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Abstract: Distributed Real-Time DBMS (DRTDBMS) is a collection of Real-Time DataBase Management Systems (RTDBMS) 

running on sites connected together via communication's networks for transaction processing. This system is characterized by 

the data distribution and the unpredictable transactions. In addition, in this system, the presence of several sites raises the 

problem of the unbalanced load between those nodes. In order to enhance the performance of DRTDBMS with taking into 

account those problems, Quality of Service (QoS) based approaches are the most appropriate. Distributed Feedback 

Scheduling Control Architecture (DFCSA) is proposed for managing the QoS in this system. In DRTDBMS, the results 

produced in time with less precision are sometimes preferable than exact results obtained in delay, inaccuracy can be 

tolerated. In order to take this assertion, in this paper, we extend the DFCSA by using the (m, k)-firm constraints, which take 

into account the imprecise results, using three data replication policies. The obtained architecture is called (m, k)-firm-User-

DFCS. The second contribution consists of taking into account the real-time derived data on (m, k)-firm-User-DFCS 

architecture, always, using three data replication policies. The obtained architecture is called Derived Data Management 
(DDM)-(m, k)-firm-User-DFCS. Then, we are focusing on two ways of service optimization in DRTDBMS. We are interested in 

(1) the space optimization in which we propose to apply three replication data policies, and (2) the QoS optimization in which 

we propose to take into account the real-time derived data and (m, k)-firm constraints. 
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1. Introduction 

Currently, many applications use distributed 

computing, real-time processing and require, in 

addition, the management of large amount of data like 

wireless sensor network [8], mobile computing 

technology [17] and dynamic environments [3]. Thus, 

Distributed Real-Time DBMS (DRTDBMS) are 

increasingly needed to satisfy these applications since 

they are designed to manage, in both, large volumes of 

distributed data and real-time constraints. DRTDBMS 

include a set of nodes connected via communication 

networks for transactions processing, where data and 

transactions are totally distributed.  

DRTDBMS are greatly exposed to unpredictable 

workload, caused by user transactions arriving at 

varying frequencies, and to an unbalanced distribution 

of this workload between nodes. This leads to 

instability periods in which the system becomes 

overloaded. During overloading periods, there is a lack 

of DRTDBMS resources, so that transactions greatly 

miss their deadlines. Therefore, it is essential to keep 

the system in a stable state in order to guarantee a better 

QoS. 

To control system's instability periods, approaches 

based on feedback control real-time scheduling theory  

 
are proposed [1, 14]. Further, Wei et al. [18] proposed 

an algorithm for Quality of Service (QoS) guarantees 

in DRTDBMS based on a Distributed Feedback 

Control Scheduling Architecture (DFCSA). Although 

this solution guarantees a better overall QoS, it 

still has several drawbacks.  
The use of full data replication policy is a costly 

technique if the amount of data is high (cost of storage 

and cost of updating copies). This can be very costly 

in the case of a distributed Database Management 

Systems (DBMS) with a number of sites greater than 

eight. This shortfall can be remedied by using other 

replication policies in order to take into account the 

increase in the number of distributed RDBMS sites. 

This architecture use a classical admission 

controller of transactions where the atomicity property 

of transactions is guaranteed, i.e., the transaction is 

full accepted with their operations or fully rejected. 

This controller contributes greatly of the balance of 

system state, but that is in detriment of the number of 

committed transactions before their deadline. This is 

due to the number of user transactions to be removed 

from the system increases during the overloading 

phases. In order to increasing the number of 

committed transactions in deadline, a solution may be 
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proposed which relax the atomicity property of 

transactions. 

The DFCS architecture don’t take into account the 

real-time derived data management, to our knowledge. 

Only the real-time data are considered in this 

architecture. However, in real-time databases, derived 

real-time data are massively used to reduce the 

databases size and decrease the processing time of data 

that depends on other data. For this, a solution could be 

envisaged for better management of the real-time 

derived data while including it in a loop 

feedback control and in the distributed context. 

In previous work, Hamdi et al. [11] have proposed a 

distributed feedback control scheduling architecture 

taking into account the real-time derived data using 

only the semi-total data replication policy [6]. 

Furthermore, in Ben Salem et al. [4] have proposed an 

architecture which apply the (m, k)-firm constraints for 

user transactions in distributed feedback loop using 

only the full data replication policy. 

In this paper, our objective is to enhance QoS in 

DRTDBMS by maximizing the number of transactions 

which meet their deadlines, while maintaining a robust 

DRTDBMS behaviour facing instability periods. Our 

approach consists, in the first step, of applying the 

(m,k)-firm technique to user transactions in distributed 

feedback control scheduling using three data replication 

policies, the obtained architecture is called (m,k)-Firm-

User-DFCS Architecture. The second step consists of 

taking into account the real-time derived data on the 

(m, k)-Firm-User-DFCS Architecture, the result 

architecture is called Derived Data Management 

(DDM)-(m, k)-Firm-User-DFCS Architecture. The 

purpose of our work is to propose architectures that 

provide efficient QoS adaptability and performance 

reliability even in the presence of unpredictable 

workload in DRTDBMS. 

The remaining of the paper is organized as follows. 

In section 2, we present the related work which consists 

of the real-time database model, the performance 

metric, the existing architecture on which our work is 

based, and the notions of real-time derived data and (m, 

k)-firm constraints. Section 3 describes our proposed 

approaches for QoS guarantees in DRTDBMS where 

the first approach consists of applying (m, k)-firm 

constraints for user transactions on DFCS Architecture 

using three data replication policies, and the second 

approach consists of taking into account the real-time 

derived data on (m, k)-firm-User-DFCSA always using 

three data replication policies. Those proposed 

extended architectures are evaluated according to a set 

of simulation results in section 4. We conclude the 

paper, in section 5, by briefly discussing our work and 

by presenting our future work. 

2. Related Work 

In this section, we describe our distributed real-time 

database model by presenting data and transaction 

models, and defining the basic performance metric we 

consider. Similarly, we present the QoS management 

architecture proposed in [18], on which we based our 

work. We finish by giving an overview of the previous 

work in which the (m, k)-firm approach and derived 

real-time data are used for the QoS enhancement. 

In our data model, we consider a replicated main 

memory database in which we have real-time and non 

real-time data [1]. Real-time data are sensor data from 

physical world, and are updated periodically to reflect 

accurately the real-world state. Each real-time data 

object has a validity interval beyond which it becomes 

useless, and a timestamp indicating the last 

observation of the real-world state. Non real-time data 

are those found in conventional databases and that do 

not change dynamically with time. The data 

replication technique increases the data availability at 

different sites. Then, it significantly helps transactions 

to meet their time requirements [18]. Data could be 

either fully [10] or semi-total [6] or partially replicated 

[16]. 

For distributed real-time transactions, we consider 

firm deadline transactions [1], where if a transaction 

misses its deadline, it will be aborted and becomes 

useless for the system. Transactions are divided into 

update and user transactions according to the type of 

their accessed data items. Update transactions are 

executed periodically, in order to refresh real-time 

data objects. They update, likewise, real-time data 

replicas. We consider that each update transaction 

consists of one sub-transaction, having always a write 

operation. User transactions are a periodic. We 

consider that each one consists of a set of sub-

transactions. Then, each sub-transaction is composed 

of a set of read operations on both real-time and non 

real-time data objects, and of write operations on only 

non real-time data objects. 

In distributed real-time databases, the transactions 

may executed in local or in remote site [5, 6] 

according to the location of their required data items. 

It should note that when dealing with DRTDBMS 

models based on a load balancing technique, a 

transaction may have all of its required data at its local 

site, but it is then distributed in order to alleviate the 

overload situation of that site. 

2.1. Performance Metric 

The main performance metric, we consider in our 

model, is the Success Ratio (SR). It is a QoS 

parameter which measures the percentage of 

transactions that meet their deadlines. It is defined as 

follows: 
#

100 (%)
# #

timely
SR

timely tardy
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where #timely and #tardy represent, respectively, the 

number of transactions that have met and missed their 

deadlines. 

2.2. QoS Management in DRTDBMS 

The QoS is increasingly important for evaluating the 

performance of a DRTDBMS, in which the system 

performance depends on the workload distribution. In 

Wei et al. [18] proposed an architecture using 

feedback-based global load balancers and local 

feedback controllers. This architecture, called 
Distributed Feedback Scheduling Control Architecture 

(DFCSA), on which we base our work, aims a load 

balancing between system nodes and an efficient 

management of transactions workload fluctuations. The 

general outline of the DFCSA is shown in Figure 1. In 

what follows, we give a brief description of its basic 

components. 

 

Figure 1. The DFCS architecture for QoS guarantees [18]. 

The admission controller is used to regulate the 

system workload in order to prevent its overloading, by 

referring to the estimated CPU utilization and the target 

utilization set point of the system. The scheduler is used 

to schedule transactions according to the Earliest 

Deadline First (EDF) protocol [2, 14].The transaction 

manager handles the transactions' execution. It consists 

of a Concurrency Controller (CC), a Freshness 

Manager (FM), a Data Manager (DM) and a Replica 

Manager (RM). The CC solves accessing data conflicts 

appearing between transactions using the Two Phase 

Locking High Priority (2PL-HP) [1] protocol. The FM 

checks the data freshness and blocks a user transaction 

if the accessed data item is stale. The DM has to update 

real-time data replicas, and the RM handles data 

replicas using a replication control protocol. 

At each sampling period, the local monitor samples 

the system performance data, by referring to statistics 

about transactions' execution which it retrieves from the 

transaction manager. Measured values belong to the 

feedback control loop and are, then, reported to the 

local controller. The local controller includes the local 

utilization controller and the local miss ratio controller, 

which generate, respectively, the local miss ratio and 

the local utilization control signals, based on the 

received values and on the system reference 

parameters, according to which this controller sets the 

system target utilization to be considered at the next 

sampling period.  

The global load balancer ensure the system load 

balancing, by exchanging the system performance data 

with others nodes, which is guaranteed by transferring 

transactions from highly overloaded nodes to less 

overloaded nodes. The amount of workload to be 

transferred is controlled by the Load Transferring 

Factor (LTF) of each node [18]. 

2.3. The (m, k)-Firm Constraints in Literature 

The (m, k)-firm constraints was initially introduced 

for periodic tasks in real-time systems [15], in order to 

relax strict real-time constraints. It has also been 

adapted to transactions in real-time databases, aiming 

to decrease the number of missed deadlines [7].  

In DRTDBMS, a (m, k)-firm real-time transactions 

model has been proposed in [13]. It consists of 

decomposing each user transaction Ti into ki sub-

transactions, among which mi are mandatory and the 

others are optional. Mandatory sub-transactions are 

distinguished from optional according to their weights, 

i.e., the mi mandatory sub-transactions are those 

having the highest weights. 

Likewise, to manage the QoS in DRTDBMS, the 

(m, k)-firm constraints was used on distributed 

feedback control technique in [4]. In this work, Ben 

Salem et al. have proposed a new architecture based 

on the (m, k)-firm constraints for user transactions on 

distributed feedback control using only full data 

replication policy.  

2.4. Real-Time Derived Data in Literature 

In addition to the base real-time data, the DRTDBMS 

very often contains real-time derived data. This is data 

that indirectly reflects the state of the outside 

environment, and can be computed from the basic 

real-time data [9]. 

The real-time derived data use real-time data that 

have a validity interval in which its can be used. 

When, derived data is computed following more real-

time data, this data become a real-time and it validity 

interval is the intersection of validity intervals of each 

used real-time data. 

Three types of real-time derived data are defined 

according to their sources: 

 Real-time derived data are calculated only from 

basic real-time data. 

 Real-time derived data are calculated from basic 

real-time data and real-time derived data. 

 Real-time derived data which is calculated only 

from basic real-time data and censorial data. 

The challenge of this kind of data is the updating 

policies [9]. Indeed, whenever the source data is 
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updated, then the real-time derived data must 

recomputed following one updating policy. Among 

these policies, we can distinguish: the periodic update 

policy, the triggered update policy, the on-demand 

update policy, the forced wait update policy, the forced 

delay update policy and the mixed update policy [9]. 

In DRTDBMS, the real-time derived data was taking 

into account on distributed feedback control technique 

in. In this work, Hamdi et al. [11] have extended the 

proposed architecture in [18] with taking into account 

the real-time derived data using only semi-total data 

replication policy [6]. The authors have compared 

between the most used of real-time derived data update 

methods. Based on obtained results, it shows that the 

mixed method gives the best performance than others. 

For that, in our present work, we use the mixed policy 

to manage the real-time derived data update in our 

proposed approach presented in the following section. 

3. Extended Works for QoS Enhancement in 

DRTDBMS 

Based on previous work proposed in literature for QoS 

improvement in DRTDBMS, we present, in this paper, 

our contribution which involves two extensions of the 

DFCS Architecture described above. The first 

extension of DFCS Architecture consists of applying 

the (m, k)-firm constraints on distributed user 

transactions in order to make those transactions 

meeting their deadlines. In the second extension, we 

propose to take into account the use of the real-time 

derived data on the first extension. 

3.1. (m, k)-Firm Constraints for QoS 

Enhancement in DRTDBMS 

Our first extended work of distributed feedback loop 

approach consists of applying the (m, k)-firm 

constraints for user transactions on distributed 

feedback-based architecture, using the three data 

replication types: the full replication, the partial 

replication [16] and the semi-total replication [6], for 

QoS enhancement in DRTDBMS. Compared to the 

work presented in [4], in this paper, we use three data 

replication policies. The proposed architecture was 

called(m, k)-Firm-User-DFCSA. It involves the 

admission control, the concurrency control and the 

commit process of transactions, by adapting their 

functioning to take into account the (m, k)-firm 

constraints of user transactions. This proposed 

architecture was validated by using only the full data 

replication policy. 

Our challenge is to increase the number of 

transactions that meet their deadlines while maintaining 

a robust system's behaviour, face to unpredictable 

workloads induced by user transactions. The general 

outline of our approach architecture is shown in Figure 

2. Compared to the conventional DFCSA, it is 

distinguished by the (m, k)-Firm-User admission 

controller and the (m, k)-Firm-User concurrency 

controller as shown in Figure 2, and by the (m, k)-

Firm-User commit process even it does not appear in 

this figure [4]. 

Based on the (m, k)-firm constraints, we had 

proposed a model for user transactions. Each user 

transaction Ti (i in [1..n]) submitted to the system is 

decomposed into a set of sub-transactions. We denote 

by ki, the number of sub-transactions of Ti. 

Distinguishing mandatory sub-transactions from 

optional ones is based on the criticality of data 

required by transactions. 

For example, in an air traffic control system and 

from a meteorological perspective, data like strength 

and trajectory of the wind are considered as more 

critical than data like the moisture rate in the air. 

Indeed, each sub-transaction Tij (j in [1..ki]) consists 

of a set of operations, each of which accesses a precise 

data item having a specific criticality. Thus, each 

operation accessing a critical data item is considered 

as critical, too. Accordingly, the mi mandatory sub-

transactions of Ti are those having highest critical 

operations. 

 

Figure 2. The (m,k)-Firm-User-DFCSA. 

We consider that them m

k
ratio parameter should be 

fixed, in advance, by the Database Administrator 

(DBA), then, the value of mi is determined by 

Equation (2). 

i i

m
m k

k
   

For user transactions admission, the admission 

controller in the conventional DFCSA operates in a 

binary way in order to respect the atomicity property 

of transactions. In our approach, we have proposed a 

(m, k)-Firm-User admission controller (cf. Figure 2), 

that takes into account the (m, k)-firm constraints 

defined for user transactions, aiming to relax the strict 

decision of the classical one of the DFCSA. The (m, 

k)-Firm-User admission controller tolerates the partial 

admission of a transaction, in which only its 

mandatory sub-transactions are admitted, if it is not 

possible to accept it in its entirety during overloading 

periods. 

 (2) 
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For transactions concurrency in the (m, k)-Firm-

User-DFCSA, we have proposed a (m, k)-Firm-User 

concurrency controller (cf. Figure 2), that consider (m, 

k)-firm constraints of user transactions. With this 

concurrency controller, the admission of optional sub-

transactions does not lead to overload the system when 

considering data access conflicts. 

Therefore, for transaction's commit, we have 

proposed the(m, k)-Firm-User commit method, in 

which, an user transaction Ti can commit if, at least, its 

mi mandatory sub-transactions commit. Furthermore, in 

this proposed commit method, and following the 

PROMPT protocol principle [12], we allow 

transactions to borrow non-committed data. This aims 

to reduce the blocking time of transactions, caused by 

the inaccessibility of data held by transactions waiting 

for committing, and give them more opportunities to 

meet their deadlines. By this way, we relaxed the 

isolation property of transactions, which imposes that 

the result of a transaction, that has not yet finished its 

execution, should be invisible for other transactions. 

However, the lending data process in our approach is 

controlled, so that it can only be performed by 

mandatory sub-transactions, considering that the 

optional ones can be ignored when committing a 

transaction. 

In current work, we apply the (m, k)-Firm-User-

DFCS Architecture under three data replication 

policies. In the first case, we apply the semi-total data 

replication policy and the partial data replication policy. 

In the second case, we proceed to a comparison 

between the three data replication policies (full, semi-

total and partial). 

3.2. Management of Real-Time Derived Data on 

(m, k)-Firm-User-DFCS Architecture 

Hamdi et al. [11] have proposed a distributed feedback 

control scheduling architecture with taking into account 

the real-time derived data using only the semi-total data 

replication policy [6]. 

 

Figure 3. The DDM-(m,k)-firm-user-dfcs architecture. 

In current work, we have proposed an extended 

architecture to manage the QoS in DRTDBMS based 

on (m, k)-firm-User-DFCS Architecture and taking 

into account of real-time derived data using three data 

replication policies. (cf. Figure 3). In fact, the (m, k)-

firm-User-DFCS Architecture stabilizes the system 

during the phases of overload or under-utilization. So, 

it ensures the robustness of the DRTDBMS. But, it has 

one major drawback: it does not allow handling 

derived data. The objective of this extension is to keep 

the behavior of distributed real-time DBMS in a stable 

condition and reduce the number of transactions that 

miss their deadlines in order to improve the QoS 

provided to users with taking account the real-time 

derived data allowing the inaccuracy of the data and 

transactions in order to provide the requested QoS and 

to ensure a better use of available resources. We call 

this extension DDM-(m,k)-firm-User-DFCS 

Architecture. Two components have been modified on 

the obtained architecture. The first is the QoD 

manager which requires the information coming from 

other components to manage the admission of the 

transactions. That is why, as for the admission 

controller, a parameter coming from the feedback loop 

is transmitted to it Max Value Interval (MVI). The 

value of MVI is calculated according to the use of the 

system. It suggested the modification of the algorithm 

used to the level of the manager of quality of data in 

order to distribute the effort to provide on each of the 

components (controller of admission, controller of 

admission of the derived data, controller of precision) 

that have charged of the different types of present 

transactions in the system. The second is the Freshness 

Manager (FM). When a user transaction reaches an 

obsolete derived data, the FM blocks the transaction in 

a queue and sends an order to the controller of 

admission of the derived data re-computation 

transactions do not separate the transaction of update 

of the data in question. 

In our model, we used one type of real-time derived 

data which are computed from conventional data and 

from basic real-time data. For updating real-time 

derived data, we use the mixed update policy (cf. 

section 2.4.). 

4. Simulation Results of Proposed 

Approaches 

In this section, we aim to evaluate the QoS 

performance provided by the proposed (m, k)-Firm-

User-DFCSA and DDM-(m, k)-Firm-User-DFCSA 

according to a set of simulation experiments, where a 

set of parameters have been varied. 

4.1. Simulation Settings 

The main system parameter settings are given in Table 

1. In the set of our experiments, we varied the number 

of system nodes and the data replication policy (full, 

semi-total and partial) which we applied to real-time 
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data items of the database. Each simulation result 

represents the average of 10 simulations in order to 

obtain results confronting the reality. In our 

simulations, the generated real-time derived data are 

calculated from varied number of censor data and basic 

real-time data, and are updated using the mixed policy.  

To evaluate the (m, k)-firm-User-DFCS 

Architecture, we have used three classes of 

DRTDBMS's size (8, 12, and 16). But, with taking 

account of real-time derived data on (m, k)-firm-User-

DFCS Architecture, we use only the DRTDBMS's size 

with 16 nodes. Choosing the number of sites to 16 is 

without hypothesis. The transactions are scheduled 

according to the EDF algorithm. For resolving conflicts 

between transactions, we use the (m, k)-Firm-User 

concurrency controller which consider the (m, k)-firm 

constraints defined to user transactions. Distributed 

transactions are committed according to the (m, k)-

Firm-User commit method. We note that arrival times 

of these transactions are generated according to the 

"Poisson" process using the lambda ( ) parameter. In 

our simulations, we varied the value of the m/k ratio in 

order to show the effect of either increasing or 

decreasing the number of mandatory sub-transactions in 

each user transaction. In our experiments results, we 

only consider user transactions. 

Table 1. Simulation parameter values. 

Parameter Significance Value 

Duration Simulation time 3000ms 

NbNonTRData 
Number of classical data 

items 
1000 

NbTRData 
Number of real-time data 

items 
20 

ValI 
Validity interval of real-

time data items 
[500ms, 1000ms] 

NbRTDData 
Number of real-time derived 

data items 
20 

Dependance Dependence from other data  [1,5] 

MDE 
Maximum data error for 

real-time data 
[2,5] 

opReadT Read operation time 1ms 

opWriteT Write operation time 2ms 

 
Parameter of the "Poisson" 

distribution 
0.09 

SF Slack factor of transactions 10 

RR Remote data ratio 20 

SubTrNb 

Number of sub-transactions 
per user transaction 

[2, 4] 

opReadNb 

Number of read operations 

per sub-transaction 
[0, 2] 

opWriteNB 

Number of write operations 
per sub-transaction 

2 

m

k

ratio Ratio for (m, k)-firm 
constraints 

[0.5, 0.7] 

4.2. The (m, k)-Firm-User-DFCSA Simulation 

Results 

In this section, we present and discuss the simulations 

results of (m, k)-Firm-User-DFCS Architecture under 

three classes of DRTDBMS's size: eight, twelve and 

sixteen nodes. 

 

4.2.1. Simulation Results for Eight Nodes 

The first set of experiments consists of simulating the 

behaviour of a DRTDBMS composed of 8 nodes 

according to the three data replication policies. By 

referring to Figures 4, 5, and 6, which represent, 

respectively, the transactions' success ratio using a full 

data replication, a semi-total data replication and a 

partial data replication in a system with 8 nodes, we 

find that the conventional DFCSA yields the worst 

performance, compared to the result provided by the 

(m, k)-Firm-User-DFCSA. As shown in these Figures, 

the number of successful transactions provided by the 

(m, k)-Firm-User-DFCSA is higher than the one 

provided by the conventional DFCSA either when the 

m/k ratio is equal to 0.5 or to 0.7. In addition, we can 

notice that the (m, k)-Firm-User-DFCSA with the 

ratio equal to 0.5 yields a better result than with the 

ratio equal to 0.7. Indeed, in the first case, more of 

optional sub-transactions are allowed to be rejected, 

giving then more opportunities for transactions to be 

executed before their deadlines. However, in the 

second case, the mandatory part of transactions is 

more important. Therefore, we can confirm that by 

minimizing the value of the ratio, the optional part of 

transactions becomes more important, which greatly 

reduce the transactions' miss ratio. 

Let us compare now the (m, k)-Firm-User-DFCSA 

performances, when the ratio is equal to 0.5, according 

to the three data replication types in a DRTDBMS of 8 

nodes. For this, we refer to the Figure 7 which shows 

that our approach using a full data replication provides 

at the beginning the best result. However, the limits of 

this type of replication reveal with the increase of the 

transactions number in the system compared to the 

partial data replication. This result is confirmed in the 

case when more the transactions number is high, more 

data requests are important, so that the cost of 

updating the data copies increases. We note also that 

the semi-total data replication gives the weakest 

performance, especially at the beginning. Indeed, the 

functioning of the semi-total replication is based on 

the execution history of transactions to determine the 

nodes that will be involved in the database replication. 

In other words, it starts without replicating data, and 

then according to transactions needs, in terms of data 

at different nodes, the execution history of 

transactions is dynamically updated and the 

replication process begins to take place. Therefore, the 

curve related to this replication policy, as shown in 

Figure 7, is more approximate by the end to the curves 

of the other replication types. The partial replication, 

providing the minimal cost of updating copies, is 

characterized by the best performance for a larger 

number of transactions. The Figure 8 corresponds to a 

comparison between the three types of data replication 

with a ratio fixed at 0.7. In this case, the number of 

mandatory sub-transactions is more important, which 
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requires to satisfy more data access requests. For this 

reason the partial data replication gave the best result. 

 

 
 

Figure 4. Simulation results using full replication and nb_sites = 8. 

    
 

Figure 5. Simulation results using semi-total replication and 

nb_sites = 8. 

 
 

Figure 6. Simulation results using partial replication and nb_sites= 8. 

 
 

Figure 7. Three replication policies with nb_sites =8 and m

k

ratio=0.5. 

 

 

 
 

Figure 8. Three replication policies with nb_sites =8 and m

k

ratio=0.7. 

4.2.2. Simulation Results for Twelve Nodes 

The second set of experiments is to simulate the 

behaviour of a DRTDBMS composed of 12 nodes 

according to the three data replication policies. As 

shown in Figures 9, 10 and 11, the (m, k)-Firm-User-

DFCSA keeps the best performance with respect to 

the conventional DFCSA, either with the ratio equal to 

0.5 or to 0.7, although the improvement provided by 

the full data replication (cf. Figure 9) is slight due to 

the increase of the system size. Hence, using full data 

replication policy can’t not improve the QoS which 

(m, k)-Firm-User-DFCSA must guarantee.  

The comparison between the three replication 

policies, by referring to Figures 12 and 13, shows that 

the weakest performance is that of the full data 

replication, which becomes increasingly costly in 

terms of updating time of data copies when the system 

size increases. However, the semi-total and the partial 

data replication are more efficient when the number of 

copies increases in all system's nodes. As shown in 

Figure 12, the best result is that of the semi-total data 

replication policy, whose benefits increase with the 

increase of the system size, where the ratio is equal to 

0.5. In contrast, the partial data replication policy 

provides a better result as shown in Figure 13, where 

the ratio is equal to 0.7. 

 
 

Figure 9. Simulation results using total replication and nb_sites = 12. 
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Figure 10. Simulation results using semi-total replication and 

nb_sites=12. 

 

 
 

Figure 11. Simulation results using partial replication and nb_sites= 12. 

 

 

Figure 12. Three data replication with nb_sites=12and m

k

ratio=0.5. 

 
 

Figure 13. Three data replication with nb_sites=12and m

k

ratio=0.7. 

4.2.3. Simulation Results for Sixteen Nodes 

The last set of experiments consists of simulating the 

behaviour of a DRTDBMS composed of 16 nodes 

according to the three data replication policies. The 

simulation results displayed in Figures 14, 15 and 16 

corresponding, respectively, to the full, semi-total and 

partial data replication policies in a system composed 

of 16 nodes, show that the (m, k)-Firm-User-DFCSA 

remains the most effective compared to the 

conventional DFCSA, and the best result is still that of 

the ratio equal to 0.5. As the obtained results with 12 

nodes, the improvement provided by the full data 

replication (cf. Figure 14) is slight due to the increase 

of the system size where updating the copies of all 

data becomes costly in time which makes more 

transactions miss their deadline. The comparison of 

the three data replication types, illustrated by the 

Figures 17 and 18, confirms that the semi-total and the 

partial replication types are more beneficial, compared 

to the full data replication, and particularly when the 

system size becomes larger. 

According to these results, we can say that the 

number of successful transactions increases by 

reducing the number of mandatory sub-transactions 

that is by reducing the value of the ratio. This allows 

more of transactions to be successfully executed, 

given that with the (m,k)-Firm-User concurrency 

controller, conflicts are resolved in favor of mandatory 

sub-transactions. In addition, with the (m,k)-Firm-

User commit method, we have less requirements to 

validate a transaction, hence, it can be committed if at 

least its m mandatory sub-transactions are successfully 

executed. Then we can say that, with the (m,k)-Firm-

User-DFCSA, transactions are executed under good 

conditions having more opportunity to be successfully 

terminated before their deadlines. This work is 

extended by taking account the real-time derived data 

that is described in the following section. 
 

 
 

Figure 14. Simulation results using full replication and nb_sites= 16. 

 
 

Figure 15. Results using semi-total replication and nb_sites=16. 
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Figure 16. Results using partial replication and nb_sites=16. 

 
 

Figure 17. Three data replication with nb_sites=16 and m

k

ratio=0.5. 

 
 

Figure 18. Three data replication with nb_sites=16 and m

k

ratio= 0.7. 

4.3. The DDM-(m, k)-Firm-User-DFCSA Simu-

Lation Results 

In this section, we describe and discuss the obtained 

results by applying the set of experiments to evaluate 

the proposed DDM-(m, k)-Firm-User-DFCS 

Architecture. In this case, we use only one 

DRTDBMS's size which is sixteen nodes. The 

simulation results displayed in Figures 19, 20, 21, and 

22 corresponding, respectively, to the full, semi-total 

and partial data replication in a system of 16 nodes, 

show that the DDM-(m, k)-Firm-User-DFCSA confirm 

the performances of (m, k)-firm-User-DFCS 

Architecture in case of using the real-time derived data, 

and the best result is still that of the ratio equal to 0.5 

like as result without real-time derived data obtained 

before (cf. Section 4.2.). 

Like in the proposed approach (m, k)-firm-User-

DFCS Architecture, with taking into account of real-

time derived data, the comparison of the three data 

replication types, illustrated by the Figure 22 and 23, 

confirms that the semi-total and the partial replication 

types are more beneficial, compared to the full data 

replication, and particularly when the system size 

becomes larger. In fact, this is explained by the fact 

that the mixed method update derived data takes into 

account the state of the system load. Thus this policy 

allows a large number of transactions executed in 

deadline, taking into account the state of the system 

through periods of overload and periods of 

underutilization. 

According to these results, we confirm the 

performances of (m, k)-firm-User-DFCS Architecture 

in the case of taking an account the real-time derived 

data. Using calculated data in distributed real-time 

applications can decrease their performance but with 

using (m, k)-firm constraints, this performance is 

maintained and enhanced. Then we can say that, with 

the (m, k)-Firm-User-DFCSA and DDM-(m, k)-Firm-

User-DFCSA, transactions are executed under good 

conditions having more opportunity to be successfully 

terminated before their deadlines. For that, we can say 

that our proposed approaches guarantee the QoS in 

DRTDBMS. 

 
 

Figure 19. Simulation results using total replication and nb_sites=16. 

 
 

Figure 20. Simulation results using semi-total replication and nb_sites=16. 
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Figure 21. Simulation results using partial replication and nb_sites=16. 

 
 

Figure 22. Three data replication with nb_sites=16 and m

k

ratio=0.5. 

 
 

Figure 23. Three data replication with nb_sites=16 and m

k

ratio=0.7. 

5. Conclusions and Future Work 

In this paper, we have presented  

1. The (m, k)-Firm-User-DFCSA using three data 

replication policies.  

2. Its extension DDM-(m, k)-Firm-User-DFCSA for 

QoS improvement in DRTDBMS.  

The first work consists of applying the (m, k)-firm 

constraints in distributed control scheduling loop under 

three data replication policies. In the second work, we 

have take into account the real-time derived data in the 

first proposed architecture using a mixed policy to 

updating real-time derived data. The obtained 

experimental results confirmed the benefits of the 

proposed approaches on increasing the number of 

distributed real-time transactions which meet their 

deadlines, even in the presence of unpredictable 

workload, and specially with semi-total and partial data 

replication policies compared to full data replication 

policy when the system size increase. 

We plan to extend this work in several ways. In the 

first way, we propose to apply the (m, k)-firm 

constraints on update transactions. In another way, we 

plan to extend the proposed algorithms, for QoS 

improvement, so that it scales to large DRTDBMS 

because those algorithms are only effective for small 

to medium sized systems. 
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