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Abstract: In the era of big data, it is a problem to be solved for promoting the healthy development of the Internet and the 
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data cache of Kafka, and the data process of Esper; then it designs one-to-many log collection, consistent data cache, Complex 
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1. Introduction 

In recent years, as the development of the Internet, 

especially the rapid development of Internet+ such as 

electronic commerce, Internet Finance (ITFIN), 

Internet industry, wireless networks [20], etc., more 

and more attackers appear, thus imposing more threats 

on the cyber security. It shows in the report about the 

Internet Development Security in the Third Quarter of 

2015, published by Akamai, that the index of cyber 

security threat has continued to rise, and various data 

leakage and cyber attacks have continued to emerge, 

particularly Distributed Denial of Service (DDoS) 

attacks increased by 180%, thus creating a historical 

record again! The report also shows the scale of DDoS 

attacks have continued to increase, and may paralyze 

the core router of network operators easily. Moreover, 

cyber attacks will cause serious and significant 

consequences such as loss of income, damage to 

reputation and information systems, and stealing of 

private data or customer sensitive data [8, 13]. 

Thus it can be seen that the rapid changes in the 

cyber security threats have gone beyond the current 

security protection in the industry, and the traditional 

protection measures, such as intrusion detection 

system, no longer work satisfactorily. Especially in the 

era of big data, there will be massive attack data 

generated at every moment, while the traditional 

detection systems when in dealing with these attacks 

seem to be overwhelmed. However, the big data 

technology is widely applied to other industries, and it 

is just begun to use in the security industry. Therefore, 

it will be a development trend to detect the cyber 

security threats by virtue of the big data technology.   

For instance, Zuech et al. [22] introduced the specific 

issues of big heterogeneous data fusion, heterogeneous 

intrusion detection architectures, and Security 

Information and Event Management (SIEM) systems 

from many different heterogeneous sources. 

At present, there are five typical models using the 

big data technology to process the data: a centralized 

online real-time analysis complex event processing 

model which is called Esper [2, 12] proposed by Luna 

[17]; a distributive and batch processing model which 

is called Hadoop-proposed by Cutting [9]; a 

distributive and real-time analysis model which is 

called Agilis [1, 7] proposed by Aniello et al. [1]; a 

distributive fault-tolerant online real-time analysis 

model which is called Storm [16] proposed by Aniello 

et al. [1]; a distributive multi-iteration batch processing 

model which is called Spark proposed by Armbrust et 

al. [6]. The emergence of these big data processing 

models provides a good technical support for the 

detection of cyber security threat. However, these 

models are only data processing models and cannot be 

used as a complete set of independent security threat 

detection system. Therefore, it is very necessary to 

construct a security threat detection system by utilizing 

the big data processing model. 

Any attack on the Internet has a certain law, and it 

needs to use a certain technology to discover. Staheli et 

al. [21] proposed a collaborative investigation system- 

Cyber Analyst Real-Time Integrated Notebook 

Application (CARINA), using collaborative data 

analysis and discovery techniques to provide better 

decisions for network analysis. It believes in Axiom 6 

in [19] that “A relationship always exists between the 
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Attacker and their Victim(s) even it is distant, fleeting, 

or indirect.” Hence, a rule for detecting the attack is 

fabricated according to the relationship, and the 

relationship between the attacker and the victim is 

found out according to the attack rules. Moreover, 

Esper engine is a data processing model for processing 

the data according to the attack rules. Therefore, this 

paper constructs a collaborative detection system of 

cyber security threats in big data by using the Esper 

engine as the data processing model, the Flume as the 

reliable highly available massive log collection, 

aggregation and transmission and the Kafka as the data 

cache. 

2. Related Works 

2.1. Flume 

Flume is a distributive, reliable and highly available 

system, provided by Apache [3], for efficiently 

collecting, aggregating, and transmitting massive log 

data. Its operation core is Agent, Agent is adopted as 

the minimum independent operation unit, and Event is 

used as a basic unit of data processing. Each Agent 

consists of three core components: Source, Channel 

and Sink. 

As a data source, Source receives an event from the 

external resource, converts it to an Event of a specific 

format, and pushes the Event into a single or multiple 

Channels. It provides many methods to collect data 

from data sources, such as console, RPC, text, tail, 

syslog, exec, etc. 

As a transmission channel, channel stores the event 

pushed by source until event has been handled by sink. 

It provides many channel types, such as memory 

channel, file channel, Java Data Base Connectivity 

(JDBC) channel, recoverable channel, etc. 

As a data receiver, sink acquires the event from the 

channel, performs the data persistence for the event 

(for instance, the event is stored into file systems, 

databases, or submitted to the remote server) or pushes 

the event into another source. It also provides many 

data receiving modes, such as console, Remote 

Procedure Call (RPC), text, HDFS, syslog 

Transmission Control Protocol (TCP), etc. 

Through the three core components, flume makes 

event flow to channel from source and then flow to 

sink. It is able to create multiple Agents to work 

together for customers, and provides three models: 

one-to-one, one-to-many, many-to-one. Moreover, for 

the same Agent, source and sink are asynchronous. 

2.2. Kafka 

Kafka is a high throughput and distributed publish-

subscribe messaging system. It has the following 

characteristics: [4] 

1. Fastness: a single Kafka node can handle hundreds 

of mega bytes per second from hundreds of 

thousands of customers. 

2. Scalability: Kafka allows a single cluster to be used 

as the center data backbone of large institutions, and 

the expansion can be performed flexibly and 

transparently without the downtime. The data 

stream is divided and dispersed into the cluster, 

which makes the data flow larger than the capacity 

of any one machine and achieves the cluster 

coordination. 

3. Persistence: in order to prevent the data loss, 

messages are stored in a disk and replicated in the 

cluster, and each node can handle one million Mega 

bytes while the performance is not affected. 

4. Distribution: Kafka is a modern center cluster that 

provides strong robustness and fault tolerance. 

The Kafka cluster consists of three components i.e., 

Producer, Consumer and Broker. Producer is a 

messager publisher, and it generates and pushes data to 

a Broker; Consumer is a message subscriber, and it 

pulls and then processes the data from a Broke; Broker 

is a message storage array, and the performance is 

enhanced because of not maintaining the data 

consumption state. In addition, the three components 

carry out the coordination of requests and forwarding 

through the Zookeeper [5, 14]. 

Zookeeper is a distributed coordination service of 

applications, which is based on the Fast Paxos [15]. It 

generates a leader through the election, and only the 

leader can submit the proposer. 

2.3. Esper 

Esper is a flow data processing method of Complex 

Event Processing (CEP), it has the following 

characteristics: [12, 17] 

1. It uses memory database and processes a complex 

event through the query of the Event Processing 

Language (EPL). Compared with the traditional 

relational database, it has a better processing and 

query performance and is more suitable for 

processing the CEP. 

2. Two mechanisms are provided to handle the event. 

The event mode matching based on the expression 

is implemented by a state machine. The event 

processing method is to match the event expected to 

exist, the absent event or the combination of events; 

and the query of the event flow is implemented 

through the EPL statement. The event processing 

method provides functions such as filter, slip 

window, aggregation, joint and analysis. The EPL 

adopts the view to put the constructed data into one 

event flow and to drive the flow of the data; and the 

data is processed during the data flow process to 

obtain a final needed result. 

3. It provides many data processing methods: Plain 

Old Java Objects (POJOs), MAP, SOCKET, XML, 

etc. 
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4. It handles 500 thousand events per second, and the 

input flow rate reaches 70Mb/s. 

5. When facing new threats, it can dynamically adjust 

the detection logic by integrating/deleting SQL 

query statements. 

6. The overhead is low. 

The pattern of Esper is a rule that is composed of 

atomic events and operators. The atomic events are 

customized events, and the pattern operators have 4 

types [11]: 

1. Repetition operators: every, every-distinct, [num] 

and until. 

2. Logical operators: and, or, not. 

3. Order operator: -> (followed by) 

4. Event lifecycle operators: timer:within, 

timer:withinmax, while-expression. 

The pattern operators are similar to other operators and 

also have the priority. According to the priority of the 

pattern operators [11], the pattern expression "a->b" 

refers to that if occurrence of an event b on the right 

side follows the occurrence of an event a on the left 

side, it enters an Esper engine. The pattern expression 

"every a->b" means that once an event B enters, all 

events A before the event B are matched, and if it 

succeeds in matching, it enters the Esper engine. 

The atomic events are combined into different 

expressions by using the pattern operators so as to 

form different patterns, and the correlation between the 

events is explored according to the patterns. 

3. Design of Collaborative Detection of 

Threat 

In the collaborative threat detection architecture, the 

data processing is mainly divided into five stages: data 

source, data collection, data cache, data processing, 

and data storage. The data source is various network 

data packets transmitted on the network; the data 

collection is to simply handle and filter the network 

packets, and is used as the Producer of Kafka to 

generate data; the data cache is to coordinate the 

Broker by virtue of Zookeeper, so that the data 

collection speed is consistent with the data processing 

speed, and it provides the reliability of the data; the 

data processing is used as the Consumer of Kafka to 

consume the data through the EPL query and pattern of 

Esper Engine, and it triggers the listening for the event 

matching the pattern; the data storage is to persistently 

store the data in the stage of data collection and data 

processing, and to provide the data for off-line analysis 

and presentation. The integral model of the 

collaborative threat detection architecture is illustrated 

in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Collaborative threat detection architecture. 

3.1. Design of Flume 

In the collaborative threat detection architecture, the 

Flume adopts the one-to-many model to collect logs. 

The Source is SourceNet, which is a network packet. 

Each packet is used as one Event to be transmitted in 

two channels-- ChannelDFS and ChannelKafka. 

Naturally, there are two Sinks-- SinkDFS and 

SinkKafka. SinkDFS acquires data from ChannelDFS 

and stores it in HDFS to be used as a data source for 

off-line analysis. SinkKafka acquires the data from 

ChannelKafka and processes it in the Consumer 

component of Kafka to be used as the data source for 

real-time on-line analysis. The construction of log 

collection by using Flume is illustrated in Figure 2. 
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Figure 2. Construction of log collection. 

3.2. Design of Kafka 

In order to make the speed of data collection consistent 

with the speed of data processing, a message 

middleware Kafka is added as a buffer. Kafka manages 

Producer, Consumer and Broker through Zookeeper, 

and a plurality of Brokers collaborate to ensure the 

production and consumption of the data. Moreover, 

Zookeeper provides a consistent service to the 

distributed applications. One service or a pluralitiy of 

services can be deployed. The more services are 

deployed, the higher the reliability is. Without loss of 

the generality, this architecture is deployed with a 

Zookeeper service. The construction of data buffer 

using Kafka is shown in Figure 3. 
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Figure 3. Construction of data buffer. 

3.3. Design of Esper 

The flow of processing and analyzing the event by 

using esper is illustrated in Figure 4 First, an Event 

class and a updatelistener interface are created. 

According to this class, a configuration instance is 

created. According to this instance, an 

EPServiceProvider object is obtained by means of 

EPServiceProviderManager. According to this object, 

the event is sent to a listening interface by using the 

sendEvent of getEPRuntime, meanwhile, by using the 

EPL query statement, a listening statement instance 

EPStatement is created and is added to the listening 

interface by virtue of the addListener. 
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Figure 4. Flow of data process. 

The main method for dealing with the event by 

using the Esper Engine is the event stream query and 

the event pattern matching. 

The pattern matching supports the processing of the 

complex event with relevance. In the collaborative 

threat detection collaborative threat detection 

architecture, the atomic event of the pattern is defined 

as the pcap packet which is processed by Flume and 

Kafka, and expressed by a 12-tuple: packet (time, 

MAC source, MAC destination, IP source, IP 

destination, port source, port destination, protocol type, 

SYN, ACK, RST, traffic). 

According to the three-handshake process of TCP, 

the event for the Client to request a data packet is 

formally defined as a, the event for the Server to 

confirm the data packet requested by the Client is 

formally defined as b, the event for the Client to 

confirm the data packet to the server is formally 

defined as d, and the event for resetting the data packet 

is formally defined as c. At the same time, the 

successful three-handshake is defined as the full-

connection, and if a third handshake is not to confirm 

the data packet but to reset the data packet or has no 

suck information, it is defined as the incomplete 

connection or the half-open connection. 

The pattern expression of the complete TCP three-

handshake (full-connection) is: every a->(b->d) 

If the survival time of event b and d is defined as 10 

seconds, the pattern expression of the full-connection 

is: every a->(b->d) where timer: within(10 sec) 

The meaning of the pattern expression is: 

1. The pattern never stops looking for the event a. 

2. When it reaches a1, the pattern starts a new sub-

expression, and a1 is kept in the memory, and any 

event b is searched; and meanwhile, it still always 

looks for more events a. 

3. When it reaches a2, the pattern starts a new sub-

expression, and a2 is kept in the memory, and any 

event b is searched; and meanwhile, it still always 

looks for more events a. 

After the arrival of a2, there are 3 active sub-

expressions: 

 The first sub-expression matching a1 is looking for 

any event b in the memory. 

 The second sub-expression matching a2 is looking 

for any event b in the memory. 

 The third sub-expression is looking for the next 

event a. 

4. The survival time of event b and d is 10 seconds, so: 

 If there is no event b and d after a1 in 10 seconds, 

the first sub-expression disappears. 

 If there is no event b and d after a2 in 10 seconds, 

the second sub-expression disappears. 

 The third sub-expression remains to look for the 

event a. 

Supposing the order of the event is a1, a2, a3, b3, d3, 

the corresponding time-window is demonstrated in 

Figure 5. 
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Figure 5. Time-window of events. 

After 10 seconds, a1 disappears because the event 

satisfying the pattern is not found and the service life 

of the time-window is ended. Similarly, a2 also 

disappears. However, a3 triggers the Esper engine 
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because the events matching the pattern are found in 

the time-window. 

The incomplete TCP half-open three-handshake is 

defined as that the event c occurs instead of the event d 

after the event a and event b, therefore, the pattern 

expression of TCP half-open connection is: every a-

>(b->(c and not d)) 

If the survival time of events b, c and d is 10 

seconds, the pattern expression of TCP half-open 

connection is: every a->(b->(c and not d)) where timer: 

within(10 sec) 

The goal of the collaborative threat detection 

architecture is to detect full and half-open connection. 

If the half-open connection or the failure connection is 

detected, the corresponding IP will be considered as a 

scanner, and eventually a series of suspicious IP 

addresses is output. 

4. Experiment and Analysis on Results 

The collaborative threat detection architecture utilizes 

seven hosts to build a test environment: the Kafka 

middleware is deployed on three hosts; the Zookeeper 

is deployed on one host and used for coordinating the 

Kafka clusters; the Flume is deployed on one host to be 

used as the Producer to acquire source data and to 

release same into the Kafka cluster; the Consumer is 

deployed on one host to process and analyze the real-

time data; and the HDFS is deployed on one host to 

perform the persistent storage. 

4.1. Datasets 

Experimental datasets are downloaded from the MIT 

DARPA intrusion detection project [10], which are 

currently relatively authoritative attack testing datasets, 

and provide two attack scenarios-- DDoS 1.0 and 

DDoS 2.0.2. Compared to DDoS 1.0, the attack of the 

DDoS 2.0.2 is more subtle and sophisticated, and the 

two attack scenarios contain the network data packet 

with an attack phase marker of Demilitarized Zone 

(DMZ) and the internal network of an evaluation 

network acquired in a period of time. 

The size, the packet number and the duration of the 

network data packets of DMZ and the internal network 

of the two attack scenarios are shown in Table 1. 

Table 1. Network packets. 

 DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside 

Size(MB) 85.3 116.4 50.4 63.0 

Number of 
packets 

394089 649787 236753 347987 

Length of 

the trace(s) 
11760 11653 6150 6168 

4.2. Results Analysis 

The results obtained by processing the network data 

packets of the two attack scenarios according to the 

collaborative threat detection architecture are analyzed 

mainly from six aspects: reliability, processing 

efficiency, memory performance, overall performance, 

rules performance, and attack detection results. 

1. Analysis on the reliability: Producer, Consumer and 

Broker are distributed in a number of computers, if 

the Broker of one computer is killed to fail the node, 

the data will not be lost, and Consumer can 

normally receive the data sent by Producer. Even if 

the main Broker is killed to cause the failure of the 

lead Broker, the data is still not lost, and Consumer 

still can normally receive data sent by Producer. 

Therefore, whether the Broker fails or the lead 

Broker fails, as long as there is a node which does 

not fail, Consumer will be able to normally receive 

the data sent by Producer. Therefore, whether the 

failure of the node or the failure of the main node 

exists, the Consumer can normally receive the data 

sent by the Producer, thereby guaranteeing the 

reliable transmission of the data. 

2. Analysis on the processing efficiency: For the attack 

scenario of DDoS 1.0, by using the architecture to 

process the network packets, the processing time, 

packet rate, data rate, and the average value are 

illustrated in Tables 2 and 3. 

Table 2. Processing of data packets for DDOS1_DMZ. 

ID time(s) packet-rate(105p/s) data-rate(Mb/s) 

1 3 13.14 211.9 

2 4 9.85 158.93 

3 5 7.88 127.14 

4 6 6.57 105.93 

AVG 4.5 9.063 146.211 

Table 2 is the result that network packets are parsed 

and processed for ten times in DMZ of DDOS 1.0 

attack scenarios by using this architecture. The 

processing time in three seconds appears once, in four 

seconds appears four times, in five seconds appears 

four times, and in 6 seconds appears once. The results 

show that the average processing time of the network 

packets is 4.5 seconds, the average packet rate is 9.063 

E5p/s, and the average data rate is 146.211Mb/s. 

Table 3. Processing of data packets for DDOS1_inside. 

ID time(s) packet-rate(105p/s) data-rate(Mb/s) 

1 5 13 171.29 

2 6 10.83 142.74 

3 7 9.28 122.35 

AVG 6.2 10.644 140.294 

Table 3 is the result that network packets are parsed 

and processed for ten times of the internal network of 

DDOS 1.0 attack scenarios by using this architecture. 

The processing time in five seconds appears twice, in 

six seconds appears four times, and in seven seconds 

appears four times. The results demonstrate that the 

average processing time of the network packets is 6.2 

seconds, the average packet rate is 10.644 E5p/s, and 
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the average data rate is 140.294Mb/s. 

For the attack scenarios of DDOS 2.0.2, by using 

the architecture to process the network packets, the 

processing time, packet rate, data rate, and the average 

value are illustrated in Tables 4 and 5. 

Table 4. Processing of data packets for DDOS2_DMZ. 

ID time(s) packet-rate(105p/s) data-rate(Mb/s) 

1 3 7.89 124.62 

2 4 5.92 93.4 

3 5 4.74 74.77 

AVG 3.7 6.59 104.025 

Table 4 is the result that network packets are parsed 

and processed for ten times in DMZ of DDOS 2.0.2 

attack scenarios by using this architecture. The 

processing time in three seconds appears four times, in 

four seconds appears five times, and in five seconds 

appears once. The results demonstrate that the average 

processing time of the network packets is 3.7 seconds, 

the average packet rate is 6.59 E5p/s, and the average 

data rate is 104.025Mb/s. 

Table 5. Processing of data packets for DDOS2_inside. 

ID time(s) packet-rate(105p/s) data-rate(Mb/s) 

1 3 11.6 153.92 

2 4 8.7 115.44 

3 5 6.96 92.35 

AVG 4 8.932 118.518 

Table 5 is the result that network packets are parsed 

and processed for ten times in the internal network of 

DDoS 2.0.2 attack scenarios by using this architecture. 

The processing time in three seconds appears twice, in 

four seconds appears six times, and in five seconds 

appears twice. The results demonstrate that the average 

processing time of the network packets is 4 seconds, 

the average packet rate is 8.932 E5p/s, and the average 

data rate is 118.518Mb/s. 

3. Analysis on the memory performance: by using the 

architecture to process the network data packets of 

DMZ and the internal network of two attack 

scenarios, the maximum memory utilization rate and 

average memory utilization rate are demonstrated in 

Table 6. 

 

 

 

 

 

 

 

 

 

Table 6. Memory utilization rate. 

ID DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside 

1 10 13 7.8 8.3 

2 9.8 14.2 7.5 8.5 

3 10 12.8 6 8.1 

4 9.8 13 5.9 8.3 

5 9.8 13.4 6 8.5 

6 9.2 14.3 5.9 8.1 

7 10 14.2 5.9 8.2 

8 10.1 13 5.7 8.1 

9 10.1 14.2 5.8 8.4 

10 9.9 14.3 5.8 8.2 

AVG 9.87 13.64 6.23 8.27 

Table 6 is the result that network packets are parsed 

and processed for ten times in DMZ and the internal 

network of two attack scenarios by using this 

architecture. The results demonstrate that the average 

memory utilization rate of DDoS1_dmz is 9.87, the 

average memory utilization rate of DDoS1_inside is 

13.64, the average memory utilization rate of 

DDoS2_dmz is 6.23, and the average memory 

utilization rate of DDoS2_inside is 8.27. 

4. Analysis on the overall performance: the network 

packets, the average packet rate, the average data 

rate, the average memory utilization rate and the 

average processing time by using the architecture to 

process the network data packets of DMZ and the 

internal network of the two attack scenarios are 

illustrated in Figure 6. 

 

 

 

 

 

 

 

 

 

Figure 6. Overall performance. 

Figure 6 shows that when the architecture is used 

for processing the network packets in DMZ and the 

internal network of two attack scenarios under the 

same network environment, if the packet number is 

smaller, the processing time is shorter, and the packet 

rate and memory utilization are smaller. Conversely, if 

the packet number is bigger, the processing time is 

longer, and the packet rate and memory utilization rate 

become bigger. Because the data rate is not only 

related to the number of packets, but also related to the 

size of each packet, hence, the changing trend of the 

data rate is inconsistent with the changing trends of 

other three performances. 
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5. Analysis on the regularity: this architecture can 

detect the events matching the event pattern. Taking 

the TCP three- handshake protocol as an example, 

the connection number the three-handshake packet 

number and the three-handshake packet rate of the 

network data packet in DMZ and internal network 

of the two attack scenarios detected according to the 

connection request event pattern and the full-

connection event pattern established by the 

architecture are shown in Table 7. 

Table 7. Three-handshake network packets.  

 DDOS1_dmz DDOS1_inside DDOS2_dmz DDOS2_inside 

Number of 

connections 
9559 9401 7034 7102 

3-way-handshake 

packets 
9462 9183 7019 7089 

3-way-handshake 

packet rate (p/s) 
0.8 0.79 1.14 1.15 

It can be seen from the Table 7 that the three-

handshake packet rate of DDoS1_dmz is 0.8, the three-

handshake packet rate of DDoS1_inside is 0.79, the 

three-handshake packet rate of DDoS2_dmz is 1.14, 

and the three-handshake packet rate of DDoS2_inside 

is 1.15. 

6. Attack detection results: The number of attackers 

for the network packets of the two attack scenarios 

detected according to the half-open connection 

event pattern of the architecture is illustrated in 

Table 8. 

Table 8. Attacker. 

 DDOS1 DDOS2 

Number of attackers 33909 51148 

When the attack is detected according to the 

architecture, all attackers are detected, and the 

detection rate reaches 100%. The attackers will be 

listed in the blacklist so as to prohibit their access, so 

that it can achieve the purpose of threat detection and 

defense. 

5. Conclusions 

In order to promote the healthy and safe development 

of the Internet+, this paper constructs a collaborative 

detection system for detecting the threats to the cyber 

security in big data by using the technology of big 

data. 

Firstly, it introduces the involved technologies - the 

format of pacp packets, the log collection components 

of Flume, the characteristics and data collection 

components of Kafka middleware, the memory 

database, the event stream query mechanism and the 

pattern matching mechanism of Esper, and the attack 

type of DDoS and the attack principle of TCP 

Synchronize Sequence Numbers (SYN) Flood. 

Secondly, it designs the data flow for parsing the 

network packets, the one-to-many log collection model 

of Flume, the consistent data caching of Kafka and the 

CEP data processing of Esper, and also designs the 

overall architecture model of the collaborative threat 

detection. Then, it implements the parsing of the 

network packets, the configuration of Flume as the 

Producer component of Kafka for log collection, and 

realizes the Esper engine by adopting a method 

combining the event stream query and the event pattern 

matching, and utilizes the Esper engine as the 

Consumer of Kafka to process the data. Finally, it tests 

the datasets, and analyzes the results from six aspects: 

reliability, processing efficiency, memory performance, 

overall performance, rules performance, and attack 

detection results. The results show that the system is 

reliable, high efficient and accurate; and moreover, the 

system has the advantages of low cost and flexible 

operation. 

With the development of Internet+, the big data 

technology and the big data infrastructures, the 

research on the collaborative detection of cyber 

security threats in big data will become a hotspot. 

Especially as the emergence of the online transaction 

such as the E-bank and the online payment, due to vast 

number of users, vast amount, and a huge 

number of transactions, it is very important to perform 

the collaborative detection of cyber security threats in 

big data. Therefore, the data collection content, the 

data processing methods and the data storage forms 

will still be the future research direction. 

1. The data collection content: besides the collection of 

the network packets, the business and system log of 

hosts, and the threat intelligence of Network (the 

report of APT event, the attack situation, the 

vulnerability, the public opinion on the security) 

should also be used as the event source of the 

collaborative threat detection. 

2. The data processing methods: the engine esper 

provides a real-time collaborative threat detection 

method in big data; however, the off-line detection 

of threats should also be carried out in order to 

detect potential threats as early as possible. In 

addition, the engine esper can be embedded into 

storm, so that it can provide the distributed 

collaborative detection of the security threats. 

3. The data storage form: in the big data environment, 

the data acquired in the big data environment and 

the processed result data not only include the 

structured data, but also include a great number of 

the unstructured data. These unstructured data need 

to be effectively and reasonably stored into the file 

system or a database, thereby facilitating the 

indexed searching. 
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