
424 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

(m, k)-Firm Constraints and Derived Data

Management for the QoS Enhancement in

Distributed Real-Time DBMS

Malek Ben Salem1, Emna Bouazizi1,2, Claude Duvallet3, and Rafik Bouaziz1
1Higher Institute of Computer Science and Multimedia, Sfax University, Tunisia

2College of Computer Science and Engineering, Jeddah University, Jeddah, Saudi Arabia
3Normandie Univ, UNIHAVRE, LITIS, 76600 Le Havre, France

Abstract: Distributed Real-Time DBMS (DRTDBMS) is a collection of Real-Time DataBase Management Systems (RTDBMS)

running on sites connected together via communication's networks for transaction processing. This system is characterized by

the data distribution and the unpredictable transactions. In addition, in this system, the presence of several sites raises the

problem of the unbalanced load between those nodes. In order to enhance the performance of DRTDBMS with taking into

account those problems, Quality of Service (QoS) based approaches are the most appropriate. Distributed Feedback

Scheduling Control Architecture (DFCSA) is proposed for managing the QoS in this system. In DRTDBMS, the results

produced in time with less precision are sometimes preferable than exact results obtained in delay, inaccuracy can be

tolerated. In order to take this assertion, in this paper, we extend the DFCSA by using the (m, k)-firm constraints, which take

into account the imprecise results, using three data replication policies. The obtained architecture is called (m, k)-firm-User-

DFCS. The second contribution consists of taking into account the real-time derived data on (m, k)-firm-User-DFCS

architecture, always, using three data replication policies. The obtained architecture is called Derived Data Management
(DDM)-(m, k)-firm-User-DFCS. Then, we are focusing on two ways of service optimization in DRTDBMS. We are interested in

(1) the space optimization in which we propose to apply three replication data policies, and (2) the QoS optimization in which

we propose to take into account the real-time derived data and (m, k)-firm constraints.

Keywords: Software DRTDBMS, QoS management, feedback control scheduling, (m, k)-firm constraints, derived data.

Received June 28, 2015; accepted January 4, 2017

1. Introduction

Currently, many applications use distributed

computing, real-time processing and require, in

addition, the management of large amount of data like

wireless sensor network [8], mobile computing

technology [17] and dynamic environments [3]. Thus,

Distributed Real-Time DBMS (DRTDBMS) are

increasingly needed to satisfy these applications since

they are designed to manage, in both, large volumes of

distributed data and real-time constraints. DRTDBMS

include a set of nodes connected via communication

networks for transactions processing, where data and

transactions are totally distributed.

DRTDBMS are greatly exposed to unpredictable

workload, caused by user transactions arriving at

varying frequencies, and to an unbalanced distribution

of this workload between nodes. This leads to

instability periods in which the system becomes

overloaded. During overloading periods, there is a lack

of DRTDBMS resources, so that transactions greatly

miss their deadlines. Therefore, it is essential to keep

the system in a stable state in order to guarantee a better

QoS.

To control system's instability periods, approaches

based on feedback control real-time scheduling theory

are proposed [1, 14]. Further, Wei et al. [18] proposed

an algorithm for Quality of Service (QoS) guarantees

in DRTDBMS based on a Distributed Feedback

Control Scheduling Architecture (DFCSA). Although

this solution guarantees a better overall QoS, it

still has several drawbacks.
The use of full data replication policy is a costly

technique if the amount of data is high (cost of storage

and cost of updating copies). This can be very costly

in the case of a distributed Database Management

Systems (DBMS) with a number of sites greater than

eight. This shortfall can be remedied by using other

replication policies in order to take into account the

increase in the number of distributed RDBMS sites.

This architecture use a classical admission

controller of transactions where the atomicity property

of transactions is guaranteed, i.e., the transaction is

full accepted with their operations or fully rejected.

This controller contributes greatly of the balance of

system state, but that is in detriment of the number of

committed transactions before their deadline. This is

due to the number of user transactions to be removed

from the system increases during the overloading

phases. In order to increasing the number of

committed transactions in deadline, a solution may be

(m, k)-Firm Constraints and Derived Data Management for the Qos ... 425

proposed which relax the atomicity property of

transactions.

The DFCS architecture don’t take into account the

real-time derived data management, to our knowledge.

Only the real-time data are considered in this

architecture. However, in real-time databases, derived

real-time data are massively used to reduce the

databases size and decrease the processing time of data

that depends on other data. For this, a solution could be

envisaged for better management of the real-time

derived data while including it in a loop

feedback control and in the distributed context.

In previous work, Hamdi et al. [11] have proposed a

distributed feedback control scheduling architecture

taking into account the real-time derived data using

only the semi-total data replication policy [6].

Furthermore, in Ben Salem et al. [4] have proposed an

architecture which apply the (m, k)-firm constraints for

user transactions in distributed feedback loop using

only the full data replication policy.

In this paper, our objective is to enhance QoS in

DRTDBMS by maximizing the number of transactions

which meet their deadlines, while maintaining a robust

DRTDBMS behaviour facing instability periods. Our

approach consists, in the first step, of applying the

(m,k)-firm technique to user transactions in distributed

feedback control scheduling using three data replication

policies, the obtained architecture is called (m,k)-Firm-

User-DFCS Architecture. The second step consists of

taking into account the real-time derived data on the

(m, k)-Firm-User-DFCS Architecture, the result

architecture is called Derived Data Management

(DDM)-(m, k)-Firm-User-DFCS Architecture. The

purpose of our work is to propose architectures that

provide efficient QoS adaptability and performance

reliability even in the presence of unpredictable

workload in DRTDBMS.

The remaining of the paper is organized as follows.

In section 2, we present the related work which consists

of the real-time database model, the performance

metric, the existing architecture on which our work is

based, and the notions of real-time derived data and (m,

k)-firm constraints. Section 3 describes our proposed

approaches for QoS guarantees in DRTDBMS where

the first approach consists of applying (m, k)-firm

constraints for user transactions on DFCS Architecture

using three data replication policies, and the second

approach consists of taking into account the real-time

derived data on (m, k)-firm-User-DFCSA always using

three data replication policies. Those proposed

extended architectures are evaluated according to a set

of simulation results in section 4. We conclude the

paper, in section 5, by briefly discussing our work and

by presenting our future work.

2. Related Work

In this section, we describe our distributed real-time

database model by presenting data and transaction

models, and defining the basic performance metric we

consider. Similarly, we present the QoS management

architecture proposed in [18], on which we based our

work. We finish by giving an overview of the previous

work in which the (m, k)-firm approach and derived

real-time data are used for the QoS enhancement.

In our data model, we consider a replicated main

memory database in which we have real-time and non

real-time data [1]. Real-time data are sensor data from

physical world, and are updated periodically to reflect

accurately the real-world state. Each real-time data

object has a validity interval beyond which it becomes

useless, and a timestamp indicating the last

observation of the real-world state. Non real-time data

are those found in conventional databases and that do

not change dynamically with time. The data

replication technique increases the data availability at

different sites. Then, it significantly helps transactions

to meet their time requirements [18]. Data could be

either fully [10] or semi-total [6] or partially replicated

[16].

For distributed real-time transactions, we consider

firm deadline transactions [1], where if a transaction

misses its deadline, it will be aborted and becomes

useless for the system. Transactions are divided into

update and user transactions according to the type of

their accessed data items. Update transactions are

executed periodically, in order to refresh real-time

data objects. They update, likewise, real-time data

replicas. We consider that each update transaction

consists of one sub-transaction, having always a write

operation. User transactions are a periodic. We

consider that each one consists of a set of sub-

transactions. Then, each sub-transaction is composed

of a set of read operations on both real-time and non

real-time data objects, and of write operations on only

non real-time data objects.

In distributed real-time databases, the transactions

may executed in local or in remote site [5, 6]

according to the location of their required data items.

It should note that when dealing with DRTDBMS

models based on a load balancing technique, a

transaction may have all of its required data at its local

site, but it is then distributed in order to alleviate the

overload situation of that site.

2.1. Performance Metric

The main performance metric, we consider in our

model, is the Success Ratio (SR). It is a QoS

parameter which measures the percentage of

transactions that meet their deadlines. It is defined as

follows:
#

100 (%)
#

timely
SR

timely tardy

 (1)

426 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

where #timely and #tardy represent, respectively, the

number of transactions that have met and missed their

deadlines.

2.2. QoS Management in DRTDBMS

The QoS is increasingly important for evaluating the

performance of a DRTDBMS, in which the system

performance depends on the workload distribution. In

Wei et al. [18] proposed an architecture using

feedback-based global load balancers and local

feedback controllers. This architecture, called
Distributed Feedback Scheduling Control Architecture

(DFCSA), on which we base our work, aims a load

balancing between system nodes and an efficient

management of transactions workload fluctuations. The

general outline of the DFCSA is shown in Figure 1. In

what follows, we give a brief description of its basic

components.

Figure 1. The DFCS architecture for QoS guarantees [18].

The admission controller is used to regulate the

system workload in order to prevent its overloading, by

referring to the estimated CPU utilization and the target

utilization set point of the system. The scheduler is used

to schedule transactions according to the Earliest

Deadline First (EDF) protocol [2, 14].The transaction

manager handles the transactions' execution. It consists

of a Concurrency Controller (CC), a Freshness

Manager (FM), a Data Manager (DM) and a Replica

Manager (RM). The CC solves accessing data conflicts

appearing between transactions using the Two Phase

Locking High Priority (2PL-HP) [1] protocol. The FM

checks the data freshness and blocks a user transaction

if the accessed data item is stale. The DM has to update

real-time data replicas, and the RM handles data

replicas using a replication control protocol.

At each sampling period, the local monitor samples

the system performance data, by referring to statistics

about transactions' execution which it retrieves from the

transaction manager. Measured values belong to the

feedback control loop and are, then, reported to the

local controller. The local controller includes the local

utilization controller and the local miss ratio controller,

which generate, respectively, the local miss ratio and

the local utilization control signals, based on the

received values and on the system reference

parameters, according to which this controller sets the

system target utilization to be considered at the next

sampling period.

The global load balancer ensure the system load

balancing, by exchanging the system performance data

with others nodes, which is guaranteed by transferring

transactions from highly overloaded nodes to less

overloaded nodes. The amount of workload to be

transferred is controlled by the Load Transferring

Factor (LTF) of each node [18].

2.3. The (m, k)-Firm Constraints in Literature

The (m, k)-firm constraints was initially introduced

for periodic tasks in real-time systems [15], in order to

relax strict real-time constraints. It has also been

adapted to transactions in real-time databases, aiming

to decrease the number of missed deadlines [7].

In DRTDBMS, a (m, k)-firm real-time transactions

model has been proposed in [13]. It consists of

decomposing each user transaction Ti into ki sub-

transactions, among which mi are mandatory and the

others are optional. Mandatory sub-transactions are

distinguished from optional according to their weights,

i.e., the mi mandatory sub-transactions are those

having the highest weights.

Likewise, to manage the QoS in DRTDBMS, the

(m, k)-firm constraints was used on distributed

feedback control technique in [4]. In this work, Ben

Salem et al. have proposed a new architecture based

on the (m, k)-firm constraints for user transactions on

distributed feedback control using only full data

replication policy.

2.4. Real-Time Derived Data in Literature

In addition to the base real-time data, the DRTDBMS

very often contains real-time derived data. This is data

that indirectly reflects the state of the outside

environment, and can be computed from the basic

real-time data [9].

The real-time derived data use real-time data that

have a validity interval in which its can be used.

When, derived data is computed following more real-

time data, this data become a real-time and it validity

interval is the intersection of validity intervals of each

used real-time data.

Three types of real-time derived data are defined

according to their sources:

 Real-time derived data are calculated only from

basic real-time data.

 Real-time derived data are calculated from basic

real-time data and real-time derived data.

 Real-time derived data which is calculated only

from basic real-time data and censorial data.

The challenge of this kind of data is the updating

policies [9]. Indeed, whenever the source data is

(m, k)-Firm Constraints and Derived Data Management for the Qos ... 427

updated, then the real-time derived data must

recomputed following one updating policy. Among

these policies, we can distinguish: the periodic update

policy, the triggered update policy, the on-demand

update policy, the forced wait update policy, the forced

delay update policy and the mixed update policy [9].

In DRTDBMS, the real-time derived data was taking

into account on distributed feedback control technique

in. In this work, Hamdi et al. [11] have extended the

proposed architecture in [18] with taking into account

the real-time derived data using only semi-total data

replication policy [6]. The authors have compared

between the most used of real-time derived data update

methods. Based on obtained results, it shows that the

mixed method gives the best performance than others.

For that, in our present work, we use the mixed policy

to manage the real-time derived data update in our

proposed approach presented in the following section.

3. Extended Works for QoS Enhancement in

DRTDBMS

Based on previous work proposed in literature for QoS

improvement in DRTDBMS, we present, in this paper,

our contribution which involves two extensions of the

DFCS Architecture described above. The first

extension of DFCS Architecture consists of applying

the (m, k)-firm constraints on distributed user

transactions in order to make those transactions

meeting their deadlines. In the second extension, we

propose to take into account the use of the real-time

derived data on the first extension.

3.1. (m, k)-Firm Constraints for QoS

Enhancement in DRTDBMS

Our first extended work of distributed feedback loop

approach consists of applying the (m, k)-firm

constraints for user transactions on distributed

feedback-based architecture, using the three data

replication types: the full replication, the partial

replication [16] and the semi-total replication [6], for

QoS enhancement in DRTDBMS. Compared to the

work presented in [4], in this paper, we use three data

replication policies. The proposed architecture was

called(m, k)-Firm-User-DFCSA. It involves the

admission control, the concurrency control and the

commit process of transactions, by adapting their

functioning to take into account the (m, k)-firm

constraints of user transactions. This proposed

architecture was validated by using only the full data

replication policy.

Our challenge is to increase the number of

transactions that meet their deadlines while maintaining

a robust system's behaviour, face to unpredictable

workloads induced by user transactions. The general

outline of our approach architecture is shown in Figure

2. Compared to the conventional DFCSA, it is

distinguished by the (m, k)-Firm-User admission

controller and the (m, k)-Firm-User concurrency

controller as shown in Figure 2, and by the (m, k)-

Firm-User commit process even it does not appear in

this figure [4].

Based on the (m, k)-firm constraints, we had

proposed a model for user transactions. Each user

transaction Ti (i in [1..n]) submitted to the system is

decomposed into a set of sub-transactions. We denote

by ki, the number of sub-transactions of Ti.

Distinguishing mandatory sub-transactions from

optional ones is based on the criticality of data

required by transactions.

For example, in an air traffic control system and

from a meteorological perspective, data like strength

and trajectory of the wind are considered as more

critical than data like the moisture rate in the air.

Indeed, each sub-transaction Tij (j in [1..ki]) consists

of a set of operations, each of which accesses a precise

data item having a specific criticality. Thus, each

operation accessing a critical data item is considered

as critical, too. Accordingly, the mi mandatory sub-

transactions of Ti are those having highest critical

operations.

Figure 2. The (m,k)-Firm-User-DFCSA.

We consider that them m

k
ratio parameter should be

fixed, in advance, by the Database Administrator

(DBA), then, the value of mi is determined by

Equation (2).

i i

m
m k

k

For user transactions admission, the admission

controller in the conventional DFCSA operates in a

binary way in order to respect the atomicity property

of transactions. In our approach, we have proposed a

(m, k)-Firm-User admission controller (cf. Figure 2),

that takes into account the (m, k)-firm constraints

defined for user transactions, aiming to relax the strict

decision of the classical one of the DFCSA. The (m,

k)-Firm-User admission controller tolerates the partial

admission of a transaction, in which only its

mandatory sub-transactions are admitted, if it is not

possible to accept it in its entirety during overloading

periods.

 (2)

428 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

For transactions concurrency in the (m, k)-Firm-

User-DFCSA, we have proposed a (m, k)-Firm-User

concurrency controller (cf. Figure 2), that consider (m,

k)-firm constraints of user transactions. With this

concurrency controller, the admission of optional sub-

transactions does not lead to overload the system when

considering data access conflicts.

Therefore, for transaction's commit, we have

proposed the(m, k)-Firm-User commit method, in

which, an user transaction Ti can commit if, at least, its

mi mandatory sub-transactions commit. Furthermore, in

this proposed commit method, and following the

PROMPT protocol principle [12], we allow

transactions to borrow non-committed data. This aims

to reduce the blocking time of transactions, caused by

the inaccessibility of data held by transactions waiting

for committing, and give them more opportunities to

meet their deadlines. By this way, we relaxed the

isolation property of transactions, which imposes that

the result of a transaction, that has not yet finished its

execution, should be invisible for other transactions.

However, the lending data process in our approach is

controlled, so that it can only be performed by

mandatory sub-transactions, considering that the

optional ones can be ignored when committing a

transaction.

In current work, we apply the (m, k)-Firm-User-

DFCS Architecture under three data replication

policies. In the first case, we apply the semi-total data

replication policy and the partial data replication policy.

In the second case, we proceed to a comparison

between the three data replication policies (full, semi-

total and partial).

3.2. Management of Real-Time Derived Data on

(m, k)-Firm-User-DFCS Architecture

Hamdi et al. [11] have proposed a distributed feedback

control scheduling architecture with taking into account

the real-time derived data using only the semi-total data

replication policy [6].

Figure 3. The DDM-(m,k)-firm-user-dfcs architecture.

In current work, we have proposed an extended

architecture to manage the QoS in DRTDBMS based

on (m, k)-firm-User-DFCS Architecture and taking

into account of real-time derived data using three data

replication policies. (cf. Figure 3). In fact, the (m, k)-

firm-User-DFCS Architecture stabilizes the system

during the phases of overload or under-utilization. So,

it ensures the robustness of the DRTDBMS. But, it has

one major drawback: it does not allow handling

derived data. The objective of this extension is to keep

the behavior of distributed real-time DBMS in a stable

condition and reduce the number of transactions that

miss their deadlines in order to improve the QoS

provided to users with taking account the real-time

derived data allowing the inaccuracy of the data and

transactions in order to provide the requested QoS and

to ensure a better use of available resources. We call

this extension DDM-(m,k)-firm-User-DFCS

Architecture. Two components have been modified on

the obtained architecture. The first is the QoD

manager which requires the information coming from

other components to manage the admission of the

transactions. That is why, as for the admission

controller, a parameter coming from the feedback loop

is transmitted to it Max Value Interval (MVI). The

value of MVI is calculated according to the use of the

system. It suggested the modification of the algorithm

used to the level of the manager of quality of data in

order to distribute the effort to provide on each of the

components (controller of admission, controller of

admission of the derived data, controller of precision)

that have charged of the different types of present

transactions in the system. The second is the Freshness

Manager (FM). When a user transaction reaches an

obsolete derived data, the FM blocks the transaction in

a queue and sends an order to the controller of

admission of the derived data re-computation

transactions do not separate the transaction of update

of the data in question.

In our model, we used one type of real-time derived

data which are computed from conventional data and

from basic real-time data. For updating real-time

derived data, we use the mixed update policy (cf.

section 2.4.).

4. Simulation Results of Proposed

Approaches

In this section, we aim to evaluate the QoS

performance provided by the proposed (m, k)-Firm-

User-DFCSA and DDM-(m, k)-Firm-User-DFCSA

according to a set of simulation experiments, where a

set of parameters have been varied.

4.1. Simulation Settings

The main system parameter settings are given in Table

1. In the set of our experiments, we varied the number

of system nodes and the data replication policy (full,

semi-total and partial) which we applied to real-time

(m, k)-Firm Constraints and Derived Data Management for the Qos ... 429

data items of the database. Each simulation result

represents the average of 10 simulations in order to

obtain results confronting the reality. In our

simulations, the generated real-time derived data are

calculated from varied number of censor data and basic

real-time data, and are updated using the mixed policy.

To evaluate the (m, k)-firm-User-DFCS

Architecture, we have used three classes of

DRTDBMS's size (8, 12, and 16). But, with taking

account of real-time derived data on (m, k)-firm-User-

DFCS Architecture, we use only the DRTDBMS's size

with 16 nodes. Choosing the number of sites to 16 is

without hypothesis. The transactions are scheduled

according to the EDF algorithm. For resolving conflicts

between transactions, we use the (m, k)-Firm-User

concurrency controller which consider the (m, k)-firm

constraints defined to user transactions. Distributed

transactions are committed according to the (m, k)-

Firm-User commit method. We note that arrival times

of these transactions are generated according to the

"Poisson" process using the lambda () parameter. In

our simulations, we varied the value of the m/k ratio in

order to show the effect of either increasing or

decreasing the number of mandatory sub-transactions in

each user transaction. In our experiments results, we

only consider user transactions.

Table 1. Simulation parameter values.

Parameter Significance Value

Duration Simulation time 3000ms

NbNonTRData
Number of classical data

items
1000

NbTRData
Number of real-time data

items
20

ValI
Validity interval of real-

time data items
[500ms, 1000ms]

NbRTDData
Number of real-time derived

data items
20

Dependance Dependence from other data [1,5]

MDE
Maximum data error for

real-time data
[2,5]

opReadT Read operation time 1ms

opWriteT Write operation time 2ms

Parameter of the "Poisson"

distribution
0.09

SF Slack factor of transactions 10

RR Remote data ratio 20

SubTrNb

Number of sub-transactions
per user transaction

[2, 4]

opReadNb

Number of read operations

per sub-transaction
[0, 2]

opWriteNB

Number of write operations
per sub-transaction

2

m

k

ratio Ratio for (m, k)-firm
constraints

[0.5, 0.7]

4.2. The (m, k)-Firm-User-DFCSA Simulation

Results

In this section, we present and discuss the simulations

results of (m, k)-Firm-User-DFCS Architecture under

three classes of DRTDBMS's size: eight, twelve and

sixteen nodes.

4.2.1. Simulation Results for Eight Nodes

The first set of experiments consists of simulating the

behaviour of a DRTDBMS composed of 8 nodes

according to the three data replication policies. By

referring to Figures 4, 5, and 6, which represent,

respectively, the transactions' success ratio using a full

data replication, a semi-total data replication and a

partial data replication in a system with 8 nodes, we

find that the conventional DFCSA yields the worst

performance, compared to the result provided by the

(m, k)-Firm-User-DFCSA. As shown in these Figures,

the number of successful transactions provided by the

(m, k)-Firm-User-DFCSA is higher than the one

provided by the conventional DFCSA either when the

m/k ratio is equal to 0.5 or to 0.7. In addition, we can

notice that the (m, k)-Firm-User-DFCSA with the

ratio equal to 0.5 yields a better result than with the

ratio equal to 0.7. Indeed, in the first case, more of

optional sub-transactions are allowed to be rejected,

giving then more opportunities for transactions to be

executed before their deadlines. However, in the

second case, the mandatory part of transactions is

more important. Therefore, we can confirm that by

minimizing the value of the ratio, the optional part of

transactions becomes more important, which greatly

reduce the transactions' miss ratio.

Let us compare now the (m, k)-Firm-User-DFCSA

performances, when the ratio is equal to 0.5, according

to the three data replication types in a DRTDBMS of 8

nodes. For this, we refer to the Figure 7 which shows

that our approach using a full data replication provides

at the beginning the best result. However, the limits of

this type of replication reveal with the increase of the

transactions number in the system compared to the

partial data replication. This result is confirmed in the

case when more the transactions number is high, more

data requests are important, so that the cost of

updating the data copies increases. We note also that

the semi-total data replication gives the weakest

performance, especially at the beginning. Indeed, the

functioning of the semi-total replication is based on

the execution history of transactions to determine the

nodes that will be involved in the database replication.

In other words, it starts without replicating data, and

then according to transactions needs, in terms of data

at different nodes, the execution history of

transactions is dynamically updated and the

replication process begins to take place. Therefore, the

curve related to this replication policy, as shown in

Figure 7, is more approximate by the end to the curves

of the other replication types. The partial replication,

providing the minimal cost of updating copies, is

characterized by the best performance for a larger

number of transactions. The Figure 8 corresponds to a

comparison between the three types of data replication

with a ratio fixed at 0.7. In this case, the number of

mandatory sub-transactions is more important, which

430 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019
su

cc
es

s
ra

ti
o

su
cc

es
s

ra
ti

o

Number of transactions

Number of transactions

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

Number of transactions

requires to satisfy more data access requests. For this

reason the partial data replication gave the best result.

Figure 4. Simulation results using full replication and nb_sites = 8.

Figure 5. Simulation results using semi-total replication and

nb_sites = 8.

Figure 6. Simulation results using partial replication and nb_sites= 8.

Figure 7. Three replication policies with nb_sites =8 and m

k

ratio=0.5.

Figure 8. Three replication policies with nb_sites =8 and m

k

ratio=0.7.

4.2.2. Simulation Results for Twelve Nodes

The second set of experiments is to simulate the

behaviour of a DRTDBMS composed of 12 nodes

according to the three data replication policies. As

shown in Figures 9, 10 and 11, the (m, k)-Firm-User-

DFCSA keeps the best performance with respect to

the conventional DFCSA, either with the ratio equal to

0.5 or to 0.7, although the improvement provided by

the full data replication (cf. Figure 9) is slight due to

the increase of the system size. Hence, using full data

replication policy can’t not improve the QoS which

(m, k)-Firm-User-DFCSA must guarantee.

The comparison between the three replication

policies, by referring to Figures 12 and 13, shows that

the weakest performance is that of the full data

replication, which becomes increasingly costly in

terms of updating time of data copies when the system

size increases. However, the semi-total and the partial

data replication are more efficient when the number of

copies increases in all system's nodes. As shown in

Figure 12, the best result is that of the semi-total data

replication policy, whose benefits increase with the

increase of the system size, where the ratio is equal to

0.5. In contrast, the partial data replication policy

provides a better result as shown in Figure 13, where

the ratio is equal to 0.7.

Figure 9. Simulation results using total replication and nb_sites = 12.

su
cc

es
s

ra
ti

o

su
cc

es
s

ra
ti

o

(m, k)-Firm Constraints and Derived Data Management for the Qos ... 431

su
cc

es
s

ra
ti

o

su
cc

es
s

ra
ti

o

su
cc

es
s

ra
ti

o

Figure 10. Simulation results using semi-total replication and

nb_sites=12.

Figure 11. Simulation results using partial replication and nb_sites= 12.

Figure 12. Three data replication with nb_sites=12and m

k

ratio=0.5.

Figure 13. Three data replication with nb_sites=12and m

k

ratio=0.7.

4.2.3. Simulation Results for Sixteen Nodes

The last set of experiments consists of simulating the

behaviour of a DRTDBMS composed of 16 nodes

according to the three data replication policies. The

simulation results displayed in Figures 14, 15 and 16

corresponding, respectively, to the full, semi-total and

partial data replication policies in a system composed

of 16 nodes, show that the (m, k)-Firm-User-DFCSA

remains the most effective compared to the

conventional DFCSA, and the best result is still that of

the ratio equal to 0.5. As the obtained results with 12

nodes, the improvement provided by the full data

replication (cf. Figure 14) is slight due to the increase

of the system size where updating the copies of all

data becomes costly in time which makes more

transactions miss their deadline. The comparison of

the three data replication types, illustrated by the

Figures 17 and 18, confirms that the semi-total and the

partial replication types are more beneficial, compared

to the full data replication, and particularly when the

system size becomes larger.

According to these results, we can say that the

number of successful transactions increases by

reducing the number of mandatory sub-transactions

that is by reducing the value of the ratio. This allows

more of transactions to be successfully executed,

given that with the (m,k)-Firm-User concurrency

controller, conflicts are resolved in favor of mandatory

sub-transactions. In addition, with the (m,k)-Firm-

User commit method, we have less requirements to

validate a transaction, hence, it can be committed if at

least its m mandatory sub-transactions are successfully

executed. Then we can say that, with the (m,k)-Firm-

User-DFCSA, transactions are executed under good

conditions having more opportunity to be successfully

terminated before their deadlines. This work is

extended by taking account the real-time derived data

that is described in the following section.

Figure 14. Simulation results using full replication and nb_sites= 16.

Figure 15. Results using semi-total replication and nb_sites=16.

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

Number of transactions

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

432 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Figure 16. Results using partial replication and nb_sites=16.

Figure 17. Three data replication with nb_sites=16 and m

k

ratio=0.5.

Figure 18. Three data replication with nb_sites=16 and m

k

ratio= 0.7.

4.3. The DDM-(m, k)-Firm-User-DFCSA Simu-

Lation Results

In this section, we describe and discuss the obtained

results by applying the set of experiments to evaluate

the proposed DDM-(m, k)-Firm-User-DFCS

Architecture. In this case, we use only one

DRTDBMS's size which is sixteen nodes. The

simulation results displayed in Figures 19, 20, 21, and

22 corresponding, respectively, to the full, semi-total

and partial data replication in a system of 16 nodes,

show that the DDM-(m, k)-Firm-User-DFCSA confirm

the performances of (m, k)-firm-User-DFCS

Architecture in case of using the real-time derived data,

and the best result is still that of the ratio equal to 0.5

like as result without real-time derived data obtained

before (cf. Section 4.2.).

Like in the proposed approach (m, k)-firm-User-

DFCS Architecture, with taking into account of real-

time derived data, the comparison of the three data

replication types, illustrated by the Figure 22 and 23,

confirms that the semi-total and the partial replication

types are more beneficial, compared to the full data

replication, and particularly when the system size

becomes larger. In fact, this is explained by the fact

that the mixed method update derived data takes into

account the state of the system load. Thus this policy

allows a large number of transactions executed in

deadline, taking into account the state of the system

through periods of overload and periods of

underutilization.

According to these results, we confirm the

performances of (m, k)-firm-User-DFCS Architecture

in the case of taking an account the real-time derived

data. Using calculated data in distributed real-time

applications can decrease their performance but with

using (m, k)-firm constraints, this performance is

maintained and enhanced. Then we can say that, with

the (m, k)-Firm-User-DFCSA and DDM-(m, k)-Firm-

User-DFCSA, transactions are executed under good

conditions having more opportunity to be successfully

terminated before their deadlines. For that, we can say

that our proposed approaches guarantee the QoS in

DRTDBMS.

Figure 19. Simulation results using total replication and nb_sites=16.

Figure 20. Simulation results using semi-total replication and nb_sites=16.

su
cc

es
s

ra
ti

o

Number of transactions

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

(m, k)-Firm Constraints and Derived Data Management for the Qos ... 433

Figure 21. Simulation results using partial replication and nb_sites=16.

Figure 22. Three data replication with nb_sites=16 and m

k

ratio=0.5.

Figure 23. Three data replication with nb_sites=16 and m

k

ratio=0.7.

5. Conclusions and Future Work

In this paper, we have presented

1. The (m, k)-Firm-User-DFCSA using three data

replication policies.

2. Its extension DDM-(m, k)-Firm-User-DFCSA for

QoS improvement in DRTDBMS.

The first work consists of applying the (m, k)-firm

constraints in distributed control scheduling loop under

three data replication policies. In the second work, we

have take into account the real-time derived data in the

first proposed architecture using a mixed policy to

updating real-time derived data. The obtained

experimental results confirmed the benefits of the

proposed approaches on increasing the number of

distributed real-time transactions which meet their

deadlines, even in the presence of unpredictable

workload, and specially with semi-total and partial data

replication policies compared to full data replication

policy when the system size increase.

We plan to extend this work in several ways. In the

first way, we propose to apply the (m, k)-firm

constraints on update transactions. In another way, we

plan to extend the proposed algorithms, for QoS

improvement, so that it scales to large DRTDBMS

because those algorithms are only effective for small

to medium sized systems.

References

[1] Abbott R. and Garcia-Molina H., “Scheduling

Real-Time Transactions: A Performance

Evaluation,” ACM Transactions on Database

Systems, vol. 17, no. 3 pp. 513-560, 1992.

[2] Achour F., Bouazizi E., and Jaziri W.,

“Scheduling Approach for Enhancing Quality of

Service in Real-Time DBMS,” in Proceedings of

12th International Baltic Conference on

Databases and Information Systems, Riga, pp.

126-135, 2016.

[3] Almadani B., Abudalfa S., and Yang S., “QoS

Adaptation for Publish/Subscribe Middleware in

Real-Time Dynamic Environments,” The

International Arab Journal of Information

Technology, vol. 14, no. 2, pp. 230-238, 2017.

[4] Ben Salem M., Achour F., Bouazizi E., Bouaziz,

R., and Duvallet C., “Applicability of the (m, k)-

firm Approach for the QoS Enhancement in

Distributed RTDBMS,” in Proceedings of

International Conference on Algorithms and

Architectures for Parallel Processing, Vietri sul

Mare, pp. 166-175, 2013.

[5] Ben Salem M., Bouazizi E., and Bouaziz R.,

“Multi-Versions Data and Epsilon-Serializability

for QoS Enhancement in Distributed RTDBMS,”

in Proceedings of 12th IEE/ACS International

Conference on Computer Systems and

Applications, Marrakech, pp. 1-6, 2015.

[6] Ben Salem M., Bouazizi E., Bouaziz R., and

Duvallet C., “Quality of Service Management in

Distributed Feedback Control Scheduling

Architecture using Different Replication

Policies,” in Proceedings of International

Conference on Foundations of Computer

Science and Technology, Switzerland, pp. 75-87,

2014.

[7] Bouazizi E. and Duvallet C., “Utilisation des

Contraintes (m, k)-Firm Pour la Gestion de la

QdS Dans les SGBD Temps Réel,” in

Proceedings of INFORSID Conference, Lille,

pp. 95-110, 2011.

[8] Diallo O., Rodrigues J., and Sene M., “Real-

Time Data Management on Wireless Sensor

Networks: A Survey,” Journal of Network and

Computer Applications, vol. 35, pp. 1013-1021,

2000.

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

Number of transactions

su
cc

es
s

ra
ti

o

434 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

[9] Duvallet C., “Prise en Compte des Données

Dérivées dans les SGBD Temps Réel,” in

Proceedings of the 7th Internationnal Conference

on GEI, Monastir, pp. 165-174, 2007.

[10] Haj Said S., Sadeg B., Ayeb B., and Amanton L.,

“The DLR-ORECOP Real-time Replication

Control Protocol,” in Proceedings of 12th IEEE

International Conference on Emerging

Technologies and Factory Automation, Palma de

Mallorca, pp. 1-8, 2009.

[11] Hamdi S., Ben Salem M., Bouazizi E., and

Bouaziz R., “Management of the Real-Time

Derived Data in a Distributed Real-Time DBMS

using the Semi-Total Replication Data,” in

Proceedings of ACS International Conference on

Computer Systems and Applications, Ifrane, pp. 1-

4, 2013.

[12] Haritsa J., Ramamritham K., and Gupta R., “The

PROMPT Real-Time Commit Protocol,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 11, no. 2, pp. 160-181, 2000.

[13] Haubert J., Sadeg B., and Amanton L., “(m, k)-

Firm Real-Time Distributed Transactions,” in

Proceedings of 16th WIP Euromicro Conference

on Real-Time Systems, Catania, pp. 61-65, 2004.

[14] Liu C. and Layland J., “Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time

Environment,” Journal of the ACM, vol. 20, no. 1,

pp. 46-61, 1973.

[15] Ramanathan P. and Hamdaoui M., “A Dynamic

Priority Assignment Technique for Streams with

(m, k)-firm Deadlines,” IEEE Transactions on

Computers, vol. 44, no. 12, pp. 1443-1451, 1995.

[16] Serrano D., Patino-Martinez M., Jimenez-Peris,

R., and Kemme B., “Boosting Database

Replication Scalability Through Partial

Replication and 1-Copy-Snapshot-Isolation,” in

Proceedings of 13th Pacific Rim International

Symposium on Dependable Computing,

Melbourne, pp. 290-297, 2007.

[17] Swaroop V. and Shanker U., “Mobile Distributed

Real Time Database Systems: A Research

Challenges,” in Proceedings of International

Conference on Computer and Communication

Technology, Allahabad, pp. 421-424, 2007.

[18] Wei Y., Son S., Stankovic J., and Kang K., “QoS

Management in Replicated Real Time

Databases,” in Proceedings of 24th IEEE

International Real-Time Systems Symposium.

IEEE Computer Society, Cancun, pp. 86-97, 2003.

Malek Ben Salem obtained his

Bachelor’s degree in Computer

Science from Sfax University. Then,

he obtained his Master’s degree in

Real-Time Computing Science from

Sousse University and pursuing

Ph.D in Computer Science in Sfax

University. Currently, he is a Principal Professor at

Monastir University. His current research interests are

quality of service, distributed computing and real-time

systems.

Emna Bouazizi is an Assistant

Professor at the University of

Monastir, Tunisia since 2012. She

has defended her PhD in April

2009 on Quality of Service

Management in Real-Time

Databases. Her main topics of

research are Real-Time Databases, Ontology

specification, Geographic Information Systems and

Data Warehouse.

Claude Duvallet is an Associate

Professor in Computer Science at Le

Havre Normandy University. He

received his PhD in 2001. He is a

member of the Intelligent Transport

Systems team in the laboratory

LITIS. His current research interests

include real-time database systems, wireless sensor

networks, vehicular ad hoc network and distributed

multimedia system. He is also working on port

logistics and marine traffic. He participates at many

research projects on the topics of intelligent transport

systems.

Rafik Bouaziz is Professor

Emeritus on computer science at the

Faculty of Economic Sciences and

Management of Sfax University,

Tunisia. He was the president

of this University during August

2014 – December 2017,

and the director of its doctoral school of economy,

management and computer science during December

2011 – July 2014. His PhD has dealt with temporal

data management and historical record of data in

Information Systems. The subject of his accreditation

to supervise research was “A contribution for the

control of versioning of data and schema in advanced

information systems”. Currently, his main research

topics of interest are temporal databases, real-time

databases, information systems engineering,

ontologies, data warehousing and workflows. Between

1979 and 1986, he was a consulting Engineer in the

organization and computer science and a head of the

department of computer science at CEGOS-TUNISIA.

