
The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020 461

Design and Implementation of Inter-operable and

Secure Agent Migration Protocol

Shakir-Ullah Shah1, Jamil Ahmad2, and Najeeb-ur-Rehman3
1Department of Computing and Technology, Iqra University Islamabad, Pakistan

2Department of Computer Science, University of Science and Technology (KUST), Pakistan
3Department of Computer Science, University of Gujrat, Pakistan

Abstract: Mobile agent technology is an active research topic and has found its uses in various diverse areas ranging from

simple personal assistance to complex distributed big data systems. Its usage permits offline and autonomous execution as

compared to classical distributed systems. The free roaming nature of agents makes it prone to several security threats during

its transit state, with an added overhead in its interoperability among different types of platforms. To address these problems,

both software and hardware based approaches have been proposed to ensure protection at various transit points. However,

these approaches do not ensure interoperability and protection to agents during transit over a channel, simultaneously. In this

regard, an agent requires a trustworthy, interoperable, and adaptive protocol for secure migration. In this paper, to answer

these research issues, we first analyse security flaws in existing agent protection frameworks. Second, we implemented a novel

migration architecture which is: 1) fully inter-operable compliance to the Foundation for Intelligent Physical Agents (FIPA)

and 2) trustworthy based on Computing Trusted Platform Module (TPM). The proposed approach is validated by testing on

software TPM of IBM, JSR321, and jTPMTools as TPM and Trusted Computing Software Stack (TSS) interfaces, JADE-agent

framework and 7Mobility Service (JIPMS). Validation is also performed on systems bearing physical TPM-chips. Moreover,

some packages of JIPMS are also modified by embedding our proposed approach into their functions. Our performance

results show that our approach merely adds an execution overhead during the binding and unbinding phases.

Keywords: Information Security, Multi-Agent Systems, Inter-Platform Agent Mobility, JADE, Trusted Computing.

Received October 9, 2018; accepted February 24, 2019

https://doi.org/10.34028/iajit/17/4/4

1. Introduction

Mobile agent oriented technology is quite popularly

used in e-commerce [35], search engines [36, 46], web-

crawlers [33], scheduling problems [22, 30], parallel

computing [24], health monitoring [39], network

administration [34] and many other areas [41]. The

mobility nature of the agent makes it more valuable

while moving from one platform to another to perform

different tasks on behalf of its owner. Along the course

of migration on open networks, an agent may have

private and confidential data that can be shared with

only intended hosts or other agents. Maintaing trust in

open networks is an open challenge and it is not a

viable solution to provide a secure channel to each and

every agent. Other problem with the agent is that when

it visits different hosts, then a host may alter its secret

data or even whole code. In such case an agent will not

remain trustworthy. So at such scales, security and

interoperability are the major challenges that affect

usability and reliability [37] of Multi-Agent Systems

(MAS). Three levels of security are required for MAS;

host, channel, and agent security. In an open channel, a

mobile agent is prone to Active [4], man in the middle

(MITM) [27], and phishing [25] attacks which

decreases level of trust. In this work, trusted and

interoperable agent migration protocol based Trusted

Computing is proposed. The Trusted Computing

Group (TCG) prescribes the standards to increase

level of trust based on a tamper resistant cryptographic

hardware known as a Trusted Platform Module (TPM)

[42]. For a proof of concept, Java Agent Development

(JADE); a popular multi-agent Foundation for

Intelligent Physical Agents (FIPA) compliant

development framework [13] is used with TPM. Trust

models of FIPA and their brief general security

mechanisms for agent based systems is provided in

[32]. The intrinsic TPM key hierarchy strengthens the

security of the framework such that no device other

than the intended host and platform can unbind or

decrypt a private part of a binding key. It works by

storing the Storage Root Key (SRK) in a non-volatile

memory inside the TPM so that the whole tree

structure becomes secure. As JADE does not support

inter platform mobility, JIPMS [10] is used for this

purpose.
In the next section (section 2), required background

details pertaining to FIPA, JADE, and TC is provides.

The section covers a literature review to demonstrate

the progress made so far. Section 3 provides proposed

462 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

solution and section 4 provides the implementation

details of the proposed protocol. This is followed by

results and discussion section 5. Section 6 provides

conclusion and future directions.

2. Background and Literature Review

A number of security attacks in the literature about the

domain of mobile agent frameworks have been

discussed in [20, 36, 38, 44]. The simplest form is an

agent to agent attack involving one malicious agent

attacking another on any host (local or remote) [6]. A

malicious agent can also initiate an attack on its hosting

platform in order to gain privileged access to the host.

In this case, the attack is directed from malicious agent

to an agent platform. But the counterpart can also be

true. As an example, malicious platform can terminate

the migration process an agent and can also truncate the

data gathered by it in the form of a colluded truncation

attack [23, 26]. Another variation involves attacks

directed from one agent platform to another one. Other

categories involve eavesdropping, denial of service,

masquerading, unauthorized access, copy and replay,

alteration, and man-in-the- middle attacks [36].
From time to time [6, 21, 23], general solutions for

integrity of agents and platforms are provided. Zhang

and Yan [49] provides solution for the agent security by

introducing freezing mode. The secure session key is

managed in a secure session database. For this purpose,

a new layer of Transport Guard Process (TGP) is

merged with the protocol and it is responsible for an

agent's migration along with an Agent Control Center

(ACC). The agent freezes itself at source host, half

freezes itself over the network and unfreezes itself at

the destination host. At the time of freezing, credentials

such as timestamp, sequence number (nonce for

protecting from replay attack), information/message

digest (SHA-1), and digital signatures for integrity of

digest are stored in the database. Authors in [14]

developed a FIPA compliant trial involving a secure

and efficient code distribution service known as JADE-

S (JADE Security Module) [7]. The model uses Java

Authentication and Authorization Service (JAAS), Java

Secure Socket Extension (JSSE) and Java

Cryptography Extension (JCE). User's credentials are

store in plain form in a text file. Some other

deficiencies in this model are discussed in [45].
Some software based approaches are also proposed

but they are not able to provide fool proof security [9].

For this reason, TCG has proposed hardware solutions

in form of TPM. Examples of software based solutions

is a JADE and TPM4Java [19] which based on Secure

Migration Library for Agents (SecMiLiA) [28] that

bears functionality to address the malicious host

problems. A downside of the library is that it works

with a single key only at a time and as a result, it is not

scalable. Code integrity is preserved using an approach

used in [48]. In this approach, before migration, the

integrity of the code is measured by taking the hash

using SHA-1. At receiving side again hash is taken

again and recorded. The code is allowed to resume for

execution only after insuring the agent's integrity. Wu

et al. [47] proposed different approach for code

integrity. In this approach the whole structure is

encrypted using public part of an Attestation Identity

Key (AIK) of a destination host. A procedure known

as Sealing and Unsealing is provided by TPM and

used and discussed in [29]. The procedure is usable on

local machines only and is strict in nature as it is

locality dependent. A similar approach that guarantees

integrity and confidentiality is also proposed in [1, 5]

where hosts are authenticated using Public Key

Infrastructures (PKI). A mobile agent-based crawler

that promises to protect agents from malicious hosts is

proposed in [43]. A self-reliant mobile code proposed

in [40] promised to protect the agents selfishly.

Symmetric keys are communicated in a secure way

with digital signature. AI based approaches for

protecting agents has been discussed in [8]. A robust

and fault tolerant approach has been proposed in [31]

that is based on security of code in a sedentary agents.
Interoperability in mobile agents can be handled at

different levels such as executable code, platforms,

and communication protocols [3]. The most common

approach for dealing with interoperability is carried

out at the application level. Our research focuses on

interoperability issues arising due to migration, and

for that the focus is on the communication protocols.

A specification for FIPA compliant communication

protocols utilizing Agent Communication Language

(ACL) is discussed in [2, 16, 17]. For mobility, the

Simple Mobility Protocol and Full Mobility Protocol

stacks are used and described in [18].
The migration process as per FIPA standards

requires three steps. The first step is the negotiation

phase, where source and remote platforms

communicate via ACL messages using the FIPA's

Request Interaction Protocol (RIP). In the second step,

configuration phase, the source and remote platforms

share configurations and parameters. Lastly, in the

execution phase, the selected transfer protocol is used

for migration [12]. To achieve interoperability,

mobility is placed under the Pre-Transfer, Transfer,

and Post-Transfer protocols [13, 15] illustrated. In our

implemented protocol, the same steps are used for

mobility as described in [3]. Protocols which are used

for transferring agent from one host to another are the

push transfer, pull transfer, push ccache transfer, on-

demand transfer, and fragment transfer protocols [12].

The proposed protocols discussed so far pertain to

homogeneous platforms. For heterogeneous hosts, a

detailed is in [11].

Design and Implementation of Inter-operable and Secure Agent Migration Protocol 463

3. Proposed Solution

A new secure, flexible, and fast protocol for agent

migration between a source and destination is proposed

in this section using the Trusted Computing. The

protocol uses symmetric keys, nonce, and timestamps

to keep off replay attacks. Though the key management

is out of the scope of this work but only an abstract idea

is given for the sack of understanding. The Binding key

Certification Authority (BKCA) is responsible for the

management of RSA Binding Key certificates. The

migration model of the process is designed as a layered

architecture and is illustrated in Figure 1.
The migration model of the process is designed as a

layered architecture and is illustrated in Figure 2. Agent

Management System (AMS) communicate with a

remote platform for the migration of an agent. It

performs all requests and proceeds to the next mobility

steps. FIPA Request Interaction Protocol (RIP) is the

default migration protocol. All requests of an agent

pertaining to migration are served. Similarly, it is

responsible for serving all requests communicated by

the Trusted Agent Migration Manager (TAMM).
The proposed agent, TAMM, acts like an interface

and provides security for trusted T-move. The binding

process involves TPM keys creation, return information

about TPM status, return TCG compliant unique ID's

labelled by manufacture, configure block size for both

symmetric and asymmetric cryptography. At SH, when

it receives public part of binding key, then it encrypts

the agent and forwards it to AMS. AMS at the

destination sends bound agent to TAMM to unbind.

Figure 1. Layered architecture of trusted migration protocol.

Agent is at the top of the trusted migration protocol

which is an entity that wants to move from SH to DH.

For migration, an agent has two options; First being

requesting the AMS to process the case via JIPMS

mobility procedure, and the second being making the

request to TAMM to process the case under TC

specifications and FIPA standards. The former is

termed as simple move and allows greater degree of

flexibility, while the latter is termed as T-move and

allows greater degree of security.
The Agent Middleware provides support and

functional environment just like a standard platform for

any real implementation of a multi-agent system. This

is done by having support for the agent's entire life-

cycle along with all expected transition states. The

Trusted Computing Software Stack Layout is

composed of TCG specified components for the

functional environment. These components include

the Trusted Platform Module (TPM), TPM Drivers,

TPM Device Driver Library (TDDL), TSS Core

Service (TCS), TSS Service Provider (TSP), and

RPC/SOAP Communications. The TPM Drivers are

provided by TPM manufacturers and support all

required operations of the TPM. These drivers are

loaded into the kernel as modules. The TDDL

provides a standard interface to communicate with

TPM and also provides support for switching between

user and kernel mode. The TCS lies in user space and

provides support for sophisticated tasks like key

management efficiently. The TSP is the top most

module in TSS layered architecture and provides an

attractive object oriented interface to the applications.

These applications then use an interface termed as the

TSS Service Provider Interface (TSPI). The TSP

executes in user-space while the TCS lies in kernel-

space. For inter-communication, RPC/SOAP is used,

which provides services like marshalling and un-

marshalling. The TPM's protocol does not rely on

security properties of the data transfer and assumes

that all parts of the channel as un-trusted.
The proposed protocol follows a multi-protocol

based setup which consists of Pre-Transfer, Transfer,

and Post- Transfer protocol. The Pre-Transfer protocol

comprises of a negotiation and configuration phase.

The Transfer protocol comprises of the binding and

transfer phase. The Post-Transfer protocol consists of

resumption phase meant for resuming execution of an

agent. Each of these phases are discussed in the

coming sections.
When a AMS receives trusted migration request

from a Mobile Agent (MA), see Figure 2, from its

Source Host (SH) to a Destination Host (DH). Then

steps given below are performed:

1. SH will forward migration request to DH.

2. Let DH is agree and responds to initiator.

3. SH bind the agent before t-move which consist

further steps.

a) First of It search the public key of DH in its local

keys-repository, if fails then

b) It request to Binding Key Certification Authority

(BKCA) for it.

c) BKCA tries to fetch it in its local repository. In

success it returns, if fails.

d) BKCS request to DH and return it SH.

4. SH binds the agent using received key.

5. DH unbind the agent using its own private part of

binding key. DH informs SH about the successful

power-up of agent.

464 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

The proposed protocol follows a layered architecture.

The architecture is further divided into different phases.

These phases consists of Pre-Transfer, Transfer, and

Post-Transfer protocol. The Pre-Transfer protocol

comprises of a negotiation and configuration phase.

The Transfer protocol comprises of the binding and

transfer phase. The Post-Transfer protocol consists of

resumption phase meant for resuming execution of an

agent. Each of these phases are discussed in the coming

sections.

Figure 2. Overview of protocol.

3.1. Negotiation Phase

Negotiation is the first phase of the proposed model.

This phase starts with a request of T-Move from an

agent to the TAMM at SH (TAMMS). The TAMMS

forwards the move request to AMSS which

communicates with the destination AMSD to get a

decision for migration. Upon receipt of confirmation

from AMSS, TAMMS asks about the physical presence

of TPM via AMSD. AMSD submit the query to TAMMD

via TSP. As an inquirer, TSP finds whether TPM is

enabled and activated, and replies with the status of this

query. The TAMMD responds to its AMS about the

TPM state returned via the TSP. This information is

also delegated back to the SH. Both SH and DH try to

agree upon a binding protocol for trusted move. Upon

agreement, they select the required transfer protocol for

the execution phase. Types of transfer protocols that

can be selected are the Push, Pull, Push Cache, On-

Demand, and Fragment Transfer Protocols. The entire

process is open so that they can agree upon a common

protocol with mutual understanding.

3.2. Configuration Phase

Configuration Phase the next phase of the proposed

mode. The configuration phase receives all data

acquired by SH and DH in the negotiation phase which

includes TPM related information, binding key of DH.

In T-Move the AMSS will make a request AMSD to get

proof and status of DH TPM. AMSD forwards the query

to TAMMD, then to TSP. TSP responds the proof and

status of TPM to TAMMD. The TAMMD forwards the

response to AMSS via AMSD which in turn inform the

TAMMS. Now TAMMS is able to start T-Move. The

TAMMS will try to locate the binding key at the local

host. In case of failure the, the TAMMS will contact

the BKCA. The BKCA will share only the public part

of binding key.

3.3. Binding Phase

The core phase of this work is the binding phase

which migrates the agent using a trusted T-Move by a

TAMM. After getting the public of the binding key of

DH, TAMMS binds the agent with DH according to

TCG specification. Two different approaches were

followed for the better results. In one approach the

whole agent was bind. In another approach the agent

was encrypted with AES and the key to decrypt was

bind with DH. In either approach, the encrypted

bounding agent is ready for T-Move. The detail of

each approach is given in section 4.

3.4. Transfer Phase

This the last phase of the proposed model. In the

transfer phase, agent will move to the DH using

desired transfer protocol selected and agreed upon in

the navigation and configuration phase by both parties

i.e., SH and DH. As a result of the binding phase, the

agent is already bind with DH. AMSS will forward the

bind agent to AMSD which will make a request to TSP

via TAMMD for unbinding. TSP will request TPM for

this process. The TPM will unbind the agent using

corresponding private part of the binding key along

with UUID. The TSP then sends the request back to

TAMM who in turn again forwards it back to the

AMS as an unbound agent. The AMS then creates an

agent thread and launches all required configurations.

Finally, the destination AMS sends an

acknowledgement to the source AMS containing

status of the successful unbinding.

3.5. Execution Resumption Phase

In Execution Resumption Phase, the unbind agent will

resume its execution based on its previous code, data

and state. No changes were required for this phase.

4. Implementation

This section provides fine grained details for the

implementation of proposed solution. In order to

deploy the proposed solution, the testbed environment

is created in two different ways. In first approach

implementation is done on a Dell Latitude E6410

bearing a Broadcom TPM. In another approach, to

confirm heterogeneity, the implementation has been

tested on virtual TPM developed by IBM on Ubuntu

16.04. On software and hardware TPM enabled

platforms, jTSS, jTpmTools and JADE 4.2 were

configured. As JADE does not support inter-platform

mobility, therefore JIMPS was also installed on both

platforms.

Design and Implementation of Inter-operable and Secure Agent Migration Protocol 465

Let E and D shows encryption and decryption

algorithm respectively. PRSH shows private part of the

binding of source host while PUDH shows public part

of the binding key of the destination host.
In the first approach the data of the agent is

encrypted with the PRSH and then again encrypted with

PRDH to secure the data and avoid repudiation as shown

in Equation (1).

E (E (Data; PRSH) ; PUDH)

The public part of the binding key is extracted as a Key

Binary Large Object (key-BLOB) using code outlined

in algorithm 1.

Algorithm 1:Extract Public part of Binding-Key

#Require: UUIDRand, pubKeyFileName

#Ensure: Binding Key

contxt = TPMContxt.Instance()

 contxt.connect(null)

kmmg = contxt.getKeyManager()

srk = kmng.LoadStorageRootKey(Secret.WELL KNOWN

SECRET)

bnd = kmng.createBindingKey(srk,Sec.WELL KNOWN SEC,

Sec.WELL KNOWNSEC, f, f, t, 2048, null)

kmng.storeTPMKey(srk,bnd,UUIDRand)

bndpub1= bnd.getPublicKey()

bndpub = bndpub1.Encoded()

writeFile(pubKeyFileName, bndpub)

When SH gets PRDH, then SH binds the agent for T-

move, code required to bind the data is listed in

algorithm 2. When DH receives the bind agent then it

unbind the agent. The code of unbinding is listed in

algorithm 3.
In the second approach, the data of the agent is

encrypted using AES encryption. The step by step

procedure is shown in algorithm 4.

Algorithm 2: Agent Binding

#Require: byteData and pubKeyFileName

#Ensure: bData

rBndr = RemoteBinderImpl()

pubkbyt = readFile(pubKeyFileName)

kF = KeyFactory.getInstance(”RSA”)

publicKeySpec = X509EncodedKeySpec(pubk byt)

pu=(RSAPublicKey)kF.genPublic(publicKeySpec)

inBlockSize = 209

 outBlockSize = 256

DataIn = null

DataOut = null

numBlocks = (byteData.length / inBlockSize)

if byteData.length % inBlockSize != 0

{

 numBlocks++

}

 if numBlocks != 0

{

 numBlocks = 1

}

if bData == numBlocks *outBlockSize

{

 Arrays.fill(boundData, (byte) 0) }

i = 0

for i < numBlocks

{

 DataIn = inBlockSize

 DataOut = outBlockSize

 DataOut= DataOut.fill((byte) 0)

 bData=, i * inBlockSize, DataIn,inBlockSize

 DataOut = rBinder.bind[rawDataIn, pu]

 DataOut=bData,i*outBlockSize,outputBlockSize

 i = i+1

}

remaining = bData.length % inBlockSize

DataIn = byte[remaining]

DataIn= DataIn.fill, (byte) 0

DataOut = outBlockSize

DataOut =DataOut.fill, (byte) 0

bData=i * inBlockSize, DataIn, 0,remaining

DataOut =rBndr.bind(DataIn,pu)

DataOut=0, bData, i * outBlockSize,outBlockSize

return bData

This secret key is bound with public portion of the

binding key of DH and encrypted again using private

portion of the SH’s binding key to avoid repudiation.

Now this appended with the encrypted data. To

decrypt the cipher, the secret key is obtained from the

private part of public key.When migrating an agent,

the private key is with the DH where the agent is

supposed to be migrated.

E (p,sk) = c1

E (E (sk,PRSH),PUDH) = c2

c1|c2 = c

The secret key is then decrypted via the private part of

the RSA key as depicted in Equation (2).

Algorithm 3: Agent Unbinding

#Require: bData, UUIDRand

#Ensure: unbData

unbData = null

contxt = TPMContxt.getInstance()

contxt.connect(null)

kmng = context.getKeyManager()

srk = kmng.loadStorageRootKey(Secret.WELL KNOWN

SECRET)

bnd2=kmng.loadTPMKey(srk,

UUIDRand,Secret.WELL KNOWN SECRET)

bndr = BinderImpl(contxt)

inBlockSize = 256 /*for unbinding

outBlockSize = 209 /*For unbinding

DataIn = null

DataOut = null

nBlocks =Math.ceil(bData.length/ inBlockSize

unbData=unbData.fill, (byte) 0

for (i=0; to i < numBlocks)

{

 DataIn = inBlockSize

 DataIn= DataIn.fill, (byte) 0

 DataOut = outBlockSize

 DataOut=DataOut.fill((byte) 0)

 bData=i * inBlockSize, DataIn,0,inBlockSize

 DataOut = bndr.unbind(DataIn, bnd2)

 if (i = numBlocks - 1 then

 DataOut=DataOut,unbData,i*outBlockSize,
 DataOut.length

 }

 else

 {

 DataOut=DataOut,unbData,i*outBlockSize,

(1)

(2)

466 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

 outBlockSize

 }

}

return unbData

The secret key is then decrypted via the private part of

the RSA key as depicted in Equation (2). After getting

the secret key, the data is decrypted with this key, such

that it is obtained in its original form as shown in

Equation (3).

Algorithm 4: AES Encryption

#Require: plaintext

#Ensure: ciphertext

keySp=SecKeySpec(AESKey.getBytes(),“AES”)

ivSpec = IvParameterSpec(ivx.getBytes()

cipher=Cypher(keySp,ivSpec, Cipher.ENCMODE)

raw = cipher.doFinal(plaintext)

ciphertext = Base64.encode(raw);

return ciphertext

After getting the secret key, the data is decrypted with

this key, such that it is obtained in its original form as

shown in Equation (3).

D(D (c1,PUSH),PRDH) = sk

E(c1,sk) = p

In algorithm 5, byte stream are encrypted using AES to

generate cipher stream. Then first byte of cipher stream

is decoded to UTF-8 from Base64. Now the cipher

stream is for decryption. Finally, cipher stream is

decrypted into plain stream.

Algorithm 5: AES Decription

Require: EncryptedText, AESKey

Ensure: DecryptedText

keySp = SecKeySpec(AESKey.getBytes(), “AES”)

ivSpec = IvParameterSpec(ivx.getBytes())

cipher=Cypher(keySp,ivSpec, Cipher.DECMODE)

raw = Base64.decode(encryptedText)

decryptedText = cipher.doFinal(raw)

clear = String(decryptedText, ”UTF8”)

return decryptedText

5. Results and Discussion

Once the test-bed is deployed we then test the

performance of it by taking readings and comparing it

with different benchmarks. Binding time and unbinding

time are the two parameters on which the performance

of the test-bed is going to be analysed. To conduct the

test, we take multiple agents which vary in sizes from

each other. The sizes of agents are in the range of

0.25KB to 4096 KB. First we start from a small agent

of size 256 bytes after that we increase the size of the

agent by 2s power such as 512, 1024, 2048 and so on.

Table 1 gives us the information of agent size in Bytes

and Kilobytes (KBs). Also, it gives us the binding time

and unbinding time with respect to the given agent.

Table 1. Time complexity using simple approach.

S.No.
Size

(KB)

Binding Time

(MS)

Unbinding Time

(MS)

1 0.25 6.009 856.494

2 0.5 9.444 1085.715

3 1 13.416 1714.031

4 2 15.574 3091.546

5 4 25.743 5641.002

6 8 36.544 11170.354

7 16 79.676 21635.348

8 32 130.633 42448.617

9 64 245.002 84661.390

10 128 439.058 169117.530

11 256 862.117 337308.620

12 512 1677.559 674150.400

13 1024 3740.121 1349534.500

14 2048 8252.697 2698777.200

15 4096 14561.789 5399847.500

To visualize the correlation between binding time

and unbinding time with respect to the size of agent

we use a line chart. Which could typically bring ease

in helping us to find patterns from the given results.

X-Axis: On X-axis we have the size of an agent in

Kilobytes (KBs) Y-Axis: On Y-axis we have time

dimension which is given in Milliseconds. Figure 3

has a line chart that shows the relation of unbinding

time in milliseconds with respect to the agent size.

Like the binding timeline chart, the unbinding timeline

chart has a solid blue line that represents unbinding

time with respect to the agent size. The second dotted

line shows the linear unbinding time of agent with

different sizes. By looking at Figure 3 we have come

to a conclusion it is not feasible to deploy this solution

as the execution time of binding and unbinding

increases exponentially with the increase of the agent

size. Since encrypting and decrypting the whole agent

during binding and unbinding gets computationally

expensive with the increase in the size of the agent,

therefore, the solution does not remain feasible

anymore. So, to overcome this problem we

incorporate Advanced Encryption Standard (AES)

which is a symmetric key cryptographic technique.

Incorporation of AES would work in a way that at the

binding time of agent we would bind the public key of

the source and attach the public key with an agent.

Once the agent reaches the destination the agent is

decrypted by combining the public and private

together. So during the whole pipeline, we are

encrypting the public keys instead of agents which

would save a lot of overhead. Secondly, the perks of

public key encryption are that TPM ensures that the

agent would only decrypt on the destination platform

which ensures the integrity of the information

delivered. This process typically increases the

decryption performance which reduces the time

latency gap in binding and unbinding execution costs.

To assess the improvements by incorporating AES to

our proposed method we have a look at Table 2

numbers.

(3)

Design and Implementation of Inter-operable and Secure Agent Migration Protocol 467

Figure 3. Binding execution time over agent size.

Table 2 shows the recorded results of binding and

unbinding with support for AES. Considering the same

cases, the binding takes 4 MS instead of 15 MS when

the agent size is 2 Kb. Likewise, it takes only 8 MS

instead of 862 MS when agent size is 256 Kb, and so

on. Finally, if agent size is 4096 Kb, it is bound 117

MS instead of 14561 MS. Similarly, unbinding takes

565 MS instead of 3091 MS when the agent size is 2

Kb, 575 MS instead of 5 minutes when agent size is

256 Kb and so on until an improvement of 669 MS is

noticed instead of 1.5 hours for an agent size of 4096

Kb.

Table 2. Time complexity using AES.

S.No.
Size

(KB)

Binding Time

(MS)

Unbinding Time

(MS)

1 2.5 3.926 595.912

2 0.5 4.157 590.353

3 1 4.739 563.948

4 2 4.864 565.545

5 4 6.939 570.306

6 8 10.063 570.313

7 16 5.058 581.930

8 32 7.457 581.754

9 64 5.460 584.201

10 128 5.440 598.874

11 256 8.957 575.637

12 512 14.130 585.334

13 1024 25.859 601.556

14 2048 55.936 624.109

15 4096 117.981 669.442

Figure 4 shows efficient computational results of the

proposed model of T-move of binding with AES. There

are two lines, blue one shows the behavior of binding

with AES Encryption and red one shows the result of

unbinding using second approach.

Figure 4 . Unbinding execution time over agent size.

6. Conclusions

The growing nature of the structured and unstructured

date over Internet makes it very difficult to collect

one’s own required data. Mobile agents are especially

useful to perform functions automatically including

information extraction and dissemination. On the other

hand, this expanded power and usage, is also causing

security concerns. The goal of this research work is to

give protection to mobile agents without any sort of

compromises on the integrity of information. Also, the

research work enables us to conduct secure transfer

and exchange of information through mobile agents.

The proposed secure model mainly consists of

architectural flow, migration model and sequential

execution for the exchange of information with ease.

For trustworthy transfer, proposed novel trusted model

is used to ensure secure migration of agents from one

host to another. In order to ensure the effectiveness

and efficiency in actual environment, Trusted Platform

Module has been used. Computing Group (TCG)

which is highly recommended by experts of the

domain. Hieratical security of Trusted Platform

Module (TPM) by TCG is used to enhance the

security and to ensure that the binding keys are not

made public other than the destination host. The full

migration protocol developed by us has elastic

architectures which enable mobile agents to migrate

with ease. The proposed method provides the user

with the flexibility of choosing the security protocol

instead of imposing it on the user. Our methods also

let the user choose between normal and trusted

migration depending upon the user requirements.

Securing the communication medium during the

migration of agent is beyond the scope of this

research. Therefore if the keys are extracted through

the medium we cannot do anything about it currently.

Also, our research does not share the public part of the

binding key as it is beyond the scope of our work. Our

methods provide a protected and reliable environment

for mobile agent relocation, however, users can

choose explicitly the mode of migration. However out

method at the moment does not have a digital

signature and we have a constant size of AES key

length but this would be addressed by us in the future.

Further improvements can be made and the network

issue can be resolved during the migration by

choosing the best transfer protocol for the agents. TO

enhance elasticity and scalability of a multi-agent

system in a trusted model we should incorporate TPM

like a proxy setup.

References

[1] Aljawarneh S. and Alhaj A., “Testing and

Evaluation of A Secure Integrity Measurement

System (SIMS) for Remote Systems,” The

468 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

International Arab Journal of Information

Technology, vol. 9, no. 3, pp. 235-242, 2012.

[2] Ametller J., Robles S., and Borrell J., “Agent

Migration over FIPA ACL Messages,” in

Proceedings of International Workshop on

Mobile Agents for Telecommunication

Applications, Berlin, pp. 210-219, 2003.

[3] Ametller-Esquerra J., Cucurull-Juan J., Martí R.,

Navarro G., and Robles S., “Enabling Mobile

Agents Interoperability Through Fipa Standards,”

in Proceedings of International Workshop on

Cooperative Information Agents, Berlin, pp. 388-

401, 2006.

[4] Andress J., “The Basics of Information Security:

Understanding the Fundamentals of Infosec in

Theory and Practice,” Syngress, 2014.

[5] Bellavista P., Corradi., A and Stefanelli C., “A

Mobile Agent Infrastructure for The Mobility

Support,” in Proceedings of the ACM Symposium

on Applied Computing, Como, pp. 539-546, 2000.

[6] Bijani S. and Robertson D., “A Review of Attacks

and Security Approaches in Open Multi-Agent

Systems,” Artificial Intelligence Review, vol. 42,

no. 4, pp. 607-636, 2014.

[7] Board J.A.D.E., Jade Security Guide. JADE-S

Technical Report, 2005.

[8] Brahmi Z., Lini A., and Gammoudi M., “Mobile

Agent Security Based on Artificial Immune

System,” in Proceedings of International Joint

Conference SOCO’14-CISIS’14-ICEUTE’14,

Cham, pp. 385-395, 2014.

[9] Challener D., Yoder K., Catherman R.., Safford

D., and Van Doorn L., A Practical Guide to

Trusted Computing Pearson Education, 2007.

[10] Cucurull J., “JADE Inter-Platform Mobility

Service,” Online Available and accessed from:

<http://jipms.sourceforge.net>, 2018.

[11] Cucurull J., Martí R., Navarro-Arribas G., Robles

S., and Borrell J., “Full Mobile Agent

Interoperability in An IEEE-FIPA Context,”

Journal of Systems and Software, vol. 82, no. 12,

pp. 1927-1940, 2009.

[12] Cucurull J., Martí R., Robles S., Navarro G., and

Borrell J., “Agent Mobility Architecture Based on

IEEE-FIPA Standards,” Computer

Communications, vol. 32, no. 4, pp. 712-729,

2009.

[13] Cucurull J., Marti R., Robles S., Borrell J., and

Navarro G., “FIPA-Based Interoperable Agent

Mobility Proposal,” Technical Report, 2007.

[14] Cucurull J., Navarro‐Arribas G., Martí R., Robles

S., and Borrell J., “An Efficient and Secure Agent

Code Distribution Service,” Journal of Software:

Practice and Experience, vol. 40, no. 4, pp. 363-

386, 2010.

[15] Cucurull J., Overeinder B.J., Oey M., Borrell J.,

and Brazier F., “Abstract Software Migration

Architecture Towards Agent Middleware

Interoperability,” in Proceedings of the 2nd

International Multiconference on Computer

Science and Information Technology, Poland,

pp. 27-37, 2007.

[16] Dale J., and Lyell M., “Foundation for

Intelligent Physical Agents,”

http://www.fipa.org/, Last Visited, 2019.

[17] Fipa A.C.L., “FIPA acl Message Structure

Specification,” http://www.fipa.org/, Last

Visited, 2019.

[18] FIPA: FIPA agent management support for

mobility specification, 2019.

[19] Hermanowski M. and Tews E., “Tpm4java”.

Currently only available through http://web.

archive.org/web/20090510093615/http://tpm4jav

a. datenzone. de/trac, Last Visited, 2018.

[20] Jolly P. and Batra S., “Security AGAINST

Attacks and Malicious Code Execution in

Mobile Agent Using IBF-CPABE Protocol,”

Wireless Personal Communications, vol. 107,

no. 2, pp.1-15, 2019.

[21] Jung Y., Kim M., Masoumzadeh A., and Joshi

J., “A Survey of Security Issue in Multi-Agent

Systems,” Artificial Intelligence Review, vol. 37,

no. 3, pp. 239-260, 2012.

[22] Kori S. and Kakkasageri M., “Intelligent Agent

Based Resource Scheduling in Wireless Sensor

Networks,” in Proceedings of 10th International

Conference on Computing, Communication and

Networking Technologies ICCCNT, Kanpur, pp.

1-7, 2019.

[23] Lei S., Liu J., and Xiao J., “A Novel Free-

Roaming Mobile Agent Security Mechanism by

Trusted Computing Technology,” in

Proceedings of International Conference on

Computer Science and Software Engineering,

Hubei, pp. 721-724, 2008.

[24] Liu J., Zhang S. and Yang J., “Characterizing

Web Usage Regularities with Information

Foraging Agents,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no.

5, pp. 566-584, 2004.

[25] Loy S., Brown S., and Tabibzadeh K., “South

Carolina Department of Revenue: Mother of

Government Dysfunction,” Journal of The

International Academy for Case Studies, vol. 20,

no. 1, pp. 83-93, 2014.

[26] Marikkannu P., Murugesan R. and

Purusothaman T., “AFDB Security Protocol

Against Colluded Truncation Attack in Free

Roaming Mobile Agent Environment,” in

Proceedings of International Conference on

Recent Trends in Information Technology,

Chennai, pp. 240-244, 2011.

[27] Mishra P., “Analysis of Mitm Attack in Secure

Simple Pairing,” Journal of Global Research in

Computer Science, vol. 4, no. 2, pp. 42-45, 2013.

http://jipms.sourceforge.net/
http://www.fipa.org/
http://www.fipa.org/

Design and Implementation of Inter-operable and Secure Agent Migration Protocol 469

[28] Munoz A., Mana A., and Anton P., “A Solution

Based on Cryptographic Hardware to Protect

Agents,” in Proceedings of 13th International

Conference on Network-Based Information

Systems, Takayama, pp. 400-407, 2010.

[29] Munoz A., Mana A., and Serrano D., “Protecting

Agents from Malicious Hosts Using TPM,”

International Journal on Computational Science

and Applications, vol. 6, no. 5, pp. 30-58, 2009.

[30] Neagu N., Dorer K., Greenwood D., and Calisti

M., “LS/ATN: Reporting on A Successful Agent-

Based Solution for Transport Logistics

Optimization,” in IEEE Workshop on Distributed

Intelligent Systems: Collective Intelligence and Its

Applications, Prague, pp. 213-218, 2006.

[31] Ouardani A., Pierre S., and Boucheneb H., “A

Security Protocol for Mobile Agents Based Upon

The Cooperation of Sedentary Agents,” Journal

of Network and Computer Applications, vol. 30

no. 3, pp. 1228-1243, 2007.

[32] Poslad S., Charlton P., and Calisti M.,

“Specifying Standard Security Mechanisms in

Multi-Agent Systems,” in Proceedings of

Workshop on Deception, Fraud and Trust in

Agent Societies, Berlin, pp. 163-176, 2003.

[33] Thati P., Hao C., and Agha G., “Crawlets: Agents

for High Performance Web Search Engines,” in

Proceedings of International Conference on

Mobile Agents, Berlin, pp. 119-134, 2001.

[34] Pulter N., Nimis J., and Lockemann P.,

“Managing Contingencies in Timed

Transportation Networks by Agent Technology,”

in Proceedings of the Workshop on Artificial

Intelligence and Logistics (AILog-2010) at the

19th European Conference on Artificial

Intelligence, Lisbon, 2010.

[35] Rahman S. and Bignall R., Internet Commerce

and Software Agents: Cases, Technologies, and

Opportunities, IGI Global, 2001.

[36] Rajeshwar B., Saravanan, A., Balaji R., Geetha,

G., and Jayakumar, C., “Secure Information

Retrieval Using Mobile Agent,” in Proceedings of

the International Conference on Computing and

Control Engineering, pp. 12-13, 2012.

[37] Rocha Á., Correia A, Wilson T., and Stroetmann

K., Advances in Information Systems and

Technologies, Springer Science and Business

Media, 2013.

[38] Shen Z. and Tong Q., “A Security Technology for

Mobile Agent System Improved by Trusted

Computing Platform,” in Proceedings of 9th

International Conference on Hybrid Intelligent

Systems, Shenyang, pp. 46-50, 2009.

[39] Smarsly K., Law K., and Hartmann D.,

“Multiagent-Based Collaborative Framework for

A Self-Managing Structural Health Monitoring

System,” Journal of Computing in Civil

Engineering, vol. 26, no. 1, pp. 76-89, 2012.

[40] Srivastava S. and Nandi G., “Self-Reliant

Mobile Code: A New Direction of Agent

Security,” Journal of Network and Computer

Applications, vol. 37, pp. 62-75, 2014.

[41] Sun Y., Councill I., and Giles, C., “Botseer: An

Automated Information System for Analyzing

Web Robots,” in Proceedings of 8th

International Conference on Web Engineering,

Yorktown Heights, pp. 108-114, 2008.

[42] Trusted Computing Group, “TCG Specification

Architecture Overview, Specification Revision,

Last Visited, 2018.

[43] Upadhyay V., Balwan J., and Shankar G., “A

Security Approach for Mobile Agent Based

Crawler,” in Proceedings of the 2nd International

Conference on Computer Science, Engineering

and Applicationsm, pp. 119-123, New Delhi,

2012.

[44] Vigna G., “Mobile agents: Ten reasons for

failure,” in Proceedings IEEE International

Conference on Mobile Data Management,

Berkeley, pp. 298-299, 2004.

[45] Vila X., Schuster A., and Riera A., “Security for

A Multi-Agent System Based on JADE”.

Computers and Security, vol. 26, no. 5, pp. 391-

400, 2007.

[46] Wang M., Li Q., Lin Y., Li Y., and Zhou B., “A

Personalized Metasearch Engine Based on

Multi-agent System,” The International Arab

Journal of Information Technology, vol. 16, no.

6, pp. 978-987, 2019.

[47] Wu X., Shen Z., and Zhang H., “Secure Key

Management of Mobile Agent System Using

Tpm-Based Technology on Trusted Computing

Platform,” in Proceedings of International

Conference on Computer Science and Software

Engineering, Wuhan, pp. 1020-1023, 2008.

[48] Xian H. and Feng D., “Protecting Mobile

Agents' Data Using Trusted Computing

Technology,” Journal of Communication and

Computer, vol. 4, no. 3, pp. 44-57, 2007.

[49] Zhang W. and Yan X., “Agent Transport

Security Based on Freezing Mode,” in

Proceedings of International Conference on

Communications and Intelligence Information

Security, United States, pp. 60-63, 2010.

https://www.scimagojr.com/journalrank.php?country=US

470 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

Shakir-Ullah Shah has got MSCS

from Foundation University

Islamabad, Pakistan with a gold

medal. He is working as a assistant

professor at National University of

Computer & Emerging Sciences

Peshawar, Pakistan. His area of

interest is information security in multi-agent

systems.His previous research at MS level was about

authentication factors and led to explore another

authentication factor i.e. “something you process”. The

main objective of his current research is to secure

users’ credentials and to enhance the usability of

authentication and authorization.

Jamil AhmadHe got PhD from

King's College London, UK and MSC

in Information Technology from

University of Warwich, UK. His

current research are in Artificial

Intelligence, Artificial Neural

Networks, Image processing and

Machine learning. He worked as a vice chancellor of

Iqra University, Islamabad, Pakistan, Abasyn

University, Islamabad, Pakistan. Currently he is

working as a voice chancellor of Kohat University,

Pakistan.

Najeeb-ur-Rehman academic

abilities can be perceived from the

fact that he has completed his BS

(CS), and MS (CS) degrees with Cum

Laude honor from FAST-National

University of Computer and

Emerging Sciences (NUCES) and

nominated as Gold Medalist. Even more, he is

nominated for Dean’s List of Honors and Rector’s List

of Honors several times. He is Gold Medalist in

Software and Hardware IT Competition organized by

DOST-KPK and attend numerous Computer

Programming and IT Contests all over the Pakistan.

