
186 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

Collaborative Detection of Cyber Security Threats

in Big Data

Jiange Zhang, Yuanbo Guo, and Yue Chen

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou Information

Science and Technology Institute, China

Abstract: In the era of big data, it is a problem to be solved for promoting the healthy development of the Internet and the

Internet+, protecting the information security of individuals, institutions and countries. Hence, this paper constructs a

collaborative detection system of cyber security threats in big data. Firstly, it describes the log collection model of Flume, the

data cache of Kafka, and the data process of Esper; then it designs one-to-many log collection, consistent data cache, Complex

Event Processing (CEP) data process using event query and event pattern matching; finally, it tests on the datasets and

analyzes the results from six aspects. The results demonstrate that the system has good reliability, high efficiency and accurate

detection results; moreover, the system has the advantages of low cost and flexible operation.

Keywords: Big data, cyber security, threat, collaborative detection.

Received July 20, 2016; accepted February 15, 2017

1. Introduction

In recent years, as the development of the Internet,

especially the rapid development of Internet+ such as

electronic commerce, Internet Finance (ITFIN),

Internet industry, wireless networks [20], etc., more

and more attackers appear, thus imposing more threats

on the cyber security. It shows in the report about the

Internet Development Security in the Third Quarter of

2015, published by Akamai, that the index of cyber

security threat has continued to rise, and various data

leakage and cyber attacks have continued to emerge,

particularly Distributed Denial of Service (DDoS)

attacks increased by 180%, thus creating a historical

record again! The report also shows the scale of DDoS

attacks have continued to increase, and may paralyze

the core router of network operators easily. Moreover,

cyber attacks will cause serious and significant

consequences such as loss of income, damage to

reputation and information systems, and stealing of

private data or customer sensitive data [8, 13].

Thus it can be seen that the rapid changes in the

cyber security threats have gone beyond the current

security protection in the industry, and the traditional

protection measures, such as intrusion detection

system, no longer work satisfactorily. Especially in the

era of big data, there will be massive attack data

generated at every moment, while the traditional

detection systems when in dealing with these attacks

seem to be overwhelmed. However, the big data

technology is widely applied to other industries, and it

is just begun to use in the security industry. Therefore,

it will be a development trend to detect the cyber

security threats by virtue of the big data technology.

For instance, Zuech et al. [22] introduced the specific

issues of big heterogeneous data fusion, heterogeneous

intrusion detection architectures, and Security

Information and Event Management (SIEM) systems

from many different heterogeneous sources.

At present, there are five typical models using the

big data technology to process the data: a centralized

online real-time analysis complex event processing

model which is called Esper [2, 12] proposed by Luna

[17]; a distributive and batch processing model which

is called Hadoop-proposed by Cutting [9]; a

distributive and real-time analysis model which is

called Agilis [1, 7] proposed by Aniello et al. [1]; a

distributive fault-tolerant online real-time analysis

model which is called Storm [16] proposed by Aniello

et al. [1]; a distributive multi-iteration batch processing

model which is called Spark proposed by Armbrust et

al. [6]. The emergence of these big data processing

models provides a good technical support for the

detection of cyber security threat. However, these

models are only data processing models and cannot be

used as a complete set of independent security threat

detection system. Therefore, it is very necessary to

construct a security threat detection system by utilizing

the big data processing model.

Any attack on the Internet has a certain law, and it

needs to use a certain technology to discover. Staheli et

al. [21] proposed a collaborative investigation system-

Cyber Analyst Real-Time Integrated Notebook

Application (CARINA), using collaborative data

analysis and discovery techniques to provide better

decisions for network analysis. It believes in Axiom 6

in [19] that “A relationship always exists between the

Collaborative Detection of Cyber Security Threats in Big Data 187

Attacker and their Victim(s) even it is distant, fleeting,

or indirect.” Hence, a rule for detecting the attack is

fabricated according to the relationship, and the

relationship between the attacker and the victim is

found out according to the attack rules. Moreover,

Esper engine is a data processing model for processing

the data according to the attack rules. Therefore, this

paper constructs a collaborative detection system of

cyber security threats in big data by using the Esper

engine as the data processing model, the Flume as the

reliable highly available massive log collection,

aggregation and transmission and the Kafka as the data

cache.

2. Related Works

2.1. Flume

Flume is a distributive, reliable and highly available

system, provided by Apache [3], for efficiently

collecting, aggregating, and transmitting massive log

data. Its operation core is Agent, Agent is adopted as

the minimum independent operation unit, and Event is

used as a basic unit of data processing. Each Agent

consists of three core components: Source, Channel

and Sink.

As a data source, Source receives an event from the

external resource, converts it to an Event of a specific

format, and pushes the Event into a single or multiple

Channels. It provides many methods to collect data

from data sources, such as console, RPC, text, tail,

syslog, exec, etc.

As a transmission channel, channel stores the event

pushed by source until event has been handled by sink.

It provides many channel types, such as memory

channel, file channel, Java Data Base Connectivity

(JDBC) channel, recoverable channel, etc.

As a data receiver, sink acquires the event from the

channel, performs the data persistence for the event

(for instance, the event is stored into file systems,

databases, or submitted to the remote server) or pushes

the event into another source. It also provides many

data receiving modes, such as console, Remote

Procedure Call (RPC), text, HDFS, syslog

Transmission Control Protocol (TCP), etc.

Through the three core components, flume makes

event flow to channel from source and then flow to

sink. It is able to create multiple Agents to work

together for customers, and provides three models:

one-to-one, one-to-many, many-to-one. Moreover, for

the same Agent, source and sink are asynchronous.

2.2. Kafka

Kafka is a high throughput and distributed publish-

subscribe messaging system. It has the following

characteristics: [4]

1. Fastness: a single Kafka node can handle hundreds

of mega bytes per second from hundreds of

thousands of customers.

2. Scalability: Kafka allows a single cluster to be used

as the center data backbone of large institutions, and

the expansion can be performed flexibly and

transparently without the downtime. The data

stream is divided and dispersed into the cluster,

which makes the data flow larger than the capacity

of any one machine and achieves the cluster

coordination.

3. Persistence: in order to prevent the data loss,

messages are stored in a disk and replicated in the

cluster, and each node can handle one million Mega

bytes while the performance is not affected.

4. Distribution: Kafka is a modern center cluster that

provides strong robustness and fault tolerance.

The Kafka cluster consists of three components i.e.,

Producer, Consumer and Broker. Producer is a

messager publisher, and it generates and pushes data to

a Broker; Consumer is a message subscriber, and it

pulls and then processes the data from a Broke; Broker

is a message storage array, and the performance is

enhanced because of not maintaining the data

consumption state. In addition, the three components

carry out the coordination of requests and forwarding

through the Zookeeper [5, 14].

Zookeeper is a distributed coordination service of

applications, which is based on the Fast Paxos [15]. It

generates a leader through the election, and only the

leader can submit the proposer.

2.3. Esper

Esper is a flow data processing method of Complex

Event Processing (CEP), it has the following

characteristics: [12, 17]

1. It uses memory database and processes a complex

event through the query of the Event Processing

Language (EPL). Compared with the traditional

relational database, it has a better processing and

query performance and is more suitable for

processing the CEP.

2. Two mechanisms are provided to handle the event.

The event mode matching based on the expression

is implemented by a state machine. The event

processing method is to match the event expected to

exist, the absent event or the combination of events;

and the query of the event flow is implemented

through the EPL statement. The event processing

method provides functions such as filter, slip

window, aggregation, joint and analysis. The EPL

adopts the view to put the constructed data into one

event flow and to drive the flow of the data; and the

data is processed during the data flow process to

obtain a final needed result.

3. It provides many data processing methods: Plain

Old Java Objects (POJOs), MAP, SOCKET, XML,

etc.

188 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

4. It handles 500 thousand events per second, and the

input flow rate reaches 70Mb/s.

5. When facing new threats, it can dynamically adjust

the detection logic by integrating/deleting SQL

query statements.

6. The overhead is low.

The pattern of Esper is a rule that is composed of

atomic events and operators. The atomic events are

customized events, and the pattern operators have 4

types [11]:

1. Repetition operators: every, every-distinct, [num]

and until.

2. Logical operators: and, or, not.

3. Order operator: -> (followed by)

4. Event lifecycle operators: timer:within,

timer:withinmax, while-expression.

The pattern operators are similar to other operators and

also have the priority. According to the priority of the

pattern operators [11], the pattern expression "a->b"

refers to that if occurrence of an event b on the right

side follows the occurrence of an event a on the left

side, it enters an Esper engine. The pattern expression

"every a->b" means that once an event B enters, all

events A before the event B are matched, and if it

succeeds in matching, it enters the Esper engine.

The atomic events are combined into different

expressions by using the pattern operators so as to

form different patterns, and the correlation between the

events is explored according to the patterns.

3. Design of Collaborative Detection of

Threat

In the collaborative threat detection architecture, the

data processing is mainly divided into five stages: data

source, data collection, data cache, data processing,

and data storage. The data source is various network

data packets transmitted on the network; the data

collection is to simply handle and filter the network

packets, and is used as the Producer of Kafka to

generate data; the data cache is to coordinate the

Broker by virtue of Zookeeper, so that the data

collection speed is consistent with the data processing

speed, and it provides the reliability of the data; the

data processing is used as the Consumer of Kafka to

consume the data through the EPL query and pattern of

Esper Engine, and it triggers the listening for the event

matching the pattern; the data storage is to persistently

store the data in the stage of data collection and data

processing, and to provide the data for off-line analysis

and presentation. The integral model of the

collaborative threat detection architecture is illustrated

in Figure 1.

Figure 1. Collaborative threat detection architecture.

3.1. Design of Flume

In the collaborative threat detection architecture, the

Flume adopts the one-to-many model to collect logs.

The Source is SourceNet, which is a network packet.

Each packet is used as one Event to be transmitted in

two channels-- ChannelDFS and ChannelKafka.

Naturally, there are two Sinks-- SinkDFS and

SinkKafka. SinkDFS acquires data from ChannelDFS

and stores it in HDFS to be used as a data source for

off-line analysis. SinkKafka acquires the data from

ChannelKafka and processes it in the Consumer

component of Kafka to be used as the data source for

real-time on-line analysis. The construction of log

collection by using Flume is illustrated in Figure 2.

ChannelDFS

ChannelKafka

SourceNet

SinkDFS

SinkKafka

HDFS

Kafka

ConuserAgent:producer

Figure 2. Construction of log collection.

3.2. Design of Kafka

In order to make the speed of data collection consistent

with the speed of data processing, a message

middleware Kafka is added as a buffer. Kafka manages

Producer, Consumer and Broker through Zookeeper,

and a plurality of Brokers collaborate to ensure the

production and consumption of the data. Moreover,

Zookeeper provides a consistent service to the

distributed applications. One service or a pluralitiy of

services can be deployed. The more services are

deployed, the higher the reliability is. Without loss of

the generality, this architecture is deployed with a

Zookeeper service. The construction of data buffer

using Kafka is shown in Figure 3.

Data

Sources

Sensor Sensor

……

Data

Collection

Producer Producer

……

Data

Cache

Zookeeper

pcap

Flume

Kafka

Cluster

Broker Broker

……

Consumer
Esper Engine

EPL Query

Data

Process

HDFS MySQL

Data

Storage

Collaborative Detection of Cyber Security Threats in Big Data 189

Producer

Producer

Zookeeper

Kafka Broker(P1)

Kafka Broker(P2)

…
…

…
…

Consumer

Figure 3. Construction of data buffer.

3.3. Design of Esper

The flow of processing and analyzing the event by

using esper is illustrated in Figure 4 First, an Event

class and a updatelistener interface are created.

According to this class, a configuration instance is

created. According to this instance, an

EPServiceProvider object is obtained by means of

EPServiceProviderManager. According to this object,

the event is sent to a listening interface by using the

sendEvent of getEPRuntime, meanwhile, by using the

EPL query statement, a listening statement instance

EPStatement is created and is added to the listening

interface by virtue of the addListener.

Create Event

Create

Configuration

Create

UpdateListener

Get

EPServiceProvider

Object

Create

EPStatement

addListener

getEPRuntime

sendEvent

Figure 4. Flow of data process.

The main method for dealing with the event by

using the Esper Engine is the event stream query and

the event pattern matching.

The pattern matching supports the processing of the

complex event with relevance. In the collaborative

threat detection collaborative threat detection

architecture, the atomic event of the pattern is defined

as the pcap packet which is processed by Flume and

Kafka, and expressed by a 12-tuple: packet (time,

MAC source, MAC destination, IP source, IP

destination, port source, port destination, protocol type,

SYN, ACK, RST, traffic).

According to the three-handshake process of TCP,

the event for the Client to request a data packet is

formally defined as a, the event for the Server to

confirm the data packet requested by the Client is

formally defined as b, the event for the Client to

confirm the data packet to the server is formally

defined as d, and the event for resetting the data packet

is formally defined as c. At the same time, the

successful three-handshake is defined as the full-

connection, and if a third handshake is not to confirm

the data packet but to reset the data packet or has no

suck information, it is defined as the incomplete

connection or the half-open connection.

The pattern expression of the complete TCP three-

handshake (full-connection) is: every a->(b->d)

If the survival time of event b and d is defined as 10

seconds, the pattern expression of the full-connection

is: every a->(b->d) where timer: within(10 sec)

The meaning of the pattern expression is:

1. The pattern never stops looking for the event a.

2. When it reaches a1, the pattern starts a new sub-

expression, and a1 is kept in the memory, and any

event b is searched; and meanwhile, it still always

looks for more events a.

3. When it reaches a2, the pattern starts a new sub-

expression, and a2 is kept in the memory, and any

event b is searched; and meanwhile, it still always

looks for more events a.

After the arrival of a2, there are 3 active sub-

expressions:

 The first sub-expression matching a1 is looking for

any event b in the memory.

 The second sub-expression matching a2 is looking

for any event b in the memory.

 The third sub-expression is looking for the next

event a.

4. The survival time of event b and d is 10 seconds, so:

 If there is no event b and d after a1 in 10 seconds,

the first sub-expression disappears.

 If there is no event b and d after a2 in 10 seconds,

the second sub-expression disappears.

 The third sub-expression remains to look for the

event a.

Supposing the order of the event is a1, a2, a3, b3, d3,

the corresponding time-window is demonstrated in

Figure 5.

a1

t
t+1
t+2
t+3
t+4
t+5
t+6

Time

t+7
t+8
t+9
t+10
t+11

a2
a3

b3

d3

t+12

Old
Events

New
Events

a1

a2

a3

b3

d3

Figure 5. Time-window of events.

After 10 seconds, a1 disappears because the event

satisfying the pattern is not found and the service life

of the time-window is ended. Similarly, a2 also

disappears. However, a3 triggers the Esper engine

190 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

because the events matching the pattern are found in

the time-window.

The incomplete TCP half-open three-handshake is

defined as that the event c occurs instead of the event d

after the event a and event b, therefore, the pattern

expression of TCP half-open connection is: every a-

>(b->(c and not d))

If the survival time of events b, c and d is 10

seconds, the pattern expression of TCP half-open

connection is: every a->(b->(c and not d)) where timer:

within(10 sec)

The goal of the collaborative threat detection

architecture is to detect full and half-open connection.

If the half-open connection or the failure connection is

detected, the corresponding IP will be considered as a

scanner, and eventually a series of suspicious IP

addresses is output.

4. Experiment and Analysis on Results

The collaborative threat detection architecture utilizes

seven hosts to build a test environment: the Kafka

middleware is deployed on three hosts; the Zookeeper

is deployed on one host and used for coordinating the

Kafka clusters; the Flume is deployed on one host to be

used as the Producer to acquire source data and to

release same into the Kafka cluster; the Consumer is

deployed on one host to process and analyze the real-

time data; and the HDFS is deployed on one host to

perform the persistent storage.

4.1. Datasets

Experimental datasets are downloaded from the MIT

DARPA intrusion detection project [10], which are

currently relatively authoritative attack testing datasets,

and provide two attack scenarios-- DDoS 1.0 and

DDoS 2.0.2. Compared to DDoS 1.0, the attack of the

DDoS 2.0.2 is more subtle and sophisticated, and the

two attack scenarios contain the network data packet

with an attack phase marker of Demilitarized Zone

(DMZ) and the internal network of an evaluation

network acquired in a period of time.

The size, the packet number and the duration of the

network data packets of DMZ and the internal network

of the two attack scenarios are shown in Table 1.

Table 1. Network packets.

 DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside

Size(MB) 85.3 116.4 50.4 63.0

Number of
packets

394089 649787 236753 347987

Length of

the trace(s)
11760 11653 6150 6168

4.2. Results Analysis

The results obtained by processing the network data

packets of the two attack scenarios according to the

collaborative threat detection architecture are analyzed

mainly from six aspects: reliability, processing

efficiency, memory performance, overall performance,

rules performance, and attack detection results.

1. Analysis on the reliability: Producer, Consumer and

Broker are distributed in a number of computers, if

the Broker of one computer is killed to fail the node,

the data will not be lost, and Consumer can

normally receive the data sent by Producer. Even if

the main Broker is killed to cause the failure of the

lead Broker, the data is still not lost, and Consumer

still can normally receive data sent by Producer.

Therefore, whether the Broker fails or the lead

Broker fails, as long as there is a node which does

not fail, Consumer will be able to normally receive

the data sent by Producer. Therefore, whether the

failure of the node or the failure of the main node

exists, the Consumer can normally receive the data

sent by the Producer, thereby guaranteeing the

reliable transmission of the data.

2. Analysis on the processing efficiency: For the attack

scenario of DDoS 1.0, by using the architecture to

process the network packets, the processing time,

packet rate, data rate, and the average value are

illustrated in Tables 2 and 3.

Table 2. Processing of data packets for DDOS1_DMZ.

ID time(s) packet-rate(105p/s) data-rate(Mb/s)

1 3 13.14 211.9

2 4 9.85 158.93

3 5 7.88 127.14

4 6 6.57 105.93

AVG 4.5 9.063 146.211

Table 2 is the result that network packets are parsed

and processed for ten times in DMZ of DDOS 1.0

attack scenarios by using this architecture. The

processing time in three seconds appears once, in four

seconds appears four times, in five seconds appears

four times, and in 6 seconds appears once. The results

show that the average processing time of the network

packets is 4.5 seconds, the average packet rate is 9.063

E5p/s, and the average data rate is 146.211Mb/s.

Table 3. Processing of data packets for DDOS1_inside.

ID time(s) packet-rate(105p/s) data-rate(Mb/s)

1 5 13 171.29

2 6 10.83 142.74

3 7 9.28 122.35

AVG 6.2 10.644 140.294

Table 3 is the result that network packets are parsed

and processed for ten times of the internal network of

DDOS 1.0 attack scenarios by using this architecture.

The processing time in five seconds appears twice, in

six seconds appears four times, and in seven seconds

appears four times. The results demonstrate that the

average processing time of the network packets is 6.2

seconds, the average packet rate is 10.644 E5p/s, and

Collaborative Detection of Cyber Security Threats in Big Data 191

the average data rate is 140.294Mb/s.

For the attack scenarios of DDOS 2.0.2, by using

the architecture to process the network packets, the

processing time, packet rate, data rate, and the average

value are illustrated in Tables 4 and 5.

Table 4. Processing of data packets for DDOS2_DMZ.

ID time(s) packet-rate(105p/s) data-rate(Mb/s)

1 3 7.89 124.62

2 4 5.92 93.4

3 5 4.74 74.77

AVG 3.7 6.59 104.025

Table 4 is the result that network packets are parsed

and processed for ten times in DMZ of DDOS 2.0.2

attack scenarios by using this architecture. The

processing time in three seconds appears four times, in

four seconds appears five times, and in five seconds

appears once. The results demonstrate that the average

processing time of the network packets is 3.7 seconds,

the average packet rate is 6.59 E5p/s, and the average

data rate is 104.025Mb/s.

Table 5. Processing of data packets for DDOS2_inside.

ID time(s) packet-rate(105p/s) data-rate(Mb/s)

1 3 11.6 153.92

2 4 8.7 115.44

3 5 6.96 92.35

AVG 4 8.932 118.518

Table 5 is the result that network packets are parsed

and processed for ten times in the internal network of

DDoS 2.0.2 attack scenarios by using this architecture.

The processing time in three seconds appears twice, in

four seconds appears six times, and in five seconds

appears twice. The results demonstrate that the average

processing time of the network packets is 4 seconds,

the average packet rate is 8.932 E5p/s, and the average

data rate is 118.518Mb/s.

3. Analysis on the memory performance: by using the

architecture to process the network data packets of

DMZ and the internal network of two attack

scenarios, the maximum memory utilization rate and

average memory utilization rate are demonstrated in

Table 6.

Table 6. Memory utilization rate.

ID DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside

1 10 13 7.8 8.3

2 9.8 14.2 7.5 8.5

3 10 12.8 6 8.1

4 9.8 13 5.9 8.3

5 9.8 13.4 6 8.5

6 9.2 14.3 5.9 8.1

7 10 14.2 5.9 8.2

8 10.1 13 5.7 8.1

9 10.1 14.2 5.8 8.4

10 9.9 14.3 5.8 8.2

AVG 9.87 13.64 6.23 8.27

Table 6 is the result that network packets are parsed

and processed for ten times in DMZ and the internal

network of two attack scenarios by using this

architecture. The results demonstrate that the average

memory utilization rate of DDoS1_dmz is 9.87, the

average memory utilization rate of DDoS1_inside is

13.64, the average memory utilization rate of

DDoS2_dmz is 6.23, and the average memory

utilization rate of DDoS2_inside is 8.27.

4. Analysis on the overall performance: the network

packets, the average packet rate, the average data

rate, the average memory utilization rate and the

average processing time by using the architecture to

process the network data packets of DMZ and the

internal network of the two attack scenarios are

illustrated in Figure 6.

Figure 6. Overall performance.

Figure 6 shows that when the architecture is used

for processing the network packets in DMZ and the

internal network of two attack scenarios under the

same network environment, if the packet number is

smaller, the processing time is shorter, and the packet

rate and memory utilization are smaller. Conversely, if

the packet number is bigger, the processing time is

longer, and the packet rate and memory utilization rate

become bigger. Because the data rate is not only

related to the number of packets, but also related to the

size of each packet, hence, the changing trend of the

data rate is inconsistent with the changing trends of

other three performances.

0

20

40

60

80

100

120

140

160

DDoS1_dmz DDoS1_inside DDoS2_dmz DDoS2_inside

packet-rate(1E5p/s)

data-rate(Mb/s)

memory

time

192 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

5. Analysis on the regularity: this architecture can

detect the events matching the event pattern. Taking

the TCP three- handshake protocol as an example,

the connection number the three-handshake packet

number and the three-handshake packet rate of the

network data packet in DMZ and internal network

of the two attack scenarios detected according to the

connection request event pattern and the full-

connection event pattern established by the

architecture are shown in Table 7.

Table 7. Three-handshake network packets.

 DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside

Number of

connections
9559 9401 7034 7102

3-way-handshake

packets
9462 9183 7019 7089

3-way-handshake

packet rate (p/s)
0.8 0.79 1.14 1.15

It can be seen from the Table 7 that the three-

handshake packet rate of DDoS1_dmz is 0.8, the three-

handshake packet rate of DDoS1_inside is 0.79, the

three-handshake packet rate of DDoS2_dmz is 1.14,

and the three-handshake packet rate of DDoS2_inside

is 1.15.

6. Attack detection results: The number of attackers

for the network packets of the two attack scenarios

detected according to the half-open connection

event pattern of the architecture is illustrated in

Table 8.

Table 8. Attacker.

 DDOS1 DDOS2

Number of attackers 33909 51148

When the attack is detected according to the

architecture, all attackers are detected, and the

detection rate reaches 100%. The attackers will be

listed in the blacklist so as to prohibit their access, so

that it can achieve the purpose of threat detection and

defense.

5. Conclusions

In order to promote the healthy and safe development

of the Internet+, this paper constructs a collaborative

detection system for detecting the threats to the cyber

security in big data by using the technology of big

data.

Firstly, it introduces the involved technologies - the

format of pacp packets, the log collection components

of Flume, the characteristics and data collection

components of Kafka middleware, the memory

database, the event stream query mechanism and the

pattern matching mechanism of Esper, and the attack

type of DDoS and the attack principle of TCP

Synchronize Sequence Numbers (SYN) Flood.

Secondly, it designs the data flow for parsing the

network packets, the one-to-many log collection model

of Flume, the consistent data caching of Kafka and the

CEP data processing of Esper, and also designs the

overall architecture model of the collaborative threat

detection. Then, it implements the parsing of the

network packets, the configuration of Flume as the

Producer component of Kafka for log collection, and

realizes the Esper engine by adopting a method

combining the event stream query and the event pattern

matching, and utilizes the Esper engine as the

Consumer of Kafka to process the data. Finally, it tests

the datasets, and analyzes the results from six aspects:

reliability, processing efficiency, memory performance,

overall performance, rules performance, and attack

detection results. The results show that the system is

reliable, high efficient and accurate; and moreover, the

system has the advantages of low cost and flexible

operation.

With the development of Internet+, the big data

technology and the big data infrastructures, the

research on the collaborative detection of cyber

security threats in big data will become a hotspot.

Especially as the emergence of the online transaction

such as the E-bank and the online payment, due to vast

number of users, vast amount, and a huge

number of transactions, it is very important to perform

the collaborative detection of cyber security threats in

big data. Therefore, the data collection content, the

data processing methods and the data storage forms

will still be the future research direction.

1. The data collection content: besides the collection of

the network packets, the business and system log of

hosts, and the threat intelligence of Network (the

report of APT event, the attack situation, the

vulnerability, the public opinion on the security)

should also be used as the event source of the

collaborative threat detection.

2. The data processing methods: the engine esper

provides a real-time collaborative threat detection

method in big data; however, the off-line detection

of threats should also be carried out in order to

detect potential threats as early as possible. In

addition, the engine esper can be embedded into

storm, so that it can provide the distributed

collaborative detection of the security threats.

3. The data storage form: in the big data environment,

the data acquired in the big data environment and

the processed result data not only include the

structured data, but also include a great number of

the unstructured data. These unstructured data need

to be effectively and reasonably stored into the file

system or a database, thereby facilitating the

indexed searching.

Acknowledgment

This work is supported by the National Natural Science

Foundation of China (Nos. 61201220, 61309018) and

Collaborative Detection of Cyber Security Threats in Big Data 193

the National Basic Research Program of China (No.

2012CB315901).

References

[1] Aniello L., Baldoni R., Chockler G., Laventman

G., Lodi G., and Vigfusson Y., “Agilis: An

Internet-Scale Distributed Event Processing

System for Collaborative Detection of Cyber

Attacks,” MIDLAB Technical Report, 2011.
[2] Aniello L., Luna G., Lodi G., and Baldoni R.,

Collaborative Inter-domain Stealthy Port Scan

Detection Using Esper Complex Event

Processing, Springer, 2012.

[3] Apache Flume, available at:

http://flume.apache.org/, Last Visited 2016.

[4] Apache Kafka, available at:

http://kafka.apache.org/, Last Visited, 2016.

[5] Apache Software Foundation, available at:

http://hadoop.apache.org/, Last Visited, 2016.

[6] Armbrust M., Bateman D., Xin R., and Zaharia

M., “Introduction to Spark 2.0 for Database

Researchers,” in Proceedings of 16th

International Conference on Management of

Data, San Francisco, pp. 2193-2194, 2016.

[7] Baldoni R. and Chockler G., Collaborative

Financial Infrastructure Protection, Springer,

2012.

[8] Critical Infrastructure in the Age of Cyber War,

http://www.mcafee.com/us/resources/reports/rp-

in-crossfire-critical-infrastructure-cyber-war.pdf,

Last Visited, 2010.

[9] Cutting D., “Hadoop: Industrial Strength Open

Source for Data Intensive Supercomputing,” in

Proceedings of 17th Conference on Information

and Knowledge Management, Napa Valley, 2008.

[10] DARPA Intrusion Detection Scenario Specific

Data Sets, available at:

http://www.ll.mit.edu/ideval/data/2000data.html,

Last Visited, 2016.

[11] Esper Reference (Version 5.2.0), EsperTech Inc.,

pp. 253-260, 2015.

[12] EsperTech: Event Series Intelligence, available

at: http://www.espertech.com/, Last Visited,

2016.

[13] Global Fraud Report-Annual Edition 2011-2012,

Kroll,http://www.krollconsulting.com/fraud-

report/2011-12/press-only/, Last Visited, 2011.

[14] Hunt P., Konar M., Junqueira F., and Reed B.,

“Zookeeper: Wait-free Coordination for Internet-

Scale Systems,” Usenix Annual Technical

Conference, Berkeley, 2010.

[15] Lamport L., “Fast Paxos,” Distributed

Computing, vol. 19, no. 2, pp. 79-103, 2006.

[16] Lodi G., Aniello L., Luna G., and Baldoni R.,

“An Event-based Platform for Collaborative

Threats Detection and Monitoring,” Information

Systems, pp. 175-195, 2014.

[17] Luna G., A Collaborative Processing System for

Cyber Attacks Detection and Crime Monitoring,

Theses, Sapienza University, 2010.

[18] Marz N. and Warren J., Big Data: Principles and

Best Practices of Scalable Realtime Data

Systems, Manning, 2015.

[19] Sergio C., Andrew P., and Christopher B., “The

Diamond Model of Intrusion Analysis,”

Technical Report, Center for Cyber Threat

Intelligence and Threat Research, 2013.

[20] Singh J., Kaur L., and Gupta S., “A Cross-Layer

Based Intrusion Detection Technique for Wireless

Networks,” The International Arab Journal of

Information Technology, vol. 9, no. 3, pp. 201-

207, 2012.

[21] Staheli D., Mancuso V., Harnasch R., Fulcher C.,

Chmielinski M., Kearns A., Kelly S., and

Vuksani E., “Collaborative Data Analysis and

Discovery for Cyber Security,” in Proceedings of

12th Symposium on Usable Privacy and Security,

Santa Clara, 2016.

[22] Zuech R., Khoshgoftaar T., and Wald R.,

“Intrusion Detection and Big Heterogeneous

Data: a Survey,” Journal of Big Data, vol. 2, no.

1, 2015.

Jiange Zhang received the M.S.

degree in computer science and

technology from Zhengzhou

University, Zhengzhou, China, in

2007, and is currently pursuing the

Ph.D. degree at the State Key

Laboratory of Mathematical

Engineering and Advanced Computing. Her research

interests include network security, big data and

situation awareness.

Yuanbo Guo received his Ph.D.

degree in computer science and

technology from Xidian University,

Xi’an, China. His research interests

include network security, network

protocol design and analysis, threats

detection, and situation awareness.

He is currently a full Professor of computer science.

Yue Chen received his Ph.D. degree

in computer science and technology

from Zhengzhou Information

Science and Technology Institute,

Zhengzhou, China. His research

interests include network security,

network protocol design and

analysis, and advanced computing. He is currently a

full Professor of computer science.

