
The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019 17

A Real Time Extreme Learning Machine for

Software Development Effort Estimation

Kanakasabhapathi Pillai1 and Muthayyan Jeyakumar2
1Department of Electrical and Electronics Engineering, Kalaivanar Nagercoil Sudalaimuthu Krishnan

College of Engineering, India
2Department of Computer Applications, Noorul Islam University, India

Abstract: Software development effort estimation always remains a challenging task for project managers in a software

industry. New techniques are applied to estimate effort. Evaluation of accuracy is a major activity as many methods are

proposed in the literature. Here, we have developed a new algorithm called Real Time Extreme Learning Machine (RT-ELM)

based on online sequential learning algorithm. The online sequential learning algorithm is modified so that the extreme

learning machine learns continuously as new projects are developed in a software development organization. Performance of

the real time extreme learning machine is compared with training and testing methodology. Studies were also conducted using

radial basis function and additive hidden node. The accuracy of the Real time Extreme Learning machine with continuous

learning is better than the conventional training and testing method. The results also indicate that the performance of radial

basis function and additive hidden nodes is data dependent. The results are validated using data from academic setting and

industry.

Keywords: Software effort estimation, extreme learning machine, real time, radial basis function.

Received October 5, 2014; accepted March 30, 2016

1. Introduction

One of the major activities in software project

management is Software Development Effort

Estimation (SDEE). Recently machine learning

methods and data mining techniques are getting more

attention [3, 10, 14]. Problems of comparing one

method with another arise as there are many criteria for

accuracy evaluation. Accuracy also depends on the

input data used for evaluation as well as the criteria

used. Generally one can classify SDEE into four

groups:

 Analogy based methods.

 Expert estimation.

 Model based such as Constructive Cost Model

(COCOMO), Software Life Cycle Model (SLIM),

etc.

 Artificial Intelligence (AI) methods such as neural

networks, fuzzy logic, genetic algorithms or

combinations there of Past projects data are used

directly or indirectly in all the methods.

Analogy based methods compare the current project

with past projects which is close to it. In expert

estimation, opinion of experts is sought for effort

values. In model based methods, relationship between

effort and project parameters are obtained using

historical data. Among the AI methods neural networks

are most commonly used [2]. Here we have developed

a Real Time Extreme Learning Machine (RT-ELM)

which is easy to implement with only one parameter,

number of hidden nodes, to be empirically selected.

The next section 2 gives related work followed by

estimation problem in section 3. Data sets used are

explained in section 4. RT-ELM is explained in section

5. Experimental results are provided in section 6. The

last section 7 provides conclusions followed by

references at the end.

2. Related Work and Motivation

Software development effort estimation continues to be

a hot topic in spite of many persons from both industry

and academia across many countries doing research.

The major problems are related to the input data,

algorithm, and accuracy evaluation criteria. One needs

to consider all these three factors to arrive at a

conclusion. Boehm et al. [1] suggest that no one

technique should be relied upon for SDEE. Instead,

multiple methods should be compared for decision

making. The SDEE is a function of input where the

size of the software projects plays an important role.

The Extreme Learning Machine (ELM) which has

many advantages over conventional feed forward back

propagation neural network is gaining acceptance in

many areas [6]. In addition to being extremely fast, it

has better generalization capability than conventional

back propagation networks. The design of the ELM is

easy and straight forward. These motivated the authors

to apply ELM for software development effort

18 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

estimation. The ELM is applied for maintainability

prediction for object oriented systems [11].

In a software development organization, project

bidding happens one by one or chunk by chunk.

Projects are developed in parallel and they are

completed one by one or chunk by chunk. This

necessitates SDEE in the beginning of the project. This

is mainlyan effort prediction activity. At the end of the

project, we know the actual effort and the model used

in the beginning can be updated. Online sequential

estimation is ideal for this situation. Hence, we have

used Online Sequential Extreme Learning Machine

(OS-ELM) [7]. Standard OS-ELM has training and

testing phases. In the application considered, the

extreme learning machine continuously learns as

projects are completed and learning never stops. We

call it RT-ELM as the parameters of the network are

updated as soon as the project is completed. Its

performance is compared with the conventional

training and testing method. We have also studied the

effect of radial basis function and additive hidden node

as both requires the same number of parameters for

realization.

3. Estimation Problem

The SDEE generally consists of two stages, model

building and model evaluation. These are also known

as training and testing. A part of the measurements is

used to build the model and the remaining data are

used to test the model. Model may work well for

training data but its generalization capability may be

poor. In order to minimize this problem training data is

split into two parts; one for training and the rest for

validation where the parameters of the model are

finalized. In the software industry, managers have to

predict the development cost for project bidding. The

cost mainly depends on the effort put by humans and

so effort estimation plays an important role in the

software houses. This is generally achieved by

predicting the software size and using environmental

parameters. In fact, the RT-ELM algorithm does not

distinguish between the training and testing data. The

estimation problem aims at finding a relationship

between dependent and independent variables using

the data. The model is continuously validated for its

prediction capability. The model accuracy is evaluated

by finding the statistical characteristics of the errors,

(Actual effort– Predicted effort), for each data set.

4. Data Sets Used

The data sets used in this study consist of Desharnais

[12] and Maxwell [13] publically available from

Predictive Models in Software Engineering

(PROMISE) repository, Lopez data [8], and

International Software Benchmarking Standards Group

(ISBSG) [9]. The statistical characteristics of the

dependent variable effort, mean, standard deviation,

minimum, median, maximum, in terquartile range,

skewness and kurtosis are given in Table 1. Desharna

is data consists of six attributes and dependent variable

effort in hours. Size of the software is measured in

Function Point. It has 77 data points out of which 60

are used for training and 17 for testing. In Maxwell

data effort is measured in hours. Size is measured in

Function Point. We have used one dependent (Effort)

and one independent variable (Size). Out of 62

projects, 40 projects data are used for training and the

rest, 22 are used for testing. Lopez data has 163

training data points and 68 testing data points totalling

231 data points. Two attributes of the project are new

and changed code and reused code. Code size is

measured in lines of code and effort in minutes. These

projects are small in size and developed in an academic

setting. In ISBSG data projects are developed in

industrial environments at different countries. It has

532 high quality projects. Number of projects used for

training is 350 and testing is 182. Nine attributes are

used as independent variables and dependent variable

effort is measured in hours. Size is measured in

Function Point.

5. Real Time-Extreme Learning Machine

(RT-ELM)

Artificial Neural Network has the ability to learn

complex functions and is the most commonly used

method among machine learning techniques for effort

prediction [2]. However, the conventional back

propagation neural network algorithm has the

following disadvantages:

 Determining the number of neurons required in each

layer.

 Fixing of learning rate parameter and momentum

coefficient.

 Possibility of converging to a local minimum.

 Deciding stopping criteria.

 Iterative learning for determining the weights which

takes a long time.

 Determining the number of layers to achieve the

accuracy.

Among the above iterative learning is totally avoided

in the recently developed ELM [4, 5, 6]. Unlike the

popular belief, for a Single Layer Feed forward

Network (SLFN), both input weights and hidden layer

biases can be randomly chosen in ELM. This method is

not only fast but also makes better generalization. This

non-iterative method has revolutionized the usage of

ELM in many applications. These characteristics

motivated the authors to implement ELM for SDEE.

The ELM consists of a single hidden layer with L

nodes. For N arbitrary distinct samples (xi, ti), having

activation function g(x), random weights, wi, random

biases, bi, output weights βi, The output function is

A Real Time Extreme Learning Machine for Software Development Effort Estimation 19

∑i βig(wixj+ bi) = Oj, j=1,...,N; i=1,..., L

Where β = [β1,……, βL]Tis the vector of output weights

between the hidden layer of L nodes and the output

node.

∑j || Oj– tj||=0, j= 1,..,N

i.e., there exist βi, wi and bisuch that

∑i βi g(wixj+ bi) = tj, j=1,...,N; i=1,...,L

Let

H = [g(wixj+ b1) ---- g(wixj+ bL)

- ---- -

g(wixN+ b1) ---- g(wLxN+ bL)],

T =[t1
TtL

T]T

Then, Hβ = T

H is called the hidden layer output matrix of the neural

network. If the activation function is infinitely

differentiable it is proved in [6] that the required

number of hidden neurons is L≤ N. Once the hidden

node weights and biases are fixed, H remains fixed and

one needs to estimate β. The minimum norm least

squares solution for (4):

β= min || Hβ-T ||

If the number of hidden nodes is equal to the number

of training samples, N, H is square and β can be

determined by simply inverting H. However, in order

to get better generalization, number of hidden nodes is

adjusted and can be less than N. Then one needs to take

the Moore-Penrose generalized inverse of H [6].

β ̂ = H† T

Using H†, the Moore-Penrose generalized inverse of H;

one can validate the algorithm for the total data. The

architecture of ELM is shown in Figure 1.

Figure 1. Extreme learning machine.

In a software industry, project bidding or project

completion takes place either one by one or chunk by

chunk. So the OS-ELM is suitable for this application.

 OS-ELM involves initialization phase and

sequential learning phase. Once the network learns, the

model parameters are fixed and used for future

prediction. However, the software development

methodologies evolve over time. The development

environment undergoes changes. The productivity of

the programmers also changes. So the estimation

model needs to be adapted to the changing situation.

So, the learning process continues and there is no

phase as testing. The detailed derivation of OS-ELM is

available in [7] and a summary is provided here.

 Step 1: Initialization Phase: The ELM is initialized

using a small chunk of data. Decide the number of

hidden neurons (L). This is the only parameter we

have to decide empirically. The initialization set

(N0) should be equal to or greater than (L).

 Assign random input weights, wi, and bias, bi, for

additive (ADD) hidden nodes or centre, wi, and

impact factor, bi, for Radial Basis Function (RBF)

hidden nodes, i = 1,…, L.

 Calculate the initial hidden layer output matrix H0

H0 =[g(wixj+ b1) ---- g(wixj+ bL)

- ---- -

g(wixN0+ b1) ---- g(wLxN0+ bL)],

H0 is N0 X L matrix.

Estimate the initial output weight

β(0) = P0H0
TP0To,

Where P0=(H0
T H0)-1 and To=[t1,…..,tN0]. Each t

corresponds to actual effort of a project.

Set k = 0.

 Step 2: Sequential processing phase this is used for

early phase of a project for prediction and for model

update at the end of the project using actual effort

data. Assuming one by one project data is

processed, Calculate the partial hidden layer output

matrix

hk+1 = [g(w1,b1,xk+1)…… g(wL,bL,xk+1)]

Where k is the processing instant.

Predict the effort required to complete the project

yk+1 = hT
k+1 β(k)

Update the model parameters at the end of the project

Pk+1 = Pk - Pkhk+1hT
k+1 Pk(1+ hT

k+1Pk hk+1)

β(k+1) = β(k) + Pkhk+1(tk+1 - yk+1)

Prediction error is = tk+1 – yk+1

Increment k and repeat step 2.

(1)

(2)

(4)

(5)

(7)

(8)

(9)

(10)

(13)

(6)

(3)

(11)

(12)

20 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Figure 2. Flow chart of the proposed RT-ELM.

RT-ELM is same as OS-ELM with continuous

learning. This method is best suited for software

industry. The only parameter to be decided for RT-

ELM is the number of hidden nodes. The network

works for both additive and RBF hidden nodes. The

number of parameters to be randomly selected is the

same, but for impact width in RBF should be positive.

The network performance can vary with respect to

randomly selected parameters. These parameters are

determined during the initialization phase. The RT-

ELM flow chart is given in Figure 2.

6. Performance Evaluation of RT-ELM

The MINITAB® is used for studying the performance
of RT-ELM. Initialization is done with five

measurements. We have analysed the results for

different number of samples for initialization. The RT-

ELM performance is not affected by the number of

samples beyond five. The input and output to RT-ELM

are normalized between zero and one. Studies have

been conducted with Radial Basis Function (RBF) and

Additve (ADD) nodes. The initialization output of RT-

ELM depends on the random input for centres and

impact factors for the RBF nodes and weights and

biases for the ADD nodes.

The study was repeated for 100 times and the

random parameters for minimum mean square error

were used for further studies. The minimum number of

hidden nodes is fixed equal to the number of

independent variables (attributes). Also, the

initialization data points, N0, should be greater than or

equal to the number of hidden nodes, L. We have

studied the standard way of fixing parameters using

training and use them for testing. In RT-ELM, we have

the flexibility of obtaining output vector, β, for each

input. The statistical characteristics of the errors of

both fixed and varying β for RBF and ADD nodes are

provided in Tables 2, 3, 4, 5, 6, 7, 8 and 9 for the four

different data sets. It can be observed from these tables

that RMSE for RT-ELM, where the output weights, β,

vary for all the inputs perform better than fixed

weights for both additive and RBF nodes cases. This is

true for the four different data sets studied here.

Among additive and RBF nodes one can select based

on RMSE of training data. But for Maxwell data RBF

node performs better in terms of RMSE. Inter quartile

ranges and standard deviations behave in a similar

way. In all the cases correlation between observed and

predicted data increases whenever RMSE decreases.

For the Lopez data there is slight decrease in

correlation although Root Mean Square Error (RMSE)

has slightly decreased. The results clearly indicate the

superior performance of RT-ELM compared to the

conventional train and test method.

Decide: RBF/ADD hidden nodes,

hidden nodes (L)

initialization data points (N0)

Randomly generate RBF/ADD nodes parameters,
Compute output of the hidden layer

Estimate initial output weight, β(0)

Compute: T0, P0

k = 0

Update model parameters at the end

of the project, Pk+1, β
(k+1)

Compute prediction error, t k+1 - yk+1

Compute partial hidden layer
output, hk+1

Predict effort at the beginning of

the project, yk+1

Increment k

A Real Time Extreme Learning Machine for Software Development Effort Estimation 21

Table 1. Input data, effort, characteristic.

Data set Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis

Desharnais 4834 4188 546 3542 23940 3542 2.04 5.30

Maxwell 8223 10500 583 5190 63694 7209 3.35 13.70

Lopez 77.68 34.81 11 71 195 48 0.77 0.19

ISBSG 4603 7901 31 2185 61891 3614 4.12 20.60

Table 2. Performance for desharnais data with RBF nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 152 2236 -3798 -34 7308 2372 1.0 4.3 0.70 2223

Testing, β fixed 1040 3666 -4802 -61 9533 3494 1.0 3.6 0.50 3705

Testing, β varying 774 2519 -2272 75 7196 3528 1.1 3.5 0.74 2563

Table 3. Performance for desharnais data with ADD nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 486 2123 -3464 82.6 7308 2304 1.0 4.3 0.77 2161

Testing, β fixed 769 2811 -1786 -139 8676 2447 1.6 4.9 0.72 2833

Testing, β varying 557 2219 -1645 -112 7204 1962 1.8 5.8 0.87 2223

Table 4. Performance for maxwell data with RBF nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training -83 5194 -1047 -553 20689 3636 1.49 8.09 0.72 5129

Testing, β fixed -1355 9046 -32820 -559 8995 3717 -3.20 14.01 0.64 8941

Testing, β

varying
-83 3687 -7286 -823 8202 3694 0.18 3.29 0.65 3603

Table 5. Performance for maxwell data with ADD nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 1145 6865 -14354 -214 21773 6408 0.96 5.11 0.50 6875

Testing, β fixed 4427 2293 -7868 214 10518 7042 4.10 18.61 0.19 22835

Testing, β varying 1353 8664 -7468 -1.76 35214 6465 2.80 11.80 0.34 8572

Table 6. Performance for lopez data with RBF nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 1.42 23.78 -44.31 -0.58 72.92 30.61 0.50 2.82 0.71 23.75

Testing, β fixed -12.80 32.68 -85.48 -8.58 47.92 42.34 -0.21 2.29 0.29 34.87

Testing, β varying -8.94 29.46 -82.21 -4.77 49.42 49.47 -0.26 2.11 0.26 30.58

Table 7. Performance for lopez data with ADD nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 0.83 23.80 -45.31 -1.77 70.55 29.79 0.49 2.80 0.71 23.74

Testing, β fixed -13.40 31.65 -88.85 -10.28 45.94 48.00 -0.27 2.21 0.28 34.15

Testing, β varying -9.53 28.94 -83.66 -5.43 47.99 41.12 -0.21 2.34 0.31 30.27

Table 8. Performance for ISBSG data with RBF nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 389 4279 -10382 -424 37354 3228 3.12 22.75 0.52 4291

Testing, β fixed 454 7268 -16830 -579 53926 3644 3.76 24.54 0.46 7263

Testing, β varying 397 6983 -18147 569 53751 3055 3.70 25.48 0.48 6974

Table 9. Performance for ISBSG data with ADD nodes.

Data Mean St. Dev. Minimum Median Maximum IQR Skewness Kurtosis Correlation RMSE

Training 363 4373 -10555 -362 44342 3137 3.95 35.31 0.52 4381

Testing, β fixed -163 9911 -10375 -717 40332 3440 -5.43 69.61 0.46 9885

Testing, β

varying
151 5625 -18247 -874 35581 2699 2.69 16.01 0.54 5611

7. Conclusions

In any software industry, projects are done either

sequentially or in parallel. Predicting of effort at the

beginning of the project and updating model

parameters at the end of the project is natural which

can be achieved by using RT-ELM where the output

weights are updated for each project. It can be

concluded from all the eight cases studied here, RT-

ELM offers better accuracy than fixing parameters and

predicting effort. It is expected that this methodology

will play a major role in future.

References

[1] Boehm B., Abts C., and Chulani S., “Software

Development Cost Estimation Approaches: A

Survey,” Annals of Software Engineering, vol.

10, no. 1-4, pp. 177-205, 2000.

[2] Dave V. and Dutta K., “Neural Network Based

Models for Software Effort Estimation: A

Review,” Artificial Intelligence Review, vol. 2,

22 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

no. 2, pp. 295-307, 2012.

[3] Dejaeger K., Verbeke W., Martens D., and

Baesens B., “Data Mining Techniques for

Software Effort Estimation: A Comparative

Study,” IEEE Transactions on Software

Engineering, vol. 38, no. 2, pp. 375-397, 2012.

[4] Huang G., Wang D., and Lan Y., “Extreme

Learning Machines: A Survey,” International

Journal, Machine Learning and Cybernetics, vol.

2, no. 2, pp. 107-122, 2011.

[5] Huang G., Zhou H., Ding X., and Zhang R.,

“Extreme Learning Machine for Regression and

Multi-Class Classification,” IEEE Transactions

on Systems, Man, and Cybernetics-Part b:

Cybernetics, vol. 42, no. 2, pp. 513-529, 2012.

[6] Huang G., Zhu Q., and Siew C., “Extreme

Learning Machine: Theory and Applications,”

Neurocomputing, vol. 70, no. 1-3, pp. 489-501,

2006.

[7] Liang N., Huang G., Saratchandran P., and

Sundararajan N., “A Fast and Accurate Online

Sequential Learning Algorithm for Feed Forward

Networks,” IEEE Transactions on Software

Engineering, vol. 17, no. 6, pp. 141-1423, 2006.

[8] Lopez-Martin C., “A Fuzzy Logic Model for

predicting the Development Effort of Short Scale

Programs Based Upon Two Independent

Variables,” Applied Soft Computing, vol. 11, no.

1, pp. 724-732, 2011.

[9] Mohammed Y., Analogy Based Software Project

Effort Estimation, Ph.D. Thesis, University of

Bradford, 2010.

[10] Nagpall G., Uddin M., and Kaur A., “Grey

Relational Effort Analysis Technique Using

Regression Methods for Software Estimation,”

The International Arab Journal of Information

Technology, vol. 11, no. 5, pp. 437-446, 2013.

[11] Olatunji S., Rasheed Z., Sattar K., Al-Mana A.,

Alshayeb M., and El-Sebakhy E., “Extreme

Learning Machine as Maintainability Prediction

Model for Object-Oriented Software Systems,”

Journal of Computing, vol. 2, no. 8, pp. 49-56,

2010.

[12] PROMISEhttp://promise.site.uottawa.ca/SERepo

sitory/datasets/desharnais.arff, Last Visited,

2012.

[13] PROMISEhttps://code.google.com/p/promisedata

/source/browse/trunk/effort/maxwell/maxwell.arf

f, Last Visited, 2012.

[14] Wen J., Li S., Lin Z., Hu Y., and Huang C.,

“Systematic Literature Review of Machine

Learning Based Software Development Effort

Estimation Models,” Information and Software

Technology, vol. 54, no. 1, pp. 41-59, 2012.

Kanakasabhapathi Pillai received

B.E. in Electrical Engineering in

1971 from Madurai University,

Madurai, Tamilnadu, India. He

obtained M.Tech. from IIT Madras,

Chennai, Tamilnadu, India, in 1973.

After his masters, he joined Indian

Space Research Organization and worked for 22 years.

Then he joined NeST, Trivandrum, India as President

and worked for eight years. Afterwards, he was Vice-

President at HCL Technologies for six years. He was a

Black Belt from American Society for quality and

Master Black Belt from Indian Statistical Institute.

Currently, he is working as Professor in the

Department of Electrical and Electronics Engineering

at K N S K College of Engineering, Nagercoil, India.

He is also perusing his Ph.D. in Computer Science and

Engineering. He has published more than 30 papers in

peer reviewed journals and conferences. He is a senior

member of IEEE and senior member of ACM. He is

also a life member of Computer Society of India. He is

Fellow of Institution of Engineers, India. His interests

include soft computing and software engineering,

Muthayyan Jeyakumar received

his Post Graduation Degree in

Master of Computer Applications

from Bharathidasan University,

Trichirappalli, Tamilnadu, India in

1993. He fetched his M.Tech degree

in Computer Science and

Engineering from Manonmaniam Sundarnar

University, Tirunelveli, Tamilnadu, India in 2005. He

completed his Ph.D degree in Computer Applications

from Dr. M.G.R Educational and Research Institute

University, Chennai, Tamilnadu, India in 2010. He is

at present working as Professor in the Department of

Computer Applications and Additional Controller of

Examinations, Noorul Islam Centre for Higher

Education, Kumaracoil, Tamilnadu, India and he has

twenty years of teaching experience in this reputed

institution. He has published Thirty Six research papers

in International and National Journals. He has also

presented more than twenty research papers in

International and National Conferences conducted by

esteemed organizations. His research interests are

Mobile Computing, Software Engineering

and Network Security.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Karel%20Dejaeger
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Wouter%20Verbeke
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=David%20Martens
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Bart%20Baesens
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

