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Abstract: Feature selection is an important process in data analysis and data mining. The increasing size, complexity, and 

multi-valued nature of data necessitate the use of Symbolic Data Analysis (SDA), which utilizes symbolic objects instead of 

classical tables, for data analysis. The symbolic objects are created by using abstraction or generalization techniques on 

individuals. They are a representation of concepts or clusters. To improve the description of these objects, and to eliminate 

incoherencies and over-generalization, using dependencies between variables is crucial in SDA. This study shows how 

correlation dependencies between variables can be processed on Boolean Symbolic Objects (BSOs) in feature selection. A new 

feature selection criterion that considers the dependencies between variables, and a method of dealing with computation 

complexity is also presented. 
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1. Introduction 

In Symbolic Data Analysis (SDA), Boolean Symbolic 

Objects (BSOs) are used to represent groups or classes 

of individuals. The variables used in symbolic objects 

are multi-valued; they can handle single quantitative 

values, single categorical values, intervals, and sets of 

values. The description of a BSO is created via a 

generalization of the description of all individuals 

belonging to the class represented by that BSO. 

However, in general, the generalization introduces 

incoherence and overgeneralization, which weaken 

further analysis. Consider the following example of an 

animal class with two individuals described by three 

variables: “animal type,” “number of wings,” and 

“number of legs.” The first individual is a bird, it is 

represented as (Bird, 2, 2); the second individual is a 

cat, it is represented as (Feline, 0, 4). The BSO rep-

resenting the class of animals is described by [Animal 

type = {Bird, Feline}]∧[Number of wings = {0, 

2}]∧[Number of legs={2, 4}]. This BSO implies that 

this class of animals can contain a feline with two 

wings and four legs, which is completely false. Thus, 

to be more precise and to avoid this kind of 

incoherence, we need to add a dependency between the 

variables “animal type” and “number of wings”: if 

[animal type=feline] then [number of wings=NA] 

(where NA means not applicable). 

This paper addresses feature selection on BSOs with 

dependencies between variables. Much research has 

been conducted on the problem of feature selection in 

classical data analysis, and many algorithms and 

feature selection criteria have been proposed. However, 

very little research, such as studies in [11, 12, 14, 16, 

21, 22] been conducted in the area of SDA. The 

dependencies between variables problem has been 

studied extensively in classical data analysis. 

Hierarchical dependencies have been introduced [8, 10, 

11, 13]; and the dependencies of semantic 

presence/absence (applicable or not) have also been 

treated [9, 15, 17]. The dependencies of the correlation 

semantic are used to indicate how the values taken by 

some variables influence the values taken by other 

variables; these dependencies have also been treated by 

researchers such as [1, 3, 19]. Dependencies in SDA 

were more recently introduced by [4, 7, 20, 23, 24]. 

2. Symbolic Objects and Dependencies 

2.1. Boolean Symbolic Object 

Y={y1,...,yn} is the set of variables. For example, 

Y={age, weight, illness, …}. 

d=(d1,...,dn) is the description of the object, where di 

is the value taken by the variable yi. For example, d = 

([20, 25], [80,90], {diabetes, cholesterol}). 

Ω{w1, …, wp} is the set of elementary observed 

objects. 

O={O1,...,On} is the set of domains where each 

variable takes its values. 

Ω′ = 𝑂1 × … × 𝑂𝑛} is the set of all possible 

elementary observed objects. 

R={R1,...,Rp} is a set of relations, where Ri is the 

relation used by the variable 𝑦𝑖. For example, 𝑅1 =⊆. 

A symbolic object is defined as a triplet s=(a,R,d); 

this explanatory expression defines a symbolic object 

called an assertion [21]. A BSO is an assertion 

represented by a symbolic expression: 
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𝑎(𝑤) = ⋀ [𝑦𝑖(𝑤)𝑅𝑖  𝑑𝑖]𝑖=1,𝑛   

Where ∧ is the standard logic operator “AND,” and 𝑤 

is an elementary observed object. 

For example, a(w) =[age(w) =[20, 25]] ∧ 

[weight(w) = [80, 90]] ∧ [illness(w) = {diabetes, 

cholesterol}]. 

An elementary event is represented by the symbolic 

expression ei=[yi=vi], where 𝑣𝑖 ⊂ 𝑂𝑖; it is defined by, 
𝑒𝑖: Ω → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 𝑎𝑠 𝑒𝑖(𝑤) = 𝑡𝑟𝑢𝑒 → 𝑦𝑖(𝑤) ∈ 𝑣𝑖 . 
For example, the elementary event 𝑒1 = [hair =

{brown, black}] is such that e1(Alain)= true, because 

hair(Alain) = brown ∈ {brown, black}. 

We distinguish two types of extents: We distinguish 

two types of extents: 

 The real extent of the symbolic object a is defined 

referring to Ω, and represents the set of elementary 

observed objects (individuals) that satisfy the 

expression 𝑒𝑥𝑡𝛺(𝑎) = {𝑤𝑙 ∈ 𝛺|𝑎(𝑤𝑙) = 𝑡𝑟𝑢𝑒}. 

 The virtual extent of symbolic object a is defined 

referring to Ω′, and represents the set of virtual 

elementary objects that satisfy the expression 

𝑒𝑥𝑡𝛺′(𝑎) = {𝑤𝑙
′ ∈ 𝛺′|𝑎(𝑤𝑙

′) = 𝑡𝑟𝑢𝑒}; for example, 

∀𝑦𝑖 , 𝑦𝑖(𝑤𝑙
′) = 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑖 ∈ 𝑉𝑖}, where vi is a value 

taken by variable yi in object wl
′ and vi is a value 

taken by variable yi in assertion. 

 Example 1: Let Ω={Alain, John, Sam}, age(Alain) 

=20 and weight(Alain)=85,age(John)=25 and 

weight(John)=80, age (Sam)=26 and weight (Sam) 

=86,a(w)=[age(w)=[20, 25]] ∧ [weight(w)=[80, 85] 

],extΩ(a) ={Alain, John}. 

Then, extΩ’(a)={Alain, John and all virtual individuals 

with age between 20 and 25 and weight between 80 

and 85}. 

For each BSO, we associate a description space 

calculated by the function μ that is defined below: 

We are given al(w) = [y1 = vl1] ⋀ … ⋀[yn = vln], 
where w is an individual. 

 On=O1×..×On is the Cartesian product of all 

variables, A is the set of symbolic objects, al is a 

symbolic object. 

We define the function μ as follows:𝜇 

𝜇:  𝐴 → 𝑂𝑛      𝜇(𝑎𝑙) = 𝑣𝑙1 ×. . .× 𝑣𝑙𝑛 

 Example 2: Given two variables, age, defined in [18, 

30], and weight, defined in [75, 85], let the BSO a 

be defined as a(w) = [age(w) =[20, 25]] ∧ 

[weight(w) = [80, 85] ]; then, the description space 

of “a” is as shown in Figure 1. 

 

Figure 1. Description space of the object. 

2.2. Variable Dependencies 

There are two types of dependencies, correlation and 

hierarchical: 

 Correlation Dependency (CD): This type of 

dependency is used to predict the values taken by 

some variables when the values taken by other 

variables are known. For example, [triangle= 

Equilateral] ⇒ [angle = 60]. 

 Hierarchical Dependency (HD): This type of 

dependency is used to predict the inefficacy of some 

variables, when the values taken by other variables 

are known. 

In this paper, we focus only on CD. (HD will be 

treated in another paper.) 

A dependency between variables is defined as 

follows: 

𝑅: {𝑂} → {𝑂}  ⋀ [𝑦𝑖 = 𝑣𝑖]
,

⇒ ⋀ [𝑦𝑗 = 𝑣𝑗]𝑗=𝑙,𝑝𝑖=𝑘,𝑚  

To facilitate the writing and processing of 

dependencies, we use only the AND operator (˄) in the 

premises and conclusions of the dependencies. This is 

not a simplification of the problem, but only 

conversion of the dependencies using the properties of 

logical operators. Thus, a dependency that uses the OR 

operator (˅) is replaced by a set of dependencies using 

only the AND operator (˄). When OR operators are 

used in the premise of the dependency, we use the 

following rules to change the dependencies: When the 

OR operators are used in the premise of the 

dependency, a dependency of the form ⋁ [𝑦𝑖 =𝑖=𝑘,𝑚

𝑣𝑖]
,

⇒ 𝑄 will be replaced by a set of m dependencies: 

{[𝑦1 = 𝑣1]
 

⇒ 𝑄, … , [𝑦𝑚 = 𝑣𝑚]
,

⇒ 𝑄} 

 A dependency of the form ⋁ [𝑦𝑖 = 𝑣𝑖]𝑖=𝑘,𝑚
,

⇒ 𝑄 is 

replaced by a set of m dependencies: 

{𝑃
,

⇒ [𝑦1 = 𝑣1], … , 𝑃
,

⇒ [𝑦𝑚 = 𝑣𝑚]}  

The real extent of a dependency is the set of 

individuals that verifies the condition of this 

dependency. The dependency can be written in the 

form 𝑅: 𝑃 ⟹ 𝑄, thus R(w)=true iff P(w)=false or 

Q(w)= true. Consequently, we calculate the real extent 

of a dependency R, as follows: 

 (1) 

 (2) 

(3) 

(4) 

(5) 
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𝑒𝑥𝑡𝛺(𝑅) = (𝛺 ∖ 𝑒𝑥𝑡𝛺(𝑃)) ∪ 𝑒𝑥𝑡𝛺(𝑄)  

The virtual extent of a dependency is the set of virtual 

elementary objects that verifies the condition of this 

dependency. We calculate the virtual extent of 

dependency R as follows: 

extΩ′(R) = (Ω′ ∖ extΩ′(P)) ∪ extΩ′(Q) 

We define the description space of a variable 

dependency as follows below. Given a CD 𝑅: 𝑃 ⟹ 𝑄, 

where 𝒟 is the set of dependencies, we define the 

function μ as follows: 

μ: Ɗ → On      μ(R) = μ(¬P) ∪ μ(P ∧ Q), 

Where μ(¬P) = Ω′ ∖ μ(P). 

 Example 3: Given a dependency (CD) R1 = [x = [3, 

5]] ⇒ [y = [2, 4]], and O = [1, 7] × [1, 7], the 

description space of R1 is as shown in Figure 2. 

 

Figure 2. Description space of a CD. 

2.3. Description Space of A Symbolic Object 

Verifying Dependencies 

A BSO usually represents an individual cluster, with 

its description a generalization of the description of all 

individuals belonging to that cluster. The monothetic 

descriptive nature of BSOs often results in 

overgeneralization. This overgeneralization can be 

reduced and the quality of the description of the 

clusters consequently improved by inserting 

dependencies between variables in the dataset. The 

following example illustrates how dependencies 

between variables can help to solve the 

overgeneralization problem. 

 Example 4: We are given two variables X (defined 

in [0, 5]) and Y (defined in [0, 6]) and a cluster C1, 

described by the BSO a1. Cluster C1 represents all 

individuals where, when X is in [1, 2], Y is in [1, 5], 

and when X is in [2, 4], Y is in [1, 2] or in [5, 6]. 

Thus, 𝑎1 = [ 𝑋 = [0, 3]]  ∧  [𝑌 = [0, 5] ].  
Figure 3-a shows the description space of BSO a1. It 

can be seen that a significant portion of the space is 

overgeneralized. We can solve the overgeneralization 

problem by adding a dependency (CD) 𝑅1 = [ 𝑋 = [2,
4]]  ⇒  [𝑌 = [1, 2], [5, 6] ], as shown in Figure 3-b.  

 
a) Description space of a1. 

 
b) Description space of a1 taking into account the dependency. 

Figure 3. Object Description Space and Dependencies. 

An individual w that belongs to the extent of a BSO 

“a”, and verifies a dependency R:P 𝑅: 𝑃
,

⇒ 𝑄, should 

verify this condition: a(w)=true and R(w)=true. Thus, 

the description space of a BSO “a” taking into 

consideration a dependency R is:𝜇(𝑎 ∧ 𝑅). The 

following formula will be used in order to calculate 

with less complex operations the description space of a 

BSO taking into consideration a dependency: 

𝜇(𝑎 ∧ 𝑅) = 𝜇(𝑎 ∧  ¬(𝑎 ∧ 𝑃 ∧ ¬𝑄)) = 𝜇(𝑎 ) ∖ 𝜇(𝑎 ∧ 𝑃 ∧ ¬𝑄 ) 

3. Processing Dependencies between 

Variables 

3.1. Different Ways for Processing 

Dependencies 

Various methods have been proposed to process the 

dependencies between variables. We will use the same 

notations for all measures. 

Let vik and vjk be the values taken by variable yk in 

assertions ai and aj. 

 Weighting trend: The idea in this trend is to give 

weighting for variables when they are involved in a 

dependency. 

 Klin and Sassone in [13] proposed to label the 

implication by using the total weigh of the variables 

in the premise. This weighting is the basis of how 

the dependencies will be executed. 

 Vignes in [20] uses a binary weighting in the 

calculation of the dissimilarity. Vignes calculates 

the dissimilarity between two BSOs as follows: 

𝑑(𝑎𝑖 , 𝑎𝑗) = ∑ 𝑐𝑜𝑚𝑝(𝑣𝑖𝑘 , 𝑣𝑗𝑘) × 𝛿(𝑣𝑖𝑘, 𝑣𝑗𝑘)

𝑛

𝑘=1

, 

where 𝑐𝑜𝑚𝑝(𝑣𝑖𝑘 , 𝑣𝑗𝑘) = {
 1 𝑖𝑓 𝑣𝑖𝑘 ∩ 𝑣𝑗𝑘 = ∅,

0 𝑒𝑙𝑠𝑒                    
 

and 𝛿(𝑣𝑖𝑘 , 𝑣𝑗𝑘) = {
 1 𝑖𝑓 𝑣𝑖𝑘 ≠ 𝑁𝐴 𝑎𝑛𝑑 𝑣𝑗𝑘 ≠ 𝑁𝐴

0                   𝑒𝑙𝑠𝑒.                   
. 

 Counting trend: A number of researchers use 

codification and counting systems to calculate 

similarity and dissimilarity measures: 

 Gower in [9] defines a dissimilarity between two 

objects ai and aj, described by n variables, as 

(6) 

(7) 

(8) 

(9) 

(10) 
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(15) 

follows: 

𝑑𝑖𝑗 = ∑ 𝑑𝑖𝑗𝑘
𝑛
𝑙=1 ∑ 𝛿𝑖𝑗𝑘

𝑛
𝑙=1⁄ , 

Where 𝑑𝑖𝑗𝑘 = {
1  𝑖𝑓 𝑣𝑖𝑘 = 𝑣𝑗𝑘 ,

  0 𝑒𝑙𝑠𝑒.                  
and 

𝛿𝑖𝑗𝑘 = {
 1 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎𝑖  𝑎𝑛𝑑  𝑎𝑗  

0                   𝑒𝑙𝑠𝑒.                                                         
 

 

 Dependency structure: Ben-Bassat in [1] used 

segmentation tree to process hierarchical logical 

dependencies. Vignes in [20] used graphs of 

dependencies, a structure more complex than the 

tree used by Ben-Bassat, because in a graph a 

variable can be a premise in many dependencies. De 

Carvalho in [4] used graphs of dependencies to 

process hierarchical dependencies and correlation 

dependencies. 

 Decomposition trend: In this trend, the 

dependencies are used to decompose the description 

space of the BSOs in a set of many sub-space parts, 

in which each one should describe a symbolic object 

that either satisfies all variable dependencies or does 

not [4, 5]. Given a BSO 𝑎 = ⋀ 𝑒𝑖𝑖=1,𝑛 , with ei=[yi=vi], 

a set of dependencies R={R1,...,Rp}, and a function 

π, which calculates the length of an object, the 

decomposition of dependencies leads to an 

exponential computation time value depending on 

the number of rules, as shown in the following: 

Let have a BSO 𝑎 = ⋀ 𝑒𝑖𝑖=1,𝑛 , with ei=[yi=vi]. Let have 

a set of dependencies: R={R1,...,Rp}. And let use a 

function π, which calculate the length of an object. 

𝑑(𝑎 𝑅1⁄ ∧ … ∧ 𝑅𝑡 ) = ∏ 𝜋(𝑒𝑖

𝑛

𝑖=1

)

− ∑ 𝜋(𝑎 ∧ ¬𝑅𝑗)

𝑡

𝑗=1

+ ∑ 𝜋 ((𝑎 ∧ ¬𝑅𝑗) ∧ … ∧ ¬𝑅𝑘) + ⋯

𝑗<𝑘

+ (−1)𝑡+1𝜋((𝑎 ∧ ¬𝑅1) ∧ ¬𝑅2 … ∧ ¬𝑅𝑡). 

 

 Normal Symbolic Form (NSF): In this case, the idea 

is to represent the data in a manner that only 

coherent descriptions are represented, and the 

dependencies are not needed in the process. To 

accomplish this, the original tables, representing the 

symbolic objects, are decomposed into several 

tables, according to the number of different premise 

variables. The variables not associated with the 

dependencies remain in the original table and so the 

new tables contain variables on which the 

dependencies are applied [2]. 

The idea of NSF has been used by De Carvalho [6] to 

cluster symbolic objects constrained by a set of 

dependencies. To accomplish this, a graph of 

dependencies was used to generate NSFs, and then a 

dissimilarity measure was applied to the generated 

NSFs. The complexity involved in processing the 

dependencies using NSF is polynomial. However, 

decomposing the main symbolic tables into many 

tables completely changes the design of the symbolic 

object database, from the star schema to a normalized 

database. 

3.2. Processing Dependencies Using Description 

Space 

In this section, we present a new method that utilizes 

only the calculation of the description spaces to 

process the dependencies between variables. This 

method is inspired by research conducted on 

decomposition trend and in NSF; however, the 

symbolic objects are not decomposed. We propose 

three optimization methods to reduce the complexity: 

optimization of the description space calculation, 

optimization of the dissimilarity measure calculation, 

and optimization of the feature selection algorithm. 

We calculate the description space of a BSO, a, 

given a set of dependencies 𝒟 = {𝑅1, … , 𝑅𝑡}, by 

removing from the description space of BSO a, the part 

of the description space of BSO a that does not verify 

the dependencies. This is achieved by using the 

function Original Discriminant Power (ODP), which is 

defined as follows: 

𝜇(𝑎 ∧ (𝑅1 ∧ … ∧ 𝑅𝑡)) = 𝜇(𝑎 ) ∖ (𝜇(𝑎 ∧ ¬𝑅1 ) ∪ … 𝜇(𝑎 ∧ ¬𝑅𝑡)) 

   

Where 

𝜇(𝑎 ∧ ¬𝑅𝑘  ) = 𝜇(𝑎 )  ∖ 𝜇(𝑎 ∧ 𝑃𝑘 ∧ ¬𝑄𝑘  ) 

Before discussing the complexity of Equations (13) 

and (11), let us look at the mathematical properties of 

function μ: 

1. 𝜇(𝐴 ∧ 𝐵 ) = 𝜇(𝐴)  ∩ 𝜇(𝐵) 
2. 𝜇(𝐴 ∨ 𝐵 ) = 𝜇(𝐴)  ∪ 𝜇(𝐵) 

3. 𝜇(¬𝐴 ) = 𝜇(𝐴)𝑐 = 𝑂 ∖ 𝜇(𝐴) 

4. The description space of an object not described by 

all variables is calculated by using as value, for each 

absent variable, the domain of the variable. For 

instance, if an object a is described by the first d 

variables, among a total of n variables, then the 

description space of a will be: 

𝜇 (𝑎 = ⋀ [𝑦𝑖 = 𝑣𝑖]
𝑖=1,𝑑

 ) =  𝑣1 × … × 𝑣𝑑 × 𝑜𝑑+1 × … × 𝑜𝑛 

Here, vi is a value taken by variable yi in assertion a, 

and Od is the domain of variable yd. 

5. Let have two BSOs: a𝑖 = ⋀ [𝑦𝑖 = 𝑣𝑖𝑘]𝑘=1,𝑛  and 

a𝑗 = ⋀ [𝑦𝑖 = 𝑣𝑗𝑘]𝑘=1,𝑛 : 

 If ∀k ∈ {1, . . , n}, vjk ⊆ vik then μ(ai  ∧ aj ) = μ(aj). 

 If ∀k ∈ {1, . . , n}, vjk ⊆ vik then μ(ai  ∨ aj ) = μ(ai). 

 If ∃k ∈ {1, . . , n}, vjk ∩ vik = ∅ then: μ(ai  ∧ aj ) = ∅. 

Theoretically, calculating the description space of a 

BSO, given a set of dependencies is complex, as seen 

in Equation (13). It is based on the calculation of the 

union parts of description spaces. The part of a 

description space used in calculations, representing the 

(11) 

(13) 

(14) 
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space where the BSO does not verify the dependency, 

is also a complex operation, as seen in Equation (14). 

This is because it is using a subtraction operation 

between description spaces. However, in practice, a 

dependency is usually created to be used by one or 

only some objects of the dataset (see Figure 4).  
 

 

Figure 4. Dependencies in a whole object dataset. 

This means that the calculation will be reduced to 

only the description space where the object is 

concerned. This check can be done using property 5. 

 Example 5: This example shows how the description 

spaces, displayed in Figure 4, are calculated using 

Equation (13): 

𝜇 (𝑎1 ∧ (⋀ 𝑅𝑖
4
𝑖=1 )) = 𝜇(𝑎1) ∖ (⋃ 𝜇(𝑎1 ∧ ¬𝑅𝑖  )4

𝑖=1 )  

= 𝜇(𝑎1) ∖ (𝜇(𝑎1 ∧ ¬𝑅1 ) ∪ ∅ ∪ ∅ ∪ ∅ ) 

= 𝜇(𝑎1) ∖ 𝜇(𝑎1 ∧ ¬𝑅1 )  

𝜇 (𝑎2 ∧  (⋀ 𝑅𝑖
4
𝑖=1 )) = 𝜇(𝑎2) ∖ (⋃ 𝜇(𝑎2 ∧ ¬𝑅𝑖  )4

𝑖=1 )  

= 𝜇(𝑎2) ∖ (∅ ∪ 𝜇(𝑎2 ∧ ¬𝑅2 ) ∪ ∅ ∪ ∅ ) 

= 𝜇(𝑎2) ∖ 𝜇(𝑎2 ∧ ¬𝑅2 )  

𝜇 (𝑎3 ∧  (⋀ 𝑅𝑖
4
𝑖=1 )) = 𝜇(𝑎3) ∖ (⋃ 𝜇(𝑎3 ∧ ¬𝑅𝑖  )4

𝑖=1 )  

= 𝜇(𝑎3) ∖ (∅ ∪ ∅ ∪ 𝜇(𝑎3 ∧ ¬𝑅3 ) ∪ 𝜇(𝑎3 ∧ ¬𝑅4 ) ) 

= 𝜇(𝑎3) ∖ (𝜇(𝑎3 ∧ ¬𝑅3 ) ∪ 𝜇(𝑎3 ∧ ¬𝑅4 ))  

𝜇 (𝑎4 ∧  (⋀ 𝑅𝑖
4
𝑖=1 )) = 𝜇(𝑎4) ∖ (⋃ 𝜇(𝑎4 ∧ ¬𝑅𝑖  )4

𝑖=1 )  

     = 𝜇(𝑎4) ∖ (∅ ∪ ∅ ∪ ∅ ∪ ∅ ) = 𝜇(𝑎4) 

4. Dissimilarity Measure and Dependencies 

Between Variables 

4.1. Different Ways For Processing 

Dependencies 

The feature selection criterion, which will be used in 

the algorithm, is based on a new dissimilarity measure 

between BSOs. To define this dissimilarity measure, 

we introduce a function π that calculates the potential 

of a description space: 

𝜋: 𝑂 → ℛ+       𝜋(𝐸𝑟) = ∏ 𝑐𝑎𝑝(𝑣𝑟𝑖)𝑛
𝑖=1 , 

Where 𝐸𝑟 = ∏ 𝑣𝑟𝑖
𝑛
𝑖=1  and the cap function gives the 

length of a value. 

The dissimilarity measure between two BSOs, ai 

and ai , is defined as follows:  

𝑑(𝑎𝑖 , 𝑎𝑗) = 1 −
𝜋(𝜇(𝑎𝑖 ∧𝑎𝑗  ))

𝜋(𝜇(𝑎𝑖 ∨𝑎𝑗 ))
 

The dissimilarity measure between two BSOs, ai and 

aj, taking into consideration a set of dependencies, {R1, 

…,Rt}, is defined as follows:  

𝑑(𝑎𝑖 , 𝑎𝑗) = 1 −
𝜋(𝜇(𝑎𝑖 ∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1  ))

𝜋(𝜇((𝑎𝑖 ∨𝑎𝑗) ⋀ 𝑅𝑝
𝑡
𝑝=1  ))

 

This dissimilarity measure is reflexive and symmetric, 

and respects the triangle inequality. However, if 

Equation (12) is used the dissimilarity calculation is 

complex. This is why we optimize Equation (11) using 

the following property of function π:  

𝜋 (𝜇(𝑎𝑖 ∨ 𝑎𝑗  )) = 𝜋(𝜇(𝑎𝑖)) + 𝜋 (𝜇(𝑎𝑗)) − 𝜋 (𝜇(𝑎𝑖  ∧ 𝑎𝑗  )) 

Thus, the dissimilarity measure between two BSOs 

taking into consideration a set of dependencies is 

practically calculated using: 
𝑑(𝑎𝑖 , 𝑎𝑗) = 

1 −
𝜋(𝜇(𝑎𝑖∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1 ))

𝜋(𝜇((𝑎𝑖) ⋀ 𝑅𝑝
𝑡
𝑝=1  ))+𝜋(𝜇((𝑎𝑗) ⋀ 𝑅𝑝

𝑡
𝑝=1  ))−𝜋(𝜇((𝑎𝑖 ∧𝑎𝑗) ⋀ 𝑅𝑝

𝑡
𝑝=1  ))

 

Calculating the dissimilarity using Equation (13) is 

very important in order to reduce the complexity. Note 

that Equation (15) does not utilize π (𝜇 ((𝑎𝑖  ∨

𝑎𝑗) ⋀ 𝑅𝑝
𝑡
𝑝=1  )), which is a complex calculation, called 

the union part. Instead, the union part is replaced by 

the potential of object description space, and the 

following part. π (μ ((ai ∨ aj) ⋀ Rp
t
p=1 )), called the 

intersection part, which is the same as the numerator, is 

subtracted. 

Moreover, to avoid calculating the same thing many 

times during the process of feature selection, we 

propose to save for each object 𝑎𝑖 its potential of 

description space, calculated by 𝜋 (𝜇(𝑎𝑖 ∧

𝑎𝑗 ⋀ 𝑅𝑝
𝑡
𝑝=1 )), and for each couple (𝑎𝑖 , 𝑎𝑗), we save 

the intersection part. 

4.2. Dissimilarity Measure Between Two 

Elementary Events 

The dissimilarity measure between two elementary 

events is calculated by quantifying the contribution of 

a variable in the discrimination between two objects. 

This contribution can be calculated by decomposing 

the description spaces of the two objects into many 

areas, depending on whether the variable contributes or 

not in the discrimination of each area. In the case 

where the variable contributes in the discrimination, 

the area is the space where the variable takes values 

that are not common to the two objects. This can be 

calculated using the following: 

Given 𝑎𝑖 = ⋀ [𝑦𝑙 = 𝑣𝑖𝑙]𝑙=1,𝑛  and 𝑎𝑗 = ⋀ [𝑦𝑙 =𝑙=1,𝑛

𝑣𝑗𝑙], set 𝑧𝑖𝑗
𝑙 = 𝑂𝑙 ∖ ( 𝑣𝑖𝑙⋂𝑣𝑗𝑙): This is the set of values 

that can be used by variable 𝑦𝑙 to contribute to the 

dissimilarity between eil and ejl. Mathematically, it is 

(16) 

(17) 

(18) 

(19) 

(20) 
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(25) 

the projection, on the axis of variable yl, of the area 

where variable yl contributes to the dissimilarity. 

We define the description space of an object 

knowing the value taken by a variable as: 

𝜇(𝑎𝑖/ 𝑦𝑙 = 𝑣) = 𝑣1 × … × 𝑣𝑙−1 × 𝑣 × 𝑣𝑙+1 … × 𝑣𝑛 

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
𝜋(𝜇(𝑎𝑖 / 𝑦𝑙=𝑣𝑖𝑙⋂𝑧𝑖𝑗

𝑙  ))+𝜋(𝜇(𝑎𝑗 / 𝑦𝑙=𝑣𝑗𝑙⋂𝑧𝑖𝑗
𝑙  ))

𝜋(𝜇(𝑎𝑖))+𝜋(𝜇(𝑎𝑗))−𝜋(𝜇(𝑎𝑖∧𝑎𝑗  ))
 

 Property 1 

𝜋(𝜇(𝑎𝑖  / 𝑦𝑙 = 𝑣 )) = 𝜋(𝜇(𝑎𝑖  )) ×
𝑐𝑎𝑝(𝑣)

𝑐𝑎𝑝(𝑣𝑖𝑙)
 (15) 

By taking into consideration the dependencies between 

variables, the dissimilarity between two elementary 

events will be calculated as follows: 

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
𝜋(𝜇(𝑎𝑖 ⋀ 𝑅𝑝

𝑡
𝑝=1 / 𝑦𝑙=𝑣𝑖𝑙⋂𝑧𝑖𝑗

𝑙 ))+𝜋(𝜇(𝑎𝑗 ⋀ 𝑅𝑝
𝑡
𝑝=1 / 𝑦𝑙=𝑣𝑗𝑙⋂𝑧𝑖𝑗

𝑙 ))

𝜋(𝜇(𝑎𝑖 ⋀ 𝑅𝑝
𝑡
𝑝=1 ))+𝜋(𝜇(𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1 ))−𝜋(𝜇(𝑎𝑖∧𝑎𝑗 ⋀ 𝑅𝑝

𝑡
𝑝=1 ))

     

Knowing that, 

π (μ(ai ⋀ 𝑅𝑝
t
𝑝=1 )) = π(𝜇(𝑎𝑖)) − π(⋃ 𝜇(𝑎𝑖 ∧ ¬𝑅𝑝 )𝑡

𝑝=1 ),(14) 

we will be calculated as follows: 

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) =
∑ 𝜋(𝜇(𝑎𝑘/ 𝑦𝑙=𝑣𝑘𝑙⋂𝑧𝑖𝑗

𝑙 )) 𝑘=𝑖,𝑗 – 𝜋(⋃ 𝜇((𝑎𝑘/ 𝑦𝑙=𝑣𝑘𝑙⋂𝑧𝑖𝑗
𝑙 )  ∧¬𝑅𝑝 )𝑡

𝑝=1 )

∑ 𝜋(𝜇(𝑎𝑘)) 𝑘=𝑖,𝑗 −𝜋(⋃ 𝜇(𝑎𝑘∧¬𝑅𝑝)𝑡
𝑝=1 )−𝜋(𝜇(𝑎𝑖∧𝑎𝑗 ))+𝜋(⋃ 𝜇(𝑎𝑖∧𝑎𝑗 ∧¬𝑅𝑝)𝑡

𝑝=1 )
  

 Example 6: Let us consider the following dataset: 

We have two variables: X defined in [0, 8] and Y 

defined in [0, 9]). 

We have two BSOs: a1=[ X= [1, 6]] ∧ [Y= [3, 9] ] 

and a2=[X= [3, 8]] ∧ [Y= [1, 7] ]. 

We also have three dependencies: 

1. R1 = [Y=[8, 9]] ⇒ [X={[1, 2],[3, 6]}]. 

2. R2 = [Y=[2, 3]] ⇒ [X={[3, 5],[7, 8]}]. 

3. R3 = [Y=[5, 6]] ⇒ [X={[1, 4],[6, 8]}]. 

Figure 5 represents the description space of all the 

dataset objects. 

 

Figure 5. Description space of all objects in the dataset. 

We wish to calculate d(e11,e21), which represents the 

dissimilarity measure of the elementary events of 

objects a1 and a2, which use the first variable “X.” 

We wish to calculate d(e11,e21), which represents the 

dissimilarity measure of the elementary events of 

objects a1 and a2, which use the first variable “X.” 

𝑧12
1 = [0, .8] ∖ [3, 6] = [0, 3[ ∪ ]6, 8]  

𝜋 (𝜇(𝑎1/ 𝑋 = [1, 6]⋂𝑧12
1 )) = 𝜋([1, 3] × [3, 9]) = 12  

𝜋 (𝜇(𝑎2/ 𝑋 = [3, 8]⋂𝑧12
1 )) = 𝜋([6, 8] × [1, 7]) = 12  

¬𝑅1 = [𝑋 = ]2, 3[]   ∧  [𝑌 = [8, 9]]. 

¬𝑅2 = [𝑋 = ]5, 7[]   ∧  [𝑌 = [2, 3]]. 

¬𝑅3 = [𝑋 = ]4, 6[]   ∧  [𝑌 = [5, 6]]. 

𝜋 (⋃ 𝜇 ((𝑎1/ X = 𝑣11⋂𝑧12
1 )   ∧ ¬𝑅𝑝)3

𝑝=1 ) =

𝜋( (]2, 3[× [8, 9]) ∪ ∅ ∪ ∅) = 1  

𝜋(⋃ 𝜇(𝑎2 ∧ ¬𝑅𝑝)3
𝑝=1 ) = 𝜋(∅ ∪ ([6, 7[× [2, 3]) ∪

∅) = 1  

𝜋 (𝜇(𝑎1 ∧ 𝑎2 ⋀ 𝑅𝑝
𝑡
𝑝=1 )) = 𝜋(𝜇(𝑎1 ∧ 𝑎2 )) −

𝜋 (𝜇(⋃ 𝑎1 ∧ 𝑎2 ∧ ¬𝑅𝑝
3
𝑝=1 ))  

𝜋 (𝜇(𝑎1 ∧ 𝑎2 ⋀ 𝑅𝑝
𝑡
𝑝=1 )) = 𝜋([3, 6] × [3, 7]) −

𝜋(]4, 6[× [5, 6]) = 10  

𝜋(𝜇(𝑎1)) = 𝜋([1, 6] × [3, 9]) = 30  

𝜋(𝜇(𝑎2)) = 𝜋([3, 8] × [1, 7]) = 30  

𝑑(𝑒11, 𝑒21) =
12+12−1−1

30+30−3−4−10
= 0.51. 

5. Feature Selection Algorithm 

5.1. Selection Criteria 

We previously developed an algorithm called Minset-

Plus [21, 22]. This algorithm requires two criteria: the 

discriminant power, and the ODP. 

Given a set of objects, A={a1,…,am}, let Y={y1, …, 

yn} be a set of variables, K the set of object pairs 

K=A×A, P(Y) the set of all subsets of Y, and P(K) the 

set of all subsets of K.  

 Discriminant Power (DP): DP is used as stopping 

criteria. The DP of a subset of variables Yd on the 

set K, noted by DP(Yd,K), calculates the maximum 

discrimination reached by the subset of variables. It 

uses the discrimination measure between elementary 

events: 

𝐷𝑃: 𝑃(𝑌) × 𝑃(𝐾) ⟶ ℛ+ 

𝐷𝑃(𝑌𝑑, 𝐾) = ∑ ∑ 𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙)𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1  

 Original Discriminant Power (ODP): ODP is the 

selecting criteria of the algorithm. The ODP of a 

variable y1 referred to a set of variable Yd, quantifies 

how much variable y1 contributes to discriminate the 

assertions pairs that are not discriminated by any 

variable of Yd. 
𝑂𝐷𝑃: 𝑌 × 𝑃(𝑌) × 𝑃(𝐾) ⟶ ℛ+ 

𝑂𝐷𝑃(𝑦𝑙 , 𝑌𝑑, 𝐾) = ∑ ∑ 𝑚𝑎𝑥
(𝑎𝑖,𝑎𝑗)∈𝐾

(𝑑(𝑒𝑖𝑙 , 𝑒𝑗𝑙) −𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

𝑚𝑎𝑥
𝑦𝑝∈𝑌𝑑

(𝑑(𝑒𝑖𝑝, 𝑒𝑗𝑝)) , 0) 

5.2. Minset-Plus Algorithm 

There is no change done in Minset-Plus algorithm; 

only the method used to calculate the selection criteria 

is changed. 

The steps used in the algorithm are as follows: 

(21) 

(22) 

(23) 

(24) 

(26) 

(27) 
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1. Find the indispensible variables which permit us to 

discriminate assertion pairs not discriminated by 

others variables. This means we select the variables 

such that their ODP against all other variables is ≠0: 

ODP(yi,Y-yi, K)≠0. Set Y’=Y Set Yd=set of selected 

variables While DP(Yd,K) < DP(Y, K). 

2. Select in each step the variable which has the 

highest ODP. The selected variable permits to 

discriminate the greatest number of assertion pairs, 

not already discriminated by the variables selected 

before. 

Y’= Y’ - Selected variables 
Yd = Yd ∪ { yl / yl maximizes ODP(yi, Y′ − yi, K)  ∀yi ∈ Y′}.  

3. Eliminate in each step the variables which become 

redundant. This means the assertion pairs 

discriminated by these variables are discriminated 

by other selected variables.  

𝑌𝑑 = 𝑌𝑑 − {𝑦𝑙 ∈ 𝑌𝑑 𝑤ℎ𝑒𝑟𝑒 𝑂𝐷𝑃(𝑦𝑙 , 𝑌𝑑 − 𝑦𝑙 , 𝐾) = 0}  

This algorithm is summarized as follows: Let 𝑌 and 𝑌′ 

represent two sets of variables, O and O′ represent the 

values taken by the variables of 𝑌 and 𝑌′, respectively, 

and 𝐾 represent the set of assertion pairs. Initially, we 

have a knowledgebase (Y,O,A). The objective of the 

algorithm is to extract a knowledgebase (𝑌′, 𝑂′, 𝐴) 

such that 𝑌′ ⊆ 𝑌 with𝐷𝑃(𝑌′, 𝐾) = 𝐷𝑃(𝑌, 𝐾). 

5.3. Algorithm Optimization 

Because the symbolic objects are complex data, and 

that the processing of dependencies needs heavy 

operations, we reduce the complexity of the algorithm 

by saving intermediate results during calculation of the 

dissimilarity measure between two elementary events, 

and by avoiding repetitive calculations. 

5.3.1. Complexity in The Calculation of 

Dissimilarity Measures Between Two 

Elementary Events 

The dissimilarity measure between two elementary 

events is calculated using Equation (25): 

d(eil, ejl) =
∑ π(μ(ak/ yl=vkl⋂zij

l ))k=i,j  − π(⋃ μ((ak/ yl=vkl⋂zij
l )  ∧¬Rp )t

p=1 )  

∑ π(μ(ak)) k=i,j −π(⋃ μ(ak∧¬Rp)t
p=1 )− π(μ(ai∧aj ))+π(⋃ μ(ai∧aj ∧¬Rp)t

p=1 )
  

1. The denominator of this formula gives two 

important clues for optimizing the calculation: 

● The denominator is the same for all elementary 

events of the same two objects. This means that if 

we have two objects, ai and aj, described by n 

variables, the 
n(n−1)

2
 dissimilarity measures between 

two elementary events involved with the objects ai 

and aj use the same denominator. 

● The denominator also uses calculation components 

that are used by other measures. If we have in our 

dataset m objects, the components π(μ(ak)) and 

π(⋃ μ(ak ∧ ¬Rp)t
p=1 ) are used by the 

m(m−1)

2
 

dissimilarity measures between two elementary 

events involved with these m objects. 

On the basis of these two observations, we save the 

calculation components in a matrix as follows: 

Table 1. Calculation component matrix. 

Object Calculation Component 

a1 π(μ(a1)) − π (⋃ μ(a1 ∧ ¬Rp)

t

p=1

) 

a2 π(μ(a2)) − π (⋃ μ(a2 ∧ ¬Rp)

t

p=1

) 

… … 

am π(μ(am)) − π (⋃ μ(am ∧ ¬Rp)

t

p=1

) 

2. In the numerator d(eil, ejl), and using property 1, 

the calculation of π (μ(ak/ yl = vkl⋂zij
l )) and 

π (⋃ μ ((ak/ yl = vkl⋂zij
l )  ∧ ¬Rp )t

p=1 ) are 

carried out in a manner to use, respectively, 

π(μ(ak)) and π(⋃ μ(ai ∧ ¬Rp)t
p=1 ), which have 

already been calculated in the denominator. Thus, 

the dissimilarity measure between two elementary 

events is calculated with Equation (29): 

d(eil, ejl) =
cap(vkl⋂zij

l )

cap(vkl)
× 

∑ π(μ(ak )) k=i,j  − ∑ π(⋃ μ(ak ∧ ¬Rp)t
p=1 )k=i,j   

D
, 

Where 

D = ∑ π(μ(ak)) k=i,j − π(⋃ μ(ak ∧ ¬Rp)t
p=1 ) −  π (μ(ai ∧ aj )) +

π(⋃ μ(ai ∧ aj ∧ ¬Rp)t
p=1 )       

The potential of a union of description space is a 

combinatory calculation: 

𝜋(⋃ 𝜇(𝐸𝑝)𝑡
𝑝=1 ) = ∑ 𝜋 (𝜇(𝐸𝑝))𝑡

𝑝=1 . 

+(−1)1 ∑ 𝜋 (𝜇(𝐸𝑝) ∩ 𝜇(𝐸𝑝+1))

𝑡−1

𝑝=1

 

+. . . +(−1)𝑡−1𝜋(𝜇(𝐸1) ∩ 𝜇(𝐸2) … 𝜇(𝐸𝑡)). 

This kind of calculation appears in Equation (29), in 

𝜋(⋃ 𝜇(𝑎𝑗 ∧ ¬𝑅𝑝)𝑡
𝑝=1 ). The calculation is carried out 

by the union of the intersections of a description space 

with a negation of a dependency. To reduce the 

complexity, the calculation is carried out by level. In 

this way, we avoid the calculation of an intersection in 

level p if there is no intersection in level p-1. The 

following calculation matrix is used for this purpose. 

Table 2. Calculation matrix. 

 Level 1 Level 2 Level 3 

 ¬R1 ¬R2 ¬R3 ¬R1˄¬R2 ¬R1˄¬R3 ¬R2˄¬R3 ¬R1˄¬R2˄¬R3 

E1 0 5 7 X X 2 X 

E2 5 6 0 3 2 X X 

E3 0 0 5 X X X X 

E4 8 4 0 4 2 X X 

E5 5 0 0 3 X X X 

(28) 

(29) 

(30) 
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X: means that the calculation is not done, and the 

result is equal to zero. 

5.3.2. Using Dissimilarity Matrix 

The discrimination matrix allows us to calculate 

dp(eli,elk) only once, and in all the steps of the 

algorithm, the matrix is used to carry out all the 

necessary operations. This significantly optimizes the 

temporary complexity. In addition, at only k×n, the 

matrix is not large; k=card(K) and n=card(Y), K is not 

a large number because we are dealing with classes of 

individuals. Example 8 illustrates how the algorithm 

uses the dissimilarity matrix. 

 Example 7: Given Y ={y1, y2, y3, y4, y5} is the set of 

variables and A={a1, a2, a3, a4}, then K={(a1, a2), 

(a1, a3), (a1, a4 ), (a2, a3), (a2, a4), (a3, a4)}, see Table 

3. 

When we calculate DP(Y, K) for the stopping criteria 

of the algorithm, we fill the discrimination matrix 

(only one time). Thus, in the case corresponding to yl 

and (ai, aj) we put the result of dp(eli,elk) . Then the Max 

Yd is used to save:  𝑚𝑎𝑥
𝑦𝑝∈𝑌𝑑

(𝑑𝑝(𝑒𝑝𝑖, 𝑒𝑝𝑘)). This means, at 

the beginning the maximum of the result of dpi(epi,epk) 

is empty for the selected variables; and then we put the 

maximum for the indispensable variables. Here in this 

example, yl is indispensable. 

Table 3. Discrimination matrix. 

 (a1, a2) (a1, a3) (a1, a4) (a2, a3) (a2, a4) (a3, a4) 

y1 0.7 0 0.3 0.1 0 0.1 

y2 0 0.6 0.1 0.7 0 0.4 

y3 0 0.6 0.5 0.3 0.6 0.3 

y4 0 0.2 0.4 0.2 0.5 0.5 

y5 0 0.3 0.4 0.3 0.6 0.3 

Max Yd 0.7 0 0.3 0.1 0 0.1 

Selection of a new variable in each step is 

accomplished by calculating ODP(yl,yd,K) for each 

unselected variable. Using the discrimination matrix, 

selection of the new variable is achieved via the 

following operations: 

 d(epi,epk) is saved in the case corresponding to y1 and 

(ai, aj) of the discrimination matrix. 

 max
yp∈Yd

(dp(epi, epk)) is saved in the Max Yd row. 

Thus, calculation of ODP(yl,yd,K) is achieved via only 

one number subtraction operation and a comparison 

operation to find the maximum of two numbers. 

 Finding the redundant variables in each step is 

achieved by checking each variable among the set 

of selected variables, to determine if redundancy 

will occur when the new selected variable is added. 

This means that we calculate the expression 

𝑂𝐷𝑃(𝑦𝑙 , (𝑌𝑑 ∪ 𝑦𝑠) − 𝑦𝑙 , 𝐾) = 0, where ys is the 

new selected variable. The property defined in [22] 

enables calculation of the ODP based on 

DP:𝑂𝐷𝑃(𝑦𝑖 , 𝑌𝑃 , 𝐾) = 𝐷𝑃(𝑌𝑃 ∪ 𝑦𝑖 , 𝐾) − 𝐷𝑃(𝑌𝑃 , 𝐾). 

We check the redundancy as follows: 

𝐷𝑃((𝑌𝑑 ∪ 𝑦𝑠) − (𝑦𝑙 − 𝑦𝑠), 𝐾) =  𝐷𝑃(𝑌𝑑 ∪ 𝑦𝑠, 𝐾) 

This test is not complex by using the discrimination 

matrix, since to calculate 𝐷𝑃(𝑌𝑑 ∪ 𝑦𝑠, 𝐾), we will 

calculate, for each couple (ai, aj), the maximum 

between the value saved in Max Yd and the value of 

the case(ai , aj), ys: ∑ ∑ 𝑀𝑎𝑥 (Max 𝑌𝑑 ,𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1,𝑖≠𝑗

𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗)). 

Therefore, the calculation of the Equation  

𝐷𝑃((𝑌𝑑 ∪ 𝑦𝑠) − (𝑦𝑙 − 𝑦𝑠), 𝐾) will be done as follows: 

∑ ∑ 𝑀𝑎𝑥 (𝑀𝑎𝑥 (𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑𝑝(𝑒𝑙𝑖 , 𝑒𝑠𝑙) , 𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗)) −
𝑞
𝑗≠𝑖

𝑞
𝑖≠𝑗

 𝑀𝑎𝑥 (𝑑𝑝(𝑒𝑙𝑖 , 𝑒𝑠𝑙) − 𝑑𝑝(𝑒𝑠𝑖 , 𝑒𝑠𝑗)) , 0). 

When the algorithm selects the variabl𝑦𝑠, it 

calculates 𝑀𝑎𝑥 (𝑚𝑎𝑥
𝑦𝑙∈𝑌𝑑

𝑑𝑝(𝑒𝑙𝑖, 𝑒𝑠𝑙) , 𝑑𝑝(𝑒𝑠𝑖, 𝑒𝑠𝑗))  and 

its value is saved in the discrimination matrix row Max 

Yd. This means we will have to do, for each pair (ai, 

aj), only the subtraction of the value of the case 

(𝑎𝑖  , 𝑎𝑗), 𝑦𝑙 and the value of the case (ai, aj), ys; and 

then we compare the value of the substation with the 

value found in Max Yd corresponding to the same pair 

(ai, aj). 

 Selecting the indispensible variables will be done by 

doing this test: yl is indispensible if: 
∃ (𝑎𝑖  , 𝑎𝑗)  ∈ 𝐾 𝑤ℎ𝑒𝑟𝑒 𝑑𝑝(𝑒𝑙𝑖, 𝑒𝑙𝑗) ≠ 0 

and  𝑚𝑎𝑥
𝑦𝑝∈𝑌−𝑦𝑙

(𝑑𝑝(𝑒𝑝𝑖, 𝑒𝑝𝑘)) = 0 

This means that a variable is indispensable if we find a 

pair of objects discriminated by the variable and not 

discriminated in any way by any other variable. Using 

the discrimination matrix, we can find indispensable 

variables without any complex operations; only the 

values stored in the discrimination matrix are 

compared. 

6. Application 

We validated our algorithm using two categories of 

testing: quality testing and complexity testing. 

6.1. Quality Testing 

This validation was carried out on the Tristichacees, 

Aquatic Insects, and Phlebotomines datasets provided 

by [20]. In addition, we created two datasets, 

Phlebotomines Clustered and Tristichacees Clustered, 

from the result of clustering on the original datasets 

from Vignes (see Table 4). The clustered data sets have 

been created using the symbolic object generator 

program [22]. This program can use object similarity 

to cluster the objects and generate different types of 

symbolic objects: boolean or probabilistic objects.  

We used the symbolic object generator program to 

generate individual test data. The program takes into 

(32) 

(33) 

(34) 



Correlation Dependencies between Variables in Feature Selection on Boolean Symbolic Objects                                         1071 

account the domain variables and the dependencies to 

generate the individuals. Thus, all individuals satisfied 

the dependencies of their dataset. 

In our study, the validation process with test data 

was carried out based on the calculation of the real 

object extents. If the intersection between object 

extents before feature selection is almost the same as 

that after feature selection, then it can be concluded 

that the selected feature maintained the same 

discrimination between objects. This assessment was 

carried out using the quality criteria Real 

Discrimination Power Variation (RDPV) defined in 

Equation (31), and which is based on the Real 

Discrimination Power (RDP) defined in Equation (36): 

|
𝑅𝐷𝑃(𝑌𝑑 ,𝐾)−𝑅𝐷𝑃(𝑌,𝐾)

𝑅𝐷𝑃(𝑌𝑑 ,𝐾)
| ≤ 𝛽, 

Where: 

𝑅𝐷𝑃(𝑌, 𝐾) =  1 − ∑ ∑
𝑐𝑎𝑟𝑑(𝑒𝑥𝑡 (𝑎𝑖) ∩ 𝑒𝑥𝑡(𝑎𝑗) )

𝑐𝑎𝑟𝑑(𝑒𝑥𝑡 (𝑎𝑖) ∪𝑒𝑥𝑡(𝑎𝑗))

𝑞
𝑗=1,𝑗≠𝑖

𝑞
𝑖=1,𝑖≠𝑗  𝑎𝑛𝑑 

𝑅𝐷𝑃(𝑌𝑑, 𝐾) =  1 − ∑ ∑
𝑐𝑎𝑟𝑑(𝑒𝑥𝑡(𝑎𝑖

′) ∩ 𝑒𝑥𝑡(𝑎𝑗
′) )

𝑐𝑎𝑟𝑑(𝑒𝑥𝑡(𝑎𝑖
′) ∪𝑒𝑥𝑡(𝑎𝑖

′))

𝑞
𝑗=1,𝑗≠𝑖

𝑞
𝑖=1,𝑖≠𝑗 .   

𝑎𝑖
′ and 𝑎𝑗

′ are objects describing ai and aj using only the 

selected variables Yd. 

Table 4. Dataset description. 

Dataset 
Feature 

Number 

Object 

Number 

Dependency 

Number 

Individual 

Number 

RDP before 

No Dep 

RDP 

before Dep 

Tristichacees 27 12 9 8933 100% 100% 

Aquatic 

Insects 
12 16 3 5974 99.7% 99.7% 

Phlebotomines 53 73 5 13500 100% 100% 

Phlebotomines 

Clustered 
52 10 2 13500 75.8% 87.2 

Tristichacees 

Clustered 
26 4 4 8933 99.3% 99.9% 

Table 5. Testing result. 

Dataset 
DP 

NO Dep 

DP 

Dep 

Selected 

features 

NO Dep 

Selected 

features 

Dep 

RDP 

No 

Dep 

RDPV 

No 

Dep. 

RDP 

Dep 

RDPV 

Dep 

Tristichacees 66 66 4 4 100% 0 100% 0 
Aquatic 

Insects 
119 115 8 8 99.6% 0.001 96.6% 0.001 

Phlebotomines 2623 2623 16 16 99.9% 0.001 99.9% 0.001 
Phlebotomines 

Cluster 
25.66 27.91 7 8 71.5% 0.05 86.3% 0.01 

Tristichacees 

Clustered 
5.16 5.75 3 2 80.2% 0.19 94.5% 0.05 

In Table 4, for the first three datasets, the calculated 

RDP without and with dependencies are approximately 

100%. This means that the objects are totally and 

equally discriminated by the variables without and 

with the dependencies. In this case, we expected that 

the result of feature selection without and with 

dependencies for the datasets would be the same. We 

obtained the expected results, the same DP (first and 

second columns of Table 5) and the same number of 

selected features (third and fourth columns of Table 5). 

For the clustered datasets: 

 From the values in columns two and three of Table 

5, it is clear that the calculated DP with 

dependencies is greater that the calculated DP 

without dependencies. This means that the 

dependencies reduced the intersection between the 

clustered symbolic objects, by removing the 

overgeneralization area created during the process 

of generation of clustered symbolic objects. 

 The RDP calculated for datasets with dependencies 

and using only the selected variables were much 

better than the RDP of the datasets without 

dependencies and using only the selected variables 

(see columns five and six of Table 5). 

 The RDPVs of the feature selection with 

dependencies (between 0 and 0.05) are better than 

the RDPVs of the feature selection without 

dependency (between 0 and 0.18). This proves that 

feature selection with variable dependencies 

produce better results. 

6.2. Complexity Testing 

The complexity of our algorithm was first determined 

by comparing the execution time of the algorithm for 

selecting variables, with and without dependencies, on 

the datasets presented in Table 4. It can be seen that 

selecting variables with dependencies is more complex 

(see Table 6). On average, however, the time taken was 

twice as much as the time taken with dependencies, 

which implies that the complexity was not significant.  

Table 6. Execution time on datasets. 

DataSet 
Execution Time No 

Dep (ms) 

Execution Time with 

Dep (ms) 

Tristichacees 89 165 

Aquatic Insects 30 78 

Phlebotomines 1290 1831 

Phlebotomines Cluster 42 89 

Tristichacees Clustered 28 31 

The other category of complexity testing was 

applied to study the complexity when the number of 

dependencies and the number of objects in the datasets 

are varied. 

 Execution Time vs. Number of Dependencies We 

used the Phlebotomines Clustered dataset and varied 

the number of dependencies from zero to 50. Figure 

6 shows that the execution time was not 

exponential. 

 Execution Time vs. Number of Objects For this test, 

we used the Phlebotomines data with five 

dependencies to create datasets with objects varying 

between five and 75. Figure 7 shows that the 

execution time for the varying number of symbolic 

objects was also not exponential. 

The results of the two experiments clearly show that 

although feature selection with variable dependencies 

is complex, by using various techniques to avoid 

unnecessary calculations, we successfully reduced the 

complexity of the algorithm. 

 

(35) 

(36) 
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Figure 6. Execution time vs. number of dependencies. 

 

Figure 7. Execution time vs. number of objects7 conclusion. 

This paper showed how the dependencies between 

variables can be used in feature selection on Boolean 

symbolic objects. The dependencies between variables 

were shown to be powerful structures that result in the 

symbolic objects representing individual clusters or 

concepts more logically and with more precision. 

Further, because the use of dependencies between 

variables leads to complex calculation in the criteria 

selection process, efforts were also made to reduce the 

complexity of the algorithm. This was achieved by 

using various mathematical properties to optimize the 

calculation of the discrimination between two 

elementary events that use dependencies. More 

specifically, a Dependency Calculation Matrix and a 

Discrimination Matrix were employed to avoid 

unnecessary calculations in the criteria selection 

process. 

The results of experiments conducted on real and 

simulated data indicate that utilizing the dependencies 

between variables improves the quality of feature 

selection. They also prove that the Minset-Plus 

algorithm can deal with large datasets using variable 

dependencies. 
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