝑎1) ∖ 𝜇(𝑎1 ∧ ¬𝑅1)

𝜇 (𝑎2 ∧ (⋀ 𝑅𝑖
4
𝑖=1)) = 𝜇(𝑎2) ∖ (⋃ 𝜇(𝑎2 ∧ ¬𝑅𝑖)4

𝑖=1)

= 𝜇(𝑎2) ∖ (∅ ∪ 𝜇(𝑎2 ∧ ¬𝑅2) ∪ ∅ ∪ ∅)

= 𝜇(𝑎2) ∖ 𝜇(𝑎2 ∧ ¬𝑅2)

𝜇 (𝑎3 ∧ (⋀ 𝑅𝑖
4
𝑖=1)) = 𝜇(𝑎3) ∖ (⋃ 𝜇(𝑎3 ∧ ¬𝑅𝑖)4

𝑖=1)

= 𝜇(𝑎3) ∖ (∅ ∪ ∅ ∪ 𝜇(𝑎3 ∧ ¬𝑅3) ∪ 𝜇(𝑎3 ∧ ¬𝑅4))

= 𝜇(𝑎3) ∖ (𝜇(𝑎3 ∧ ¬𝑅3) ∪ 𝜇(𝑎3 ∧ ¬𝑅4))

𝜇 (𝑎4 ∧ (⋀ 𝑅𝑖
4
𝑖=1)) = 𝜇(𝑎4) ∖ (⋃ 𝜇(𝑎4 ∧ ¬𝑅𝑖)4

𝑖=1)

 = 𝜇(𝑎4) ∖ (∅ ∪ ∅ ∪ ∅ ∪ ∅) = 𝜇(𝑎4)

4. Dissimilarity Measure and Dependencies

Between Variables

4.1. Different Ways For Processing

Dependencies

The feature selection criterion, which will be used in

the algorithm, is based on a new dissimilarity measure

between BSOs. To define this dissimilarity measure,

we introduce a function π that calculates the potential

of a description space:

𝜋: 𝑂 → ℛ+ 𝜋(𝐸𝑟) = ∏ 𝑐𝑎𝑝(𝑣𝑟𝑖)𝑛
𝑖=1 ,

Where 𝐸𝑟 = ∏ 𝑣𝑟𝑖
𝑛
𝑖=1 and the cap function gives the

length of a value.

The dissimilarity measure between two BSOs, ai

and ai , is defined as follows:

𝑑(𝑎𝑖 , 𝑎𝑗) = 1 −
𝜋(𝜇(𝑎𝑖 ∧𝑎𝑗))

𝜋(𝜇(𝑎𝑖 ∨𝑎𝑗))

The dissimilarity measure between two BSOs, ai and

aj, taking into consideration a set of dependencies, {R1,

…,Rt}, is defined as follows:

𝑑(𝑎𝑖 , 𝑎𝑗) = 1 −
𝜋(𝜇(𝑎𝑖 ∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1))

𝜋(𝜇((𝑎𝑖 ∨𝑎𝑗) ⋀ 𝑅𝑝
𝑡
𝑝=1))

This dissimilarity measure is reflexive and symmetric,

and respects the triangle inequality. However, if

Equation (12) is used the dissimilarity calculation is

complex. This is why we optimize Equation (11) using

the following property of function π:

𝜋 (𝜇(𝑎𝑖 ∨ 𝑎𝑗)) = 𝜋(𝜇(𝑎𝑖)) + 𝜋 (𝜇(𝑎𝑗)) − 𝜋 (𝜇(𝑎𝑖 ∧ 𝑎𝑗))

Thus, the dissimilarity measure between two BSOs

taking into consideration a set of dependencies is

practically calculated using:
𝑑(𝑎𝑖 , 𝑎𝑗) =

1 −
𝜋(𝜇(𝑎𝑖∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1))

𝜋(𝜇((𝑎𝑖) ⋀ 𝑅𝑝
𝑡
𝑝=1))+𝜋(𝜇((𝑎𝑗) ⋀ 𝑅𝑝

𝑡
𝑝=1))−𝜋(𝜇((𝑎𝑖 ∧𝑎𝑗) ⋀ 𝑅𝑝

𝑡
𝑝=1))

Calculating the dissimilarity using Equation (13) is

very important in order to reduce the complexity. Note

that Equation (15) does not utilize π (𝜇 ((𝑎𝑖 ∨

𝑎𝑗) ⋀ 𝑅𝑝
𝑡
𝑝=1)), which is a complex calculation, called

the union part. Instead, the union part is replaced by

the potential of object description space, and the

following part. π (μ ((ai ∨ aj) ⋀ Rp
t
p=1)), called the

intersection part, which is the same as the numerator, is

subtracted.

Moreover, to avoid calculating the same thing many

times during the process of feature selection, we

propose to save for each object 𝑎𝑖 its potential of

description space, calculated by 𝜋 (𝜇(𝑎𝑖 ∧

𝑎𝑗 ⋀ 𝑅𝑝
𝑡
𝑝=1)), and for each couple (𝑎𝑖 , 𝑎𝑗), we save

the intersection part.

4.2. Dissimilarity Measure Between Two

Elementary Events

The dissimilarity measure between two elementary

events is calculated by quantifying the contribution of

a variable in the discrimination between two objects.

This contribution can be calculated by decomposing

the description spaces of the two objects into many

areas, depending on whether the variable contributes or

not in the discrimination of each area. In the case

where the variable contributes in the discrimination,

the area is the space where the variable takes values

that are not common to the two objects. This can be

calculated using the following:

Given 𝑎𝑖 = ⋀ [𝑦𝑙 = 𝑣𝑖𝑙]𝑙=1,𝑛 and 𝑎𝑗 = ⋀ [𝑦𝑙 =𝑙=1,𝑛

𝑣𝑗𝑙], set 𝑧𝑖𝑗
𝑙 = 𝑂𝑙 ∖ (𝑣𝑖𝑙⋂𝑣𝑗𝑙): This is the set of values

that can be used by variable 𝑦𝑙 to contribute to the

dissimilarity between eil and ejl. Mathematically, it is

(16)

(17)

(18)

(19)

(20)

1068 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

(25)

the projection, on the axis of variable yl, of the area

where variable yl contributes to the dissimilarity.

We define the description space of an object

knowing the value taken by a variable as:

𝜇(𝑎𝑖/ 𝑦𝑙 = 𝑣) = 𝑣1 × … × 𝑣𝑙−1 × 𝑣 × 𝑣𝑙+1 … × 𝑣𝑛

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
𝜋(𝜇(𝑎𝑖 / 𝑦𝑙=𝑣𝑖𝑙⋂𝑧𝑖𝑗

𝑙))+𝜋(𝜇(𝑎𝑗 / 𝑦𝑙=𝑣𝑗𝑙⋂𝑧𝑖𝑗
𝑙))

𝜋(𝜇(𝑎𝑖))+𝜋(𝜇(𝑎𝑗))−𝜋(𝜇(𝑎𝑖∧𝑎𝑗))

 Property 1

𝜋(𝜇(𝑎𝑖 / 𝑦𝑙 = 𝑣)) = 𝜋(𝜇(𝑎𝑖)) ×
𝑐𝑎𝑝(𝑣)

𝑐𝑎𝑝(𝑣𝑖𝑙)
 (15)

By taking into consideration the dependencies between

variables, the dissimilarity between two elementary

events will be calculated as follows:

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
𝜋(𝜇(𝑎𝑖 ⋀ 𝑅𝑝

𝑡
𝑝=1 / 𝑦𝑙=𝑣𝑖𝑙⋂𝑧𝑖𝑗

𝑙))+𝜋(𝜇(𝑎𝑗 ⋀ 𝑅𝑝
𝑡
𝑝=1 / 𝑦𝑙=𝑣𝑗𝑙⋂𝑧𝑖𝑗

𝑙))

𝜋(𝜇(𝑎𝑖 ⋀ 𝑅𝑝
𝑡
𝑝=1))+𝜋(𝜇(𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1))−𝜋(𝜇(𝑎𝑖∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1))

Knowing that,

π (μ(ai ⋀ 𝑅𝑝
t
𝑝=1)) = π(𝜇(𝑎𝑖)) − π(⋃ 𝜇(𝑎𝑖 ∧ ¬𝑅𝑝)𝑡

𝑝=1),(14)

we will be calculated as follows:

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
∑ 𝜋(𝜇(𝑎𝑘/ 𝑦𝑙=𝑣𝑘𝑙⋂𝑧𝑖𝑗

𝑙)) 𝑘=𝑖,𝑗 – 𝜋(⋃ 𝜇((𝑎𝑘/ 𝑦𝑙=𝑣𝑘𝑙⋂𝑧𝑖𝑗
𝑙) ∧¬𝑅𝑝)𝑡

𝑝=1)

∑ 𝜋(𝜇(𝑎𝑘)) 𝑘=𝑖,𝑗 −𝜋(⋃ 𝜇(𝑎𝑘∧¬𝑅𝑝)𝑡
𝑝=1)−𝜋(𝜇(𝑎𝑖∧𝑎𝑗))+𝜋(⋃ 𝜇(𝑎𝑖∧𝑎𝑗 ∧¬𝑅𝑝)𝑡

𝑝=1)

 Example 6: Let us consider the following dataset:

We have two variables: X defined in [0, 8] and Y

defined in [0, 9]).

We have two BSOs: a1=[X= [1, 6]] ∧ [Y= [3, 9]]

and a2=[X= [3, 8]] ∧ [Y= [1, 7]].

We also have three dependencies:

1. R1 = [Y=[8, 9]] ⇒ [X={[1, 2],[3, 6]}].

2. R2 = [Y=[2, 3]] ⇒ [X={[3, 5],[7, 8]}].

3. R3 = [Y=[5, 6]] ⇒ [X={[1, 4],[6, 8]}].

Figure 5 represents the description space of all the

dataset objects.

Figure 5. Description space of all objects in the dataset.

We wish to calculate d(e11,e21), which represents the

dissimilarity measure of the elementary events of

objects a1 and a2, which use the first variable “X.”

We wish to calculate d(e11,e21), which represents the

dissimilarity measure of the elementary events of

objects a1 and a2, which use the first variable “X.”

𝑧12
1 = [0, .8] ∖ [3, 6] = [0, 3[∪]6, 8]

𝜋 (𝜇(𝑎1/ 𝑋 = [1, 6]⋂𝑧12
1)) = 𝜋([1, 3] × [3, 9]) = 12

𝜋 (𝜇(𝑎2/ 𝑋 = [3, 8]⋂𝑧12
1)) = 𝜋([6, 8] × [1, 7]) = 12

¬𝑅1 = [𝑋 =]2, 3[] ∧ [𝑌 = [8, 9]].

¬𝑅2 = [𝑋 =]5, 7[] ∧ [𝑌 = [2, 3]].

¬𝑅3 = [𝑋 =]4, 6[] ∧ [𝑌 = [5, 6]].

𝜋 (⋃ 𝜇 ((𝑎1/ X = 𝑣11⋂𝑧12
1) ∧ ¬𝑅𝑝)3

𝑝=1) =

𝜋((]2, 3[× [8, 9]) ∪ ∅ ∪ ∅) = 1

𝜋(⋃ 𝜇(𝑎2 ∧ ¬𝑅𝑝)3
𝑝=1) = 𝜋(∅ ∪ ([6, 7[× [2, 3]) ∪

∅) = 1

𝜋 (𝜇(𝑎1 ∧ 𝑎2 ⋀ 𝑅𝑝
𝑡
𝑝=1)) = 𝜋(𝜇(𝑎1 ∧ 𝑎2)) −

𝜋 (𝜇(⋃ 𝑎1 ∧ 𝑎2 ∧ ¬𝑅𝑝
3
𝑝=1))

𝜋 (𝜇(𝑎1 ∧ 𝑎2 ⋀ 𝑅𝑝
𝑡
𝑝=1)) = 𝜋([3, 6] × [3, 7]) −

𝜋(]4, 6[× [5, 6]) = 10

𝜋(𝜇(𝑎1)) = 𝜋([1, 6] × [3, 9]) = 30

𝜋(𝜇(𝑎2)) = 𝜋([3, 8] × [1, 7]) = 30

𝑑(𝑒11, 𝑒21) =
12+12−1−1

30+30−3−4−10
= 0.51.

5. Feature Selection Algorithm

5.1. Selection Criteria

We previously developed an algorithm called Minset-

Plus [21, 22]. This algorithm requires two criteria: the

discriminant power, and the ODP.

Given a set of objects, A={a1,…,am}, let Y={y1, …,

yn} be a set of variables, K the set of object pairs

K=A×A, P(Y) the set of all subsets of Y, and P(K) the

set of all subsets of K.

 Discriminant Power (DP): DP is used as stopping

criteria. The DP of a subset of variables Yd on the

set K, noted by DP(Yd,K), calculates the maximum

discrimination reached by the subset of variables. It

uses the discrimination measure between elementary

events:

𝐷𝑃: 𝑃(𝑌) × 𝑃(𝐾) ⟶ ℛ+

𝐷𝑃(𝑌𝑑, 𝐾) = ∑ ∑ 𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙)𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

 Original Discriminant Power (ODP): ODP is the

selecting criteria of the algorithm. The ODP of a

variable y1 referred to a set of variable Yd, quantifies

how much variable y1 contributes to discriminate the

assertions pairs that are not discriminated by any

variable of Yd.
𝑂𝐷𝑃: 𝑌 × 𝑃(𝑌) × 𝑃(𝐾) ⟶ ℛ+

𝑂𝐷𝑃(𝑦𝑙 , 𝑌𝑑, 𝐾) = ∑ ∑ 𝑚𝑎𝑥
(𝑎𝑖,𝑎𝑗)∈𝐾

(𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) −𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

𝑚𝑎𝑥
𝑦𝑝∈𝑌𝑑

(𝑑(𝑒𝑖𝑝, 𝑒𝑗𝑝)) , 0)

5.2. Minset-Plus Algorithm

There is no change done in Minset-Plus algorithm;

only the method used to calculate the selection criteria

is changed.

The steps used in the algorithm are as follows:

(21)

(22)

(23)

(24)

(26)

(27)

Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects 1069

1. Find the indispensible variables which permit us to

discriminate assertion pairs not discriminated by

others variables. This means we select the variables

such that their ODP against all other variables is ≠0:

ODP(yi,Y-yi, K)≠0. Set Y’=Y Set Yd=set of selected

variables While DP(Yd,K) < DP(Y, K).

2. Select in each step the variable which has the

highest ODP. The selected variable permits to

discriminate the greatest number of assertion pairs,

not already discriminated by the variables selected

before.

Y’= Y’ - Selected variables
Yd = Yd ∪ { yl / yl maximizes ODP(yi, Y′ − yi, K) ∀yi ∈ Y′}.

3. Eliminate in each step the variables which become

redundant. This means the assertion pairs

discriminated by these variables are discriminated

by other selected variables.

𝑌𝑑 = 𝑌𝑑 − {𝑦𝑙 ∈ 𝑌𝑑 𝑤ℎ𝑒𝑟𝑒 𝑂𝐷𝑃(𝑦𝑙 , 𝑌𝑑 − 𝑦𝑙 , 𝐾) = 0}

This algorithm is summarized as follows: Let 𝑌 and 𝑌′

represent two sets of variables, O and O′ represent the

values taken by the variables of 𝑌 and 𝑌′, respectively,

and 𝐾 represent the set of assertion pairs. Initially, we

have a knowledgebase (Y,O,A). The objective of the

algorithm is to extract a knowledgebase (𝑌′, 𝑂′, 𝐴)

such that 𝑌′ ⊆ 𝑌 with𝐷𝑃(𝑌′, 𝐾) = 𝐷𝑃(𝑌, 𝐾).

5.3. Algorithm Optimization

Because the symbolic objects are complex data, and

that the processing of dependencies needs heavy

operations, we reduce the complexity of the algorithm

by saving intermediate results during calculation of the

dissimilarity measure between two elementary events,

and by avoiding repetitive calculations.

5.3.1. Complexity in The Calculation of

Dissimilarity Measures Between Two

Elementary Events

The dissimilarity measure between two elementary

events is calculated using Equation (25):

d(eil, ejl) =
∑ π(μ(ak/ yl=vkl⋂zij

l))k=i,j − π(⋃ μ((ak/ yl=vkl⋂zij
l) ∧¬Rp)t

p=1)

∑ π(μ(ak)) k=i,j −π(⋃ μ(ak∧¬Rp)t
p=1)− π(μ(ai∧aj))+π(⋃ μ(ai∧aj ∧¬Rp)t

p=1)

1. The denominator of this formula gives two

important clues for optimizing the calculation:

● The denominator is the same for all elementary

events of the same two objects. This means that if

we have two objects, ai and aj, described by n

variables, the
n(n−1)

2
 dissimilarity measures between

two elementary events involved with the objects ai

and aj use the same denominator.

● The denominator also uses calculation components

that are used by other measures. If we have in our

dataset m objects, the components π(μ(ak)) and

π(⋃ μ(ak ∧ ¬Rp)t
p=1) are used by the

m(m−1)

2

dissimilarity measures between two elementary

events involved with these m objects.

On the basis of these two observations, we save the

calculation components in a matrix as follows:

Table 1. Calculation component matrix.

Object Calculation Component

a1 π(μ(a1)) − π (⋃ μ(a1 ∧ ¬Rp)

t

p=1

)

a2 π(μ(a2)) − π (⋃ μ(a2 ∧ ¬Rp)

t

p=1

)

… …

am π(μ(am)) − π (⋃ μ(am ∧ ¬Rp)

t

p=1

)

2. In the numerator d(eil, ejl), and using property 1,

the calculation of π (μ(ak/ yl = vkl⋂zij
l)) and

π (⋃ μ ((ak/ yl = vkl⋂zij
l) ∧ ¬Rp)t

p=1) are

carried out in a manner to use, respectively,

π(μ(ak)) and π(⋃ μ(ai ∧ ¬Rp)t
p=1), which have

already been calculated in the denominator. Thus,

the dissimilarity measure between two elementary

events is calculated with Equation (29):

d(eil, ejl) =
cap(vkl⋂zij

l)

cap(vkl)
×

∑ π(μ(ak)) k=i,j − ∑ π(⋃ μ(ak ∧ ¬Rp)t
p=1)k=i,j

D
,

Where

D = ∑ π(μ(ak)) k=i,j − π(⋃ μ(ak ∧ ¬Rp)t
p=1) − π (μ(ai ∧ aj)) +

π(⋃ μ(ai ∧ aj ∧ ¬Rp)t
p=1)

The potential of a union of description space is a

combinatory calculation:

𝜋(⋃ 𝜇(𝐸𝑝)𝑡
𝑝=1) = ∑ 𝜋 (𝜇(𝐸𝑝))𝑡

𝑝=1 .

+(−1)1 ∑ 𝜋 (𝜇(𝐸𝑝) ∩ 𝜇(𝐸𝑝+1))

𝑡−1

𝑝=1

+. . . +(−1)𝑡−1𝜋(𝜇(𝐸1) ∩ 𝜇(𝐸2) … 𝜇(𝐸𝑡)).

This kind of calculation appears in Equation (29), in

𝜋(⋃ 𝜇(𝑎𝑗 ∧ ¬𝑅𝑝)𝑡
𝑝=1). The calculation is carried out

by the union of the intersections of a description space

with a negation of a dependency. To reduce the

complexity, the calculation is carried out by level. In

this way, we avoid the calculation of an intersection in

level p if there is no intersection in level p-1. The

following calculation matrix is used for this purpose.

Table 2. Calculation matrix.

 Level 1 Level 2 Level 3

 ¬R1 ¬R2 ¬R3 ¬R1˄¬R2 ¬R1˄¬R3 ¬R2˄¬R3 ¬R1˄¬R2˄¬R3

E1 0 5 7 X X 2 X

E2 5 6 0 3 2 X X

E3 0 0 5 X X X X

E4 8 4 0 4 2 X X

E5 5 0 0 3 X X X

(28)

(29)

(30)

1070 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

X: means that the calculation is not done, and the

result is equal to zero.

5.3.2. Using Dissimilarity Matrix

The discrimination matrix allows us to calculate

dp(eli,elk) only once, and in all the steps of the

algorithm, the matrix is used to carry out all the

necessary operations. This significantly optimizes the

temporary complexity. In addition, at only k×n, the

matrix is not large; k=card(K) and n=card(Y), K is not

a large number because we are dealing with classes of

individuals. Example 8 illustrates how the algorithm

uses the dissimilarity matrix.

 Example 7: Given Y ={y1, y2, y3, y4, y5} is the set of

variables and A={a1, a2, a3, a4}, then K={(a1, a2),

(a1, a3), (a1, a4), (a2, a3), (a2, a4), (a3, a4)}, see Table

3.

When we calculate DP(Y, K) for the stopping criteria

of the algorithm, we fill the discrimination matrix

(only one time). Thus, in the case corresponding to yl

and (ai, aj) we put the result of dp(eli,elk) . Then the Max

Yd is used to save: 𝑚𝑎𝑥
𝑦𝑝∈𝑌𝑑

(𝑑𝑝(𝑒𝑝𝑖, 𝑒𝑝𝑘)). This means, at

the beginning the maximum of the result of dpi(epi,epk)

is empty for the selected variables; and then we put the

maximum for the indispensable variables. Here in this

example, yl is indispensable.

Table 3. Discrimination matrix.

 (a1, a2) (a1, a3) (a1, a4) (a2, a3) (a2, a4) (a3, a4)

y1 0.7 0 0.3 0.1 0 0.1

y2 0 0.6 0.1 0.7 0 0.4

y3 0 0.6 0.5 0.3 0.6 0.3

y4 0 0.2 0.4 0.2 0.5 0.5

y5 0 0.3 0.4 0.3 0.6 0.3

Max Yd 0.7 0 0.3 0.1 0 0.1

Selection of a new variable in each step is

accomplished by calculating ODP(yl,yd,K) for each

unselected variable. Using the discrimination matrix,

selection of the new variable is achieved via the

following operations:

 d(epi,epk) is saved in the case corresponding to y1 and

(ai, aj) of the discrimination matrix.

 max
yp∈Yd

(dp(epi, epk)) is saved in the Max Yd row.

Thus, calculation of ODP(yl,yd,K) is achieved via only

one number subtraction operation and a comparison

operation to find the maximum of two numbers.

 Finding the redundant variables in each step is

achieved by checking each variable among the set

of selected variables, to determine if redundancy

will occur when the new selected variable is added.

This means that we calculate the expression

𝑂𝐷𝑃(𝑦𝑙 , (𝑌𝑑 ∪ 𝑦𝑠) − 𝑦𝑙 , 𝐾) = 0, where ys is the

new selected variable. The property defined in [22]

enables calculation of the ODP based on

DP:𝑂𝐷𝑃(𝑦𝑖 , 𝑌𝑃 , 𝐾) = 𝐷𝑃(𝑌𝑃 ∪ 𝑦𝑖 , 𝐾) − 𝐷𝑃(𝑌𝑃 , 𝐾).

We check the redundancy as follows:

𝐷𝑃((𝑌𝑑 ∪ 𝑦𝑠) − (𝑦𝑙 − 𝑦𝑠), 𝐾) = 𝐷𝑃(𝑌𝑑 ∪ 𝑦𝑠, 𝐾)

This test is not complex by using the discrimination

matrix, since to calculate 𝐷𝑃(𝑌𝑑 ∪ 𝑦𝑠, 𝐾), we will

calculate, for each couple (ai, aj), the maximum

between the value saved in Max Yd and the value of

the case(ai , aj), ys: ∑ ∑ 𝑀𝑎𝑥 (Max 𝑌𝑑 ,𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1,𝑖≠𝑗

𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗)).

Therefore, the calculation of the Equation

𝐷𝑃((𝑌𝑑 ∪ 𝑦𝑠) − (𝑦𝑙 − 𝑦𝑠), 𝐾) will be done as follows:

∑ ∑ 𝑀𝑎𝑥 (𝑀𝑎𝑥 (𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑𝑝(𝑒𝑙𝑖 , 𝑒𝑠𝑙) , 𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗)) −
𝑞
𝑗≠𝑖

𝑞
𝑖≠𝑗

 𝑀𝑎𝑥 (𝑑𝑝(𝑒𝑙𝑖 , 𝑒𝑠𝑙) − 𝑑𝑝(𝑒𝑠𝑖 , 𝑒𝑠𝑗)) , 0).

When the algorithm selects the variabl𝑦𝑠, it

calculates 𝑀𝑎𝑥 (𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑𝑝(𝑒𝑙𝑖, 𝑒𝑠𝑙) , 𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗)) and

its value is saved in the discrimination matrix row Max

Yd. This means we will have to do, for each pair (ai,

aj), only the subtraction of the value of the case

(𝑎𝑖 , 𝑎𝑗), 𝑦𝑙 and the value of the case (ai, aj), ys; and

then we compare the value of the substation with the

value found in Max Yd corresponding to the same pair

(ai, aj).

 Selecting the indispensible variables will be done by

doing this test: yl is indispensible if:
∃ (𝑎𝑖 , 𝑎𝑗) ∈ 𝐾 𝑤ℎ𝑒𝑟𝑒 𝑑𝑝(𝑒𝑙𝑖, 𝑒𝑙𝑗) ≠ 0

and 𝑚𝑎𝑥
𝑦𝑝∈𝑌−𝑦𝑙

(𝑑𝑝(𝑒𝑝𝑖, 𝑒𝑝𝑘)) = 0

This means that a variable is indispensable if we find a

pair of objects discriminated by the variable and not

discriminated in any way by any other variable. Using

the discrimination matrix, we can find indispensable

variables without any complex operations; only the

values stored in the discrimination matrix are

compared.

6. Application

We validated our algorithm using two categories of

testing: quality testing and complexity testing.

6.1. Quality Testing

This validation was carried out on the Tristichacees,

Aquatic Insects, and Phlebotomines datasets provided

by [20]. In addition, we created two datasets,

Phlebotomines Clustered and Tristichacees Clustered,

from the result of clustering on the original datasets

from Vignes (see Table 4). The clustered data sets have

been created using the symbolic object generator

program [22]. This program can use object similarity

to cluster the objects and generate different types of

symbolic objects: boolean or probabilistic objects.

We used the symbolic object generator program to

generate individual test data. The program takes into

(32)

(33)

(34)

Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects 1071

account the domain variables and the dependencies to

generate the individuals. Thus, all individuals satisfied

the dependencies of their dataset.

In our study, the validation process with test data

was carried out based on the calculation of the real

object extents. If the intersection between object

extents before feature selection is almost the same as

that after feature selection, then it can be concluded

that the selected feature maintained the same

discrimination between objects. This assessment was

carried out using the quality criteria Real

Discrimination Power Variation (RDPV) defined in

Equation (31), and which is based on the Real

Discrimination Power (RDP) defined in Equation (36):

|
𝑅𝐷𝑃(𝑌𝑑 ,𝐾)−𝑅𝐷𝑃(𝑌,𝐾)

𝑅𝐷𝑃(𝑌𝑑 ,𝐾)
| ≤ 𝛽,

Where:

𝑅𝐷𝑃(𝑌, 𝐾) = 1 − ∑ ∑
𝑐𝑎𝑟𝑑(𝑒𝑥𝑡 (𝑎𝑖) ∩ 𝑒𝑥𝑡(𝑎𝑗))

𝑐𝑎𝑟𝑑(𝑒𝑥𝑡 (𝑎𝑖) ∪𝑒𝑥𝑡(𝑎𝑗))

𝑞
𝑗=1,𝑗≠𝑖

𝑞
𝑖=1,𝑖≠𝑗 𝑎𝑛𝑑

𝑅𝐷𝑃(𝑌𝑑, 𝐾) = 1 − ∑ ∑
𝑐𝑎𝑟𝑑(𝑒𝑥𝑡(𝑎𝑖

′) ∩ 𝑒𝑥𝑡(𝑎𝑗
′))

𝑐𝑎𝑟𝑑(𝑒𝑥𝑡(𝑎𝑖
′) ∪𝑒𝑥𝑡(𝑎𝑖

′))

𝑞
𝑗=1,𝑗≠𝑖

𝑞
𝑖=1,𝑖≠𝑗 .

𝑎𝑖
′ and 𝑎𝑗

′ are objects describing ai and aj using only the

selected variables Yd.

Table 4. Dataset description.

Dataset
Feature

Number

Object

Number

Dependency

Number

Individual

Number

RDP before

No Dep

RDP

before Dep

Tristichacees 27 12 9 8933 100% 100%

Aquatic

Insects
12 16 3 5974 99.7% 99.7%

Phlebotomines 53 73 5 13500 100% 100%

Phlebotomines

Clustered
52 10 2 13500 75.8% 87.2

Tristichacees

Clustered
26 4 4 8933 99.3% 99.9%

Table 5. Testing result.

Dataset
DP

NO Dep

DP

Dep

Selected

features

NO Dep

Selected

features

Dep

RDP

No

Dep

RDPV

No

Dep.

RDP

Dep

RDPV

Dep

Tristichacees 66 66 4 4 100% 0 100% 0
Aquatic

Insects
119 115 8 8 99.6% 0.001 96.6% 0.001

Phlebotomines 2623 2623 16 16 99.9% 0.001 99.9% 0.001
Phlebotomines

Cluster
25.66 27.91 7 8 71.5% 0.05 86.3% 0.01

Tristichacees

Clustered
5.16 5.75 3 2 80.2% 0.19 94.5% 0.05

In Table 4, for the first three datasets, the calculated

RDP without and with dependencies are approximately

100%. This means that the objects are totally and

equally discriminated by the variables without and

with the dependencies. In this case, we expected that

the result of feature selection without and with

dependencies for the datasets would be the same. We

obtained the expected results, the same DP (first and

second columns of Table 5) and the same number of

selected features (third and fourth columns of Table 5).

For the clustered datasets:

 From the values in columns two and three of Table

5, it is clear that the calculated DP with

dependencies is greater that the calculated DP

without dependencies. This means that the

dependencies reduced the intersection between the

clustered symbolic objects, by removing the

overgeneralization area created during the process

of generation of clustered symbolic objects.

 The RDP calculated for datasets with dependencies

and using only the selected variables were much

better than the RDP of the datasets without

dependencies and using only the selected variables

(see columns five and six of Table 5).

 The RDPVs of the feature selection with

dependencies (between 0 and 0.05) are better than

the RDPVs of the feature selection without

dependency (between 0 and 0.18). This proves that

feature selection with variable dependencies

produce better results.

6.2. Complexity Testing

The complexity of our algorithm was first determined

by comparing the execution time of the algorithm for

selecting variables, with and without dependencies, on

the datasets presented in Table 4. It can be seen that

selecting variables with dependencies is more complex

(see Table 6). On average, however, the time taken was

twice as much as the time taken with dependencies,

which implies that the complexity was not significant.

Table 6. Execution time on datasets.

DataSet
Execution Time No

Dep (ms)

Execution Time with

Dep (ms)

Tristichacees 89 165

Aquatic Insects 30 78

Phlebotomines 1290 1831

Phlebotomines Cluster 42 89

Tristichacees Clustered 28 31

The other category of complexity testing was

applied to study the complexity when the number of

dependencies and the number of objects in the datasets

are varied.

 Execution Time vs. Number of Dependencies We

used the Phlebotomines Clustered dataset and varied

the number of dependencies from zero to 50. Figure

6 shows that the execution time was not

exponential.

 Execution Time vs. Number of Objects For this test,

we used the Phlebotomines data with five

dependencies to create datasets with objects varying

between five and 75. Figure 7 shows that the

execution time for the varying number of symbolic

objects was also not exponential.

The results of the two experiments clearly show that

although feature selection with variable dependencies

is complex, by using various techniques to avoid

unnecessary calculations, we successfully reduced the

complexity of the algorithm.

(35)

(36)

1072 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Figure 6. Execution time vs. number of dependencies.

Figure 7. Execution time vs. number of objects7 conclusion.

This paper showed how the dependencies between

variables can be used in feature selection on Boolean

symbolic objects. The dependencies between variables

were shown to be powerful structures that result in the

symbolic objects representing individual clusters or

concepts more logically and with more precision.

Further, because the use of dependencies between

variables leads to complex calculation in the criteria

selection process, efforts were also made to reduce the

complexity of the algorithm. This was achieved by

using various mathematical properties to optimize the

calculation of the discrimination between two

elementary events that use dependencies. More

specifically, a Dependency Calculation Matrix and a

Discrimination Matrix were employed to avoid

unnecessary calculations in the criteria selection

process.

The results of experiments conducted on real and

simulated data indicate that utilizing the dependencies

between variables improves the quality of feature

selection. They also prove that the Minset-Plus

algorithm can deal with large datasets using variable

dependencies.

Acknowledgements

The author would like to thank the College of

Computer and Information Sciences and the Research

Center at King Saud University for their sponsorship.

References

[1] Ben Bassat M. and Zaidenberg L., “Contextual

Template Matching: A Distance Measure for

Patterns with Hierarchically Dependent

Features,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. Pami-6,

no. 2, pp. 201-211, 1984.

[2] Csernel M. and De Carvalho F., “On Memory

Requirement with Normal Symbolic Form,” in

Proceedings of Exploratory Data Analysis in

Empirical Research. Springer, Berlin, pp. 22-30,

2002.

[3] Dale M., Numerical Syntaxonomy, Springer

Netherlands, 1989.

[4] De Carvalho F., “Proximity Coefficients between

Boolean Symbolic Objects,” in Proceedings of

New Approaches in Classification and Data

Analysis, Berlim, 387-394, 1994.

[5] De Carvalho F., “Extension Based Proximity

Coefficients Between Constrained Boolean

Symbolic Objects,” in Proceedings of the 5th

Conference of the International Federation of

Classification Societies, Kobe Berlin, pp. 370-

378, 1998.

[6] De Carvalho F., Csernel M., and Lechevallier Y.,

“Clustering Constrained Symbolic Data,” Pattern

Recognition Letters, vol. 30, no. 11, pp. 1037-

1045, 2009.

[7] Diday E., “An Introduction to Symbolic Data

Analysis,” in Proceedings of the 4th International

Conference of the Federation of Classification

Societies, Paris, pp. 53-55,1993.

[8] Gao Y., Koehn P., and Birch A., “Soft

dependency Constraints for Reordering in

Hierarchical Phrase-Based Translation,” in

Proceedings of the Conference on Empirical

Methods in Natural Language Processing,

Edinburgh, pp. 857-868, 2011.

[9] Gower J., “A General Coefficient of Similarity

and Some of its Properties,” Biometrics, vol. 27,

no. 4, pp. 857-871, 1971.

[10] Gross S. and Huber C., “Hierarchical

Dependency Models for Multivariate Survival

Data With Censoring,” Lifetime Data Analysis,

vol. 6, no. 4, pp. 299-320, 2000.

[11] He C. and Jeng J., “Feature Selection of Weather

Data with Interval Principal Component

Analysis,” in Proceedings of international

Conference on System Science and Engineering,

Puli, pp. 1-4, 2016.

[12] Kiranagi B., Guru D., and Gudivada V.,

“Unsupervised Feature Selection Scheme for

Clustering of Symbolic Data Using The

Multivalued Type Similarity Measure,” in

Proceedings of the 2nd Workshop on Feature

Selection for Data Mining, Bethesda, pp. 67-74,

2006.

[13] Klin B. and Sassone V., “Structural Operational

Semantics for Stochastic and Weighted

Transition Systems,” Information and

Computation, vol. 227, pp. 58-83, 2013.

[14] Kosmelj K., Le-Rademacher J., and Billard L.

“Symbolic Covariance Matrix for Interval-

Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects 1073

Valued Variables and its Application to Principal

Component Analysis: A Case Study,”

Metodoloski Zvezki, vol. 11, no. 1, pp. 1-20,

2014.

[15] Michalski R., Knowledge Acquisition Through

Conceptual Clustering: A Theoretical Framework

and An Algorithm for Partitioning Data into

Conjunctive Concepts,” International Journal of

Policy Analysis and Information Systems, vol. 4,

219-244, 1980.

[16] Nagoya A., Ono Y., and Ichino M., “Detection of

Chain Structures Embedded In Multidimensional

Symbolic Data,” Pattern Recognition Letters,

vol. 30, no. 11, pp. 951-959, 2009.

[17] Pankhurst R., Practical Taxonomic Computing,

Cambridge University Press, 1991.

[18] Sneath P., Numerical Taxonomy, Springer, 2005.

[19] Tlemsani R. and Benyettou A., “On Line Isolated

Characters Recognition Using Dynamic Bayesian

Networks,” The International Arab Journal of

Information Technology, vol. 8, no. 4, pp. 406-

413, 2011.

[20] Vignes R., “Caractérisation Automatique de

Groupes Biologiques,” Doctorat Thesis, Paris VI

University, 1991.

[21] Ziani D., “Feature Selection on Boolean

Symbolic Objects,” International journal of

Computer Science and Information Technology,

vol. 5, no. 6, pp. 1-20, 2013.

[22] Ziani D., “Feature Selection on Probabilistic

Symbolic Objects,” Frontiers of Computer

Science, vol. 8, no. 6, pp. 933-947, 2014.

[23] Ziani D., “Sélection De Variables Sur Un

Ensemble D’objets Symboliques: Traitement Des

Dépendances Entre Variables,” University of

Paris Dauphine, Dissertation for the Doctoral

Degree (in French), Paris, 1996.

[24] Ziani D., “Variable Hierarchical Dependencies in

Feature Selection on Boolean Symbolic Objects,”

in Proceedings of 6th International Conference of

Soft Computing and Pattern Recognition,

Tunisia, pp. 11-16, 2014.

Djamal Ziani is an associate

professor at Al Yamamah

University, in Management

Information Systems since 2019.

He was Associate Professor at

King Saud University in the

Computer Sciences and

Information Systems College from

2009 to 2018. Dr. Djamal is a researcher in ERP and in

the data management group. He received a Master’s

degree in Computer Sciences from the University of

Valenciennes, France in 1992, and Ph.D. in Computer

Science from the University of Paris Dauphine, France

in 1996. He has been a consultant and project manager

in many companies in Canada, such as SAP,

Bombardier Aerospace, and Montreal Stock Exchange,

from 1998 to 2009.

