
98 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Assessing Impact of Class Change by Mining Class

Associations

Anshu Parashar and Jitender Chhabra

Department of Computer Engineering, National Institute of Technology, India

Abstract: Data mining plays vital role in data analysis and also encompasses immense potential of mining software

engineering data to manage design and maintenance issues. Change impact assessment is one of the crucial issues in software

maintenance. In Object Oriented (OO) software system, classes are the core components and changes to the classes are

always inevitable. So, OO software system must support the expected changes. In this paper, to assess impact of change in the

class, we have proposed changeability measures by mining associations among the classes. These measures estimate a)

change propagation by identifying its ripple effect; b) change impact set of the classes; c) changeability rank of the classes and

d) class change cost. Further, we have performed the empirically study and evaluation to analysis our results. Our results

indicate that by mining associations among the classes, the development team can effectively estimate the probable impact of

the class change. These measures can be very helpful to perform changes to the classes while maintaining the software system.

Keywords: Mining software engineering data, object oriented system development, change propagation, change impact.

Received September 7, 2015; accepted February 21, 2016

1. Introduction

Designing a changeable software system allow

developers to effectively develop and maintain it. As

we know that, a class is a core component of an object

oriented software system and the whole application

revolves around classes and packages. Class mostly

works in association where it participates with other

classes in order to achieve a nearly similar goal or to

implement the common functionality. Due to this

collaborative nature of classes they require proper

attention while changing them. Change Impact

Assessment (CIA) is a very crucial task during the

maintenance. A software system is said to be more

maintainable if its components (e.g., classes) can be

changed or modified easily without much efforts [8,

16] Research into Change Impact Assessment

(changeability assessment) consists of changeability

predictors based by measuring and predicting

association (coupling) among the software artifacts

(i.e., classes, packages) [28]. Jabangwe et al. [19]

extensively investigated the link between coupling

measures and external quality attributes. In their

empirical study, they also mapped changeability and its

proxies (change impact, change-proneness) to

maintainability. Measurement and prediction of

association (coupling) can be carrying out based on

structural or design analysis of software system [22,

28, 30]. Two classes can be considered as change-

coupled if they are structurally (design) coupled. The

software engineering community has recognized that

the excessive change-coupling among classes can lead

to serious problems during development as well as

maintenance. Fowler described excessive change-

coupling as “when every time you make a kind of

change, you have to make a lot of little changes all

over the place, they are hard to find, and it's easy to

miss an important change” [15]. From the software

evolution perspective, classes that are more design

coupled will have more chances to be changed

together. There may be some classes that are changed

together but they may not be design coupled. This may

be due to the poor design. If a change is made to a

class Ci, then by exploring the coupling behavior of

classes it can be measured easily that how far this

change can propagate its impact. Classes that are

coupled with Ci i.e., import its functionality, have

ample chance to be candidates that can be affected due

to change in Ci.

Mining software engineering data should be

presumed as effective instrument for

developers/maintainers and existence of coupling at

class level should be analyzed with the help of the data

mining to measure the software quality [4, 25, 26, 32].

Especially, association mining can be very useful to

identify the highly associated (interdependent) classes

of a software system by mining information about the

dependencies existing among them. If a class Ci is

being used by other classes then it is probably obvious

that a change in Ci can be propagated to its associated

(dependent) classes. So, during the software

development/maintenance, class change impact

assessment by mining association among the classes

can be a vital aid for development/maintenance team.

Hence to address this need, in this paper, associations

among the core components i.e., classes have been

mined and their behavior of coupling are explored to

assess their changeability (e.g., impact of class

Assessing Impact of Class Change by Mining Class Associations 99

changes) for the future. In order to assess impact of

changes in the classes, we have defined some

changeability measures on the basis of associations

(interdependency) between them. We have mined all

possible associations among classes (direct as well as

indirect). The reason behind this is that we want to

know, how far change in the class can propagate. In

our work, we have targeted to mine class coupling data

of object oriented software system. In the context of

this paper, changeability or change impact of a class

has been considered as a function of the propagation

(ripple effect) of the change on other classes.

The primary contributions of this paper are:

1. We have estimated the change propagation of a

class Ci by identifying its ripple effect. For this, a

metric named as Change Propagation Index of a

Class-ChPI(Ci) has been defined. ChPI(Ci) has been

computed by mining associations among classes.

2. We have ranked the classes as per their

changeability in terms of percentage of classes that

can be affected due to change in a class Ci. A metric

named as Class Changeability Rank- CChR(Ci) has

been defined.

3. In order to predict impact of the class change, we

have defined a metric named as Change Impact

class set of a class Ci- ChImpactSet(Ci).

4. Further, the Change Cost of a Class Ci-

Costchange(Ci) has been computed. For this, weighted

coupling between each pair of classes WDC(Ci,Cj)

are utilized to quantify the change cost as a function

of extent of association (proximity) a of class Ci

with rest of classes which import its functionality.

The proposed measures mentioned above will be very

helpful and provide assistance to the

developer/maintainer while accommodating the

change. Maintainer will know;

1. Quantitatively how far a change to a class can be

propagated.

2. Probable classes that can be more affected due to

the class change.

3. Change cost of the class and d) Changeability rank

of the classes of software system.

The rest of the paper is organized as follows. The

section 2 discusses the related literature. Section 3

describes extraction of class associations and also

defined proposed changeability measures. Section 4

describes the empirical results and validation section 5

concludes the paper and presents scope of the future

work.

2. Related Work

The efforts for maintaining the software system

contribute much in the overall efforts of the software

development. Software maintainability can be

estimated by knowing quality attributes e.g.,

changeability. In the Object Oriented (OO) context,

various metrics had been proposed and evaluated [5, 7,

9, 12, 17, 18, 20] and almost all these had been

concluded the strong relationship between design

metrics and maintenance efforts. Much research has

been carried out to evaluate the influence of size of

change component, their structural properties on

change management [6, 10, 29]. Association

(coupling) between classes reflects valuable quality

information about the design of software and enables

the software designer to plan various important issues

of the software engineering like reusability,

maintainability, change propagation, fault prediction

etc., [17]. Some empirical studies have demonstrated

that object-oriented coupling metrics are correlated

with various aspects of maintainability [10, 11, 17].

Benestad et al. [7] tried to identify cost drivers of

software evolution. Briand et al. [11] proposed UML

model-based impact analysis. Further, Vanya et al

investigated co-evolving entities and discuss how

interactive visualizations can support the process of

analyzing structural issues [30].

Estimation of software quality using data mining

techniques helps software managers to monitor and

control potential quality issues over the time [3, 27,

33]. Fayyad et al. [14] described it as ”Knowledge

Discovery in Databases (KDD) is the non-trivial

process of identifying valid, novel, potentially useful,

and ultimately understandable patterns in data”. Using

mining, lot of research has also been carried out in the

fields of system evolution, comprehension and

remodularization [24, 26, 32]. Frequent item sets and

association rule mining introduced by Agrawal et al.

can play essential role for examine data sets. They

have introduced algorithm named Apriori, described

the concepts of Association Rule, Support and

Confidence [1, 2]. Nowadays data mining algorithms

are integrated with the software development models

to assist in different software engineering processes

like testing, debugging, maintaining and also to

improve productivity along with quality [19, 22, 28,

31]. Several researcher studied changeability as CIA

[22, 28] to determine impact of proposed changes on

components of software systems. Sun et al. [28] used

formal concept analysis for assessing change impact.

From literature, we have observed that, mining

software measurement data can be handy to better

understand software development and improvise

various software engineering tasks. So, in our work,

we have targeted to mine class coupling data of object

oriented software system.

3. Proposed Measures for Change Impact

Assessment

The aim of this paper is assess the impact of changes in

the classes by mining association among them. The

primary objective of our approach is to estimate the

100 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

changeability of the class in terms of its change impact

assessment. Here, we have proposed measures to

predict

1. Change propagation of the class.

2. Changeability of the class.

3. Change cost for the class.

4. Change impact set of the class.

In this section, firstly we have described the process of

extracting class associations (couplings) data,

secondly, we have described two suitable

representation of this data to further mine it for the

computation of proposed measures; and finally, we

have defined and describe the proposed change impact

assessment measures.

3.1. Data Extraction

As a prerequisite for our objectives, weighted direct

associations (couplings) between the classes have been

computed. It tells how much a class depends on other

classes. After this, it is suitably represented as

weighted coupling matrix (Direct) MD, and then MD is

repeatedly multiplied to find out all possible

associations direct as well as indirect among the

classes in the form of MD+I. MD+I is further used to

compute the proposed measures. In next sub-sections

we have described it in detail.

3.1.1. Collection of Class Coupling Data

In view of predicting change impact, we decided to use

weighted coupling between classes as proposed by Gui

and Scott [17]. Here, java based software systems are

our underlying systems for our analysis. Any Java

based system can be regarded as a directed graph in

which the vertices correspond to its classes and the

edges correspond to direct associations between them.

Consider an example package (i.e., Package) PKG

comprising of set of N classes (N=8) and its

Class_Set(PKG)={C0, C2, . . , C7} represented as a

graph (Figure 1). Here, each vertex contain name of

the class, its members count (|Mi|) and the number of

all members of other classes invoked by Ci is |Xi|. It

indicates the extent to which class Ci depends upon

other classes. An edge between class Ci and Cj

represents that class Ci uses some members of class Cj

and the count of these members is given by |Xi,j| which

is the number of members of class Cj invoked by class

Ci and this |Xi,j| is used as the weight of the edge

between Ci and Cj. Further, the weighted direct

coupling WCD(Ci,Cj) [17] between class Ci and Cj is

computed as per the formula 1 and mentioned in

Figure 2.

Figure 1. Class coupling graph of an example package PKG.

Figure 2. Direct coupling graph with WCD(Ci,Cj) weights of

package PKG.

,

|

| |

(,)
| | |

i j

i j
i i

X

WCD C C
X M

After computing the direct coupling weights, this data

should be represented in some suitable intermediate

representation. For this, we choose to represent class

association data in following two forms, which are

suitable for our measures.

3.1.2. Weighted Coupling Matrix Representation

Here, each class is represented as weighted coupling

vector C_V(Ci)=[xi1, xi2, . ..,xiN], i = 1,. . .,N, where N

is the same as the number of classes in the package.

Value of each weight xij is the actual coupling measure

between each pair of classes Ci & Cj. In this way of

representation, coupling between class pairs is

calculated based on the extent of coupling between

classes on the scale of 0 to 1. If two classes are highly

coupled, then their coupling is represented by a value

close to 1. After having weighted coupling vectors of

all N classes, it is further represented in the form of as

matrix MD+I (all possible association direct as well

indirect). To calculate all possible associations

between the classes, we use matrix multiplication. We

multiply the weighted coupling matrix (M0) with itself

which gives (M1), to find all the indirect couplings of

level one (means the indirect couplings through a

single class as Ci → Cj → Ck). Similarly, (M1) is

multiplied with (M0) to find all the indirect couplings

of level two (means the indirect couplings through two

 (1)

Assessing Impact of Class Change by Mining Class Associations 101

classes as Ci → Cj → Ck → Cm). The procedure is

repeated N (total no of classes of package) times to

calculate the indirect dependencies of all possible

levels. Then the final dependence matrix MD+I (Table

1) containing all possible dependencies (direct as well

as indirect) is computed by formula 2:

MD+I=
0

N

k

 Mk

M 0 is the identity matrix, where for each i, (M0)i,i=1, it

represents the dependency of each class on itself. The

purpose of computing the indirect coupling also is that

along with direct coupling, indirect couplings also

affect the change propagation, change cost as well as

the frequently coupled class set.

Table 1. Weighted coupling matrix MD+I of package PKG.

Classes C0 C1 C2 C3 C4 C5 C6 C7

C0 0.131 0.043 0.020 0.031 0.006 0.015 0 0

C1 0.018 0.131 0.002 0.004 0.018 0.002 0 0

C2 0 0 0.125 0.062 0 0.031 0 0

C3 0 0 0 0.125 0 0.062 0 0

C4 0 0 0 0 0.125 0 0 0

C5 0 0 0 0 0 0.125 0 0

C6 0 0 0 0 0 0 0.125 0.075

C7 0 0 0 0 0 0 0 0.125

3.1.3. Export Coupling Set Representation

The collected class association (coupling) data for each

class can be treated as class coupling transaction. The

idea of this representation is similar to the market-

basket analysis approach used in data mining. The

details of this can be found from Agrawal et al. [2].

Here, class name Ci is assumed as class Coupling

Transaction id- C_Tid(Ci) and the set of classes depends

on Ci are recorded as its Export Coupling Transaction

Set- EC_ TSet(Ci). For example package i.e., PKG, all

possible coupling transactions among classes are

represented in Figure 3. If an edge is coming from

class Cj to Ci, it means Ci exports some of its

functionality from Cj. Irrespective of coupling weight;

we are considering whether two classes are coupled or

not i.e., binary weights. Similarly, classes from where

the edges are coming to Ci are included in its

EC_TSet(Ci). EC_TSet(C0)={C0,C1} means class C0 is

only used by class C1 and this set also include the class

C0 itself. Table 2 shows coupling transaction of all

classes of example package PKG.

Figure 3. Weighted coupling graph of all possible coupling of

package PKG.

Table 2. Coupling transactions for classes of package PKG.

C_TID EC_TSet(Ci)

C0 C0 , C1

C1 C0 , C1

C2 C0 ,C1,C2

C3 C0 , C1 , C2 , C3

C4 C0 , C1 , C4

C5 C0 , C1 , C2 , C3 , C5

C6 C6

C7 C6 , C7

3.1.4. Utilization of Above Representations

The appropriate representation of collected class

associations is the prerequisite for the computation of

our proposed measures. The first representation,

weighted coupling matrix provides actual coupling

weights. This information can also be represented

through the binary coupling weights but we are using

actual coupling weights instead of binary weights. The

reason behind this is, the binary weighted only gives

whether coupling exists or not and it does not reflect

the extent of coupling between classes. The weights

estimate the coupling quantitatively. In our work, we

are using this scheme to compute the change cost for

the classes. The inspiration behind using this

representation is that we can have the change cost

based on extent of coupling between classes. In the

second representation i.e., export coupling set, export

coupling of each class is recorded as transactions i.e.

EC_ TSet(Ci) (as purchase transaction in market basket

analysis). So, we can have N (no’s of classes in

package P) coupling transactions

{EC_TSet(Ci)….EC_TSet(CN)}. This representation is

well proven and widely used to mine the associations

between the data items though algorithms like Apriori,

Frequent Pattern (FP), FP tree [1, 2]. We choose this to

further apply Apriori algorithm to produce frequent

coupling set as well as for the computation of change

propagation index. Both representation are conveying

the similar information but in different ways and for

different utilizations as described above. Example

 (2)

102 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

(7)

package PKG has been used to describe the proposed

changeability measures and to demonstrate their

computation. The next section describe the measures

i.e., metrics and their computation.

3.2. Metrics Definition and Computation

a) Class Change Propagation Index-CChPI(Ci):

CChPI(Ci) quantifies how far the change made

to class Ci can be propagated to rest of the

classes of the package P. CChPI(Ci) will be

measured by mining association of class Ci with

rest of the classes. It measures the degree of

propagation of change that is made to class Ci

by exploring, how the other classes of package

P are associated with Ci i.e., EC_ TSet(Ci). The

reason behind this is, if a class Ci is being used

by the set of classes {Cx, Cy,Cz}, then it is

obvious that any changes made to class Ci can

produce ripple effect to these classes. So,

Change Propagation Index of a Class Ci-

CChPI(Ci) is defined as (Equation (3)):

N
ChPI(C)= Prox(C ,C)i i j

j=1,i j

Where, N is the number of classes in a package P

and Prox(Ci,Cj) measures the association of a class

Ci with Cj in term of how often the class Cj is

coupled with class Ci as described in formula 4. It

indicates the extent of proximity of class Cj with

Ci with respect to the all classes in the package P.

The Prox(Ci,Cj) is to be calculated in the same

way as the association evaluation between two

items i.e., confidence(X→Y) [1, 2].

|C C |

i j
Prox C ,C =

i j |C |
i

Here Ci∩Cj is measured through class coupling

transactions (Table 2). It gives the number of

containing both Ci and Cj. As per the coupling

behavior of the classes, it tells how many times Ci and

Cj are used together. |Ci| gives count of transactions in

which Ci exists. It tells the number of classes of

package P using Ci. Further, propagation of change

then also be computed as the percentage of classes that

can be affected due to change in Ci –i.e., %CChPI(Ci)

as per Equation 5. In other words it gives percentage of

classes in which change can produce its ripple effect.

%CChPI(Ci)= (CChPI(Ci)/N)*100

For a class, it is always desirable to have low value of

change propagation index because it is always difficult

to accommodate the change in the classes with high

change propagation indices. For example package (i.e.,

PKG), %CChPI(Ci) of each class of the PKG have

been computed as shown in Table 3 (according to the

coupling transactions tabulated in Table 2).

b) Class Changeability Rank- CChR(Ci): It can be

measured by exploring the CChPI(Ci) of a class in

terms of %of classes that can be affected due to

change in Ci. Here changeability of classes of

package P is categorized as Good, Moderate and

Critical on the basis of following rules as (Equation

(6)):

if(%CChPI(Ci)≤ θ1) then CChR(Ci)=Good

elseif(% CChPI(Ci)≤ θ2) then CChR(Ci)=Moderate

elseif(%CChPI(Ci)> θ2) then CChR(Ci)= Critical

The value of thresholds θ1 and θ2 are to be decided by

the development team on the basis of how much

association (coupling) among the classes are

permissible to rank their changeability as Good,

Moderate and Critical.

Table 3. CChPI(Ci) %CChPI(Ci) and CChR(Ci), for classes of
package PKG.

Class CChPI(Ci)
%of class can be affected due to

change in Ci (%CChPI(Ci))
CChR(Ci)

C0 2.15 26.9% Moderate

C1 2.15 26.9% Moderate

C2 2.99 37.3% Moderate

C3 3.5 43.8% Critical

C4 2 25% Moderate

C5 5 62.5% Critical

C6 0.5 6.3% Good

C7 1 12.5% Good

The classes having CChR(Ci)=Good are said to be

easily changeable/ maintainable or ready to be

changed. The classes having CChR(Ci)=Moderate are

supposed to be difficult to change /maintain or are not

easily changeable as compare to the classes having

changeability rank as Good. The classes having

CChR(Ci)=Critical, It means these classes are highly

coupled and more difficult to change. These classes

will require more attention whenever a change request

comes for these classes because they are adversely

changeable. For example package (i.e., PKG),

CChR(Ci) of each class of the PKG have been

computed as shown in Table 3 (assuming θ1=20 and

θ2=40).

c) Change Impact Set for a class- ChImpactSet(Ci):

Whenever a change to a class occurs, it becomes

important to identify the set of classes which will be

impacted due to this change. Maintainer has to

ensure the correctness of the application after the

change is accommodated. To ensure this, it is

required to properly address or reflect this change to

the set of change impact classes. Once a given class

Ci is subject to change, ChImpactSet(Ci) indicates

which other classes in the package P will be

affected by this change. Therefore, one can analyze

how exactly the interdependency among the classes

of a package affects its changeability. So

ChImpactSet(Ci) can be measured as:

ChImpactSet(Ci)= {Cj | Prox(Ci,Cj)≥ Proxth , where j≠ i}

It means, change impact set of class Ci includes set of

(3)

(4)

(5)

(6)

Assessing Impact of Class Change by Mining Class Associations 103

all classes (except class Ci) whose proximity

(association) with Ci is greater than or equal to a

specified proximity threshold Proxth. Here, Proxth

indicates the minimum permissible proximity

(association) between the classes and it is to be decided

by project team. Table 4 shows the ChImpactSet(Ci) of

all the classes of package PKG, considering proximity

threshold Proxth =0.40.

Table 4. Change impact set-ChImpactSet(Ci) of classes of package.
PKG.

Class ChImpactSet(Ci)

C0 C1 , C2

C1 C0 , C2

C2 C0 , C1 , C3

C3 C0 , C1 , C2 , C5

C4 C0 , C1

C5 C0 , C1 , C2 , C3 , C4

C6 C7

C7 C6

d) Change Cost of class-CostChange(Ci) The motive

behind capturing the associations among the classes

is to know the degree to which a change in any class

causes a change to other classes in the package,

either directly or indirectly. Our idea of computing

the change cost is somewhat similar to [23]. The

two significant differences are the level of

computation and weighting criteria of the coupling.

So, firstly if we talk about the level of computation,

they have computed the change cost at system level

as a function of the coupling among packages.

Instead of this, we are computing the change cost at

package level as a function of the coupling among

classes. Secondly, they consider direct or indirect

coupling as binary (1/0) instead of this we choose

weighted coupling between classes. So, the

weighted coupling matrix MD+I derived through the

procedure mentioned in section 3.1 is considered to

compute the change cost of each class CostChange(Ci)

of package. So, the change cost of class Ci–

CostChange(Ci) is calculated as (Equation (7)) average

of sum of coupling weights in a column i of MD+I. It

gives the weighted fan in value of class Ci. For a

class Ci, it is always desirable to have low

CostChange(Ci.). A class with high CostChange(Ci)

indicates extent of dependency of other classes of

package P on Ci is high.

Change

N
Cost (C)= M [j,i]i D+Ij=1

For example package PKG, CostChange(Ci) for all

classes of PKG is shown below in Table 5.

Table 5. Change cost CostChange(Ci)of classes of package PKG.

Class CostChange(Ci)

C0 0.15

C1 0.17

C2 0.15

C3 0.22

C4 0.15

C5 0.24

C6 0.13

C7 0.20

In next section we have demonstrated the empirical

evaluation of proposed measures.

4. Empirical Results and Evaluation

To study the results of proposed measures, we have

applied them on the classes of Java Development Kit

(JDK) packages AWT, IO and LANG. To properly

evaluate our proposed metrics we chose classes that

have all levels of coupling like highly coupled, less

coupled and not coupled. The packages and their

considered classes are mentioned in Table 6. It

describes the package number, name and their set of

classes i.e., Cj,i , where each Cj,i represents the ith class

of the package j. Changeability measures are computed

and tabulated in Tables 7, 8, 9, and 10.

Table 6. Packages (AWT, LANG and IO) and their class set.

Package

No.

Package

Name
Classes in Packages

1 AWT

C1,0-alphacomposite, C1,1- awteventmulticaster, C1,2- cardlayout,

C1,3-checkbox, C1,4- ckeckboxmenuitem, C1,5-container, C1,6-

panel, C1,7-component, C1,8-menuitem, C1,9- menucomponent

2 LANG
C2,0-system, C2,1-string, C2,2-math, C2,3-object, C2,4-number,

C2,5-package

3 IO

C3,0-bufferedinputstream,C3,1-bufferreader,C3,2-bytearray

inputstream, C3,3-chararrayreader, C3,4-objectinputstream, C3,5-

bufferedoutputstream,C3,6-filterinputstream,C3,7-

filteroutputstream , C3,8-reader , C3,9- inputstream

Here, we briefly mention the findings derived from

these empirical study and results. For package AWT,

results (Table 7) show that CChPI of class component

is the highest among all classes of AWT.

It indicates that class component is extensively used

by other classes as compared to the rest of classes of

AWT. Any change in class component should be

properly addressed and should be reflected to all the

classes of its change impact class set (Table 8) i.e.,

cardlayout, ckeckboxmenuitem, container, panel.

CChPI of classes alphacomposite, awtevent-

multicaster are nil. It shows changes in these classes

will not affect any other classes of AWT.

Table 7. CChPI(Ci) %CChPI(Ci) and CChR(Ci), for classes of
packages AWT, LANG and IO.

Package-AWT Package-LANG Package-IO

C
la

ss

C
C

h
P

I(
C

j ,
i)

%
C

C
h

P
(C

j,
i)

C
C

h
R

(C
i)

C
la

ss

C
C

h
P

I(
C

j ,
i)

%
C

C
h

P
(C

j,
i)

C
C

h
R

(C
i)

C
la

ss

C
C

h
P

I(
C

j,
i)

%
C

c
h

P
(C

j,
i)

C
C

h
R

(C
i)

C1,0 0 0 Good C2,0 2.5 41.6 Critical C3,0 0 0 Good

C1,1 0 0 Good C2,1 2.5 41.6 Critical C3,1 1 10 Good

C1,2 1.65 16.5 Good C2,2 2.5 41.6 Critical C3,2 1 10 Good

C1,3 1 10 Good C2,3 4 66 Critical C3,3 1 10 Good

C1,4 1.4 14 Good C2,4 2.5 41.6 Critical C3,4 1 10 Good

C1,5 2.5 25 Good C2,5 2.5 41.6 Critical C3,5 0.5 5 Good

C1,6 2.5 25 Good C3,6 0 0 Good

C1,7 4 40 Moderate C3,7 1 10 Good

C1,8 1 10 Good C3,8 2 20 Good

C1,9 1 10 Good C3,9 2 20 Good

(8)

104 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Table 8. Change Impact set of classes of packages AWT.LANG and

IO(Proxth= 0.60).

Package-AWT Package-LANG Package-IO

Proximity Threshold - Proxth=.60

Class ChImpact(Cj,i) Class ChImpact(Cj,i) Class ChImpact(Cj,i)

C1,0 {C1,0} C2,0 {C2,0 } C3,0 {C3,0}

C1,1 {C1,1} C2,1 {C2,1} C3,1 { C3,1}

C1,2 {C1,2;C1,5} C2,2 { C2,2} C3,2 { C3,2}

C1,3 {C1,3;C1,4} C2,3 {C2,0;C2,1;C2,2;C2,3;
C2,4; C2,5}

C3,3 {C3,0}

C1,4 {C1,4} C2,4 { C2,4} C3,4 {C3,4}

C1,5 {C1,2; C1,5} C2,5 {C2,5} C3,5 { C3,5}

C1,6 {C1,4; C1,6 } C3,6 {C3,6}

C1,7 {C1,2; C1,4;

C1,5;C1,6; C1,7}
 C3,7 {C3,7}

C1,8 {C1,8} C3,8
{C3,1; C3,3;C3,8}

C1,9 {C1,8; C1,9} C3,9
{C3,2;C3,4;C3,9}

ChImpactSet(Ci) of these classes are also null and thus

the same observation is true here as well. The classes

of package LANG seem to be adversely coupled (Table

7).

Table 9. Change cost for classes of packages AWT, LANG and IO.

Package-AWT Package-LANG Package-IO

Class CostChange(Cj,i) Class CostChange(Cj,i) Class CostChange(Cj,i)

C1,0 0.1 C2,0 0.17 C3,0 0.10

C1,1 0.1 C2,1 0.17 C3,1 0.10

C1,2 0.1 C2,2 0.17 C3,2 0.10

C1,3 0.11 C2,3 0.41 C3,3 0.10

C1,4 0.1 C2,4 0.17 C3,4 0.10

C1,5 0.17 C2,5 0.17 C3,5 0.10

C1,6 0.1 C3,6 0.10

C1,7 0.39 C3,7 0.11

C1,8 0.13 C3,8 0.12

C1,9 0.13 C3,9 0.12

Table 10. Precision, Recall and Cosine Similarity for computed

ChImpactSet(Cj,i) (Proxth = 0.60).

Package-AWT Package-LANG Package-IO

Proximity Threshold - Proxth=.60

C
h

Im
p

a
c
t(C

j,i)

P
r
e
c
isio

n
(%

)

R
e
c
a

ll(%
)

C
o

sin
e
-S

im

C
h

Im
p

a
c
t(C

j,i)

P
r
e
c
isio

n
(%

)

R
e
c
a

ll(%
)

C
o

sin
e
-S

im

C
h

Im
p

a
c
t(C

j,i)

P
r
e
c
isio

n
(%

)

R
e
c
a

ll(%
)

C
o

sin
e
-S

im

C1,0 100 100 1 C2,0 100 100 1 C3,0 100 100 1

C1,1 50 100 1 C2,1 100 100 1 C3,1 100 100 1

C1,2 100 100 0.70 C2,2 100 100 1 C3,2 100 100 1

C1,3 100 100 1 C2,3 100 100 1 C3,3 100 100 1

C1,4 100 100 1 C2,4 100 100 1 C3,4 100 100 1

C1,5 100 100 1 C2,5 100 100 1 C3,5 100 100 1

C1,6 50 100 1 C3,6 100 100 1

C1,7 100 100 1 C3,7 100 100 1

C1,8 100 100 0.70 C3,8 100 100 1

C1,9 100 100 1 C3,9 100 100 1

All classes are having high change propagation

index and all come under the critical category of

changeability. The change impact set of all classes

itself suggests the same. As far as IO package is

concerned it appears to be well designed and its classes

are loosely coupled (Table 7). The change propagation

indices of all classes are very low. It means the change

in the classes of IO will produce very less impact on

other classes. Further, Table 9 shows the estimated

change cost of each class as a function of the extent of

the change propagation. It also reflects the same

behavior of changeability of classes. For example, here

we can see that change cost of class component of

package AWT is highest among all the classes of

AWT. The similar observation is also derived from

CChPI of the class component i.e., it is the highest

among all the classes of AWT. Further it can be

observed that the change cost of all classes of package

IO is low. Whenever a change comes for the class

maintainer makes a query or explore ChImpactSet(Ci)

to know what are the most likely set of classes that will

be affected due to change in Ci. The Table 8 shows

ChImapctSet of classes of packages Abstract Window

Toolkit (AWT), (Language) LANG and IO by

assuming Proxth 0.60.

To analyze the correctness of resultant change

impact set ChImapctSet(Ci) computed by our approach,

precision, recall and cosine similarity measures [13,

17] are computed and tabulated in Table 10. These are

widely used in data mining and information retrieval

tasks [21]. In our case, precision gives the fraction of

the predicted change impact classes that are relevant,

while recall gives the fraction of the relevant change

impact classes that are predicted. For all three java

packages, both these measures analyze the predicted

change impact set of classes and actual class change

impact set. For the classes of all three java packages,

here ChImpactSet(Ci) is the predicted class change

impact set for each class computed by the above

proposed measures and actual class change impact set

EC_TSet(Ci) reflects the set of classes that are highly

design coupled with class Ci. The reason behind

assuming EC_Tset(Ci) as actual class change impact

set is, for any change in Ci, classes in EC_TSet(Ci) are

the most likely candidate classes that can be affected.

In order to know the correctness of the predicted

change impact set, a measure of cosine(Cosine)

similarity [13] between predicted ChImpactSet(Ci) and

most likely class change impact i.e., EC_TSet(Ci) is

computed for the three java packages. The comparison

of computed precision, recall measures and cosine

similarity measures is shown in Table 10. It can be

clearly observed that the prediction of ChImpactSet(Ci)

is satisfactory. As far as cosine similarity is concerned,

it measures the similarity between predicted and actual

impact sets on the scale of 0 to 1. The cosine-sim close

to 1 indicates high similarity and 0 indicates very less

similarity between two sets. Our results show that

predicted change impact classes are very close to

actual ones. As was the case with precision and recall,

it indicates that our proposed measures predict nearly

Assessing Impact of Class Change by Mining Class Associations 105

accurate set of classes that can be highly affected due

to change in the class under consideration.

5. Conclusions and Future Scope

Mining software engineering data can assist software

development tasks like maintenance. Measuring class

associations first and then, mining association pattern

among them definitely become a useful aid to the

maintenance team to improve the change progression

of classes. In this paper, we have proposed measures to

assess the impact of class change using association

mining. We have proposed measures for estimating

propagation of change made at class level in terms of

the change propagation index, rank of changeability,

change impact set and the change cost. These measures

can be helpful at the time of development as well as

maintenance, especially during carried out changes in

certain classes. For any change in a class, we also

predict the set of classes that can be affected due to

that change. The proposed measures are defined,

demonstrated through an example package and

evaluated on JDK packages. During empirical study

and evaluation, it has been found that these measures

are useful predictors and also produce results as per

expectations. These measures are very helpful for

developer as well as maintainer to effectively reflect

the changes and also help in minimizing their efforts.

Maintainer can know classes with high change

propagation index and change cost and pay more focus

on these classes as they can increase maintenance

costs. Identification of these classes enables developers

to properly review change to these classes through

proper testing with their dependents. Further, the

classes having high change propagation index and

change cost can also be considered as candidates for

refactoring or restructuring. Moreover, change impact

set for a class also help to localize the changes. In

future, we will aim to devise data mining based

software quality prediction model by mining different

artifacts produced during software development life

cycle. Such model will be useful to improve software

processes and to better understand the software

evolution.

References

[1] Agrawal R. and Srikant R., “Fast Algorithms for

Mining Association Rules,” in Proceedings of the

20th International Conference of Very Large Data

Bases, Santiago, pp. 487-499, 1994.

[2] Agrawal R., Imieliński T., and Swami A.,

“Mining Association Rules Between Sets of

Items in Large Databases,” in Proceedings of the

ACM SIGMOD International Conference on

Management of Data, Washington, pp. 207-216,

1993.

[3] Ammor O., Lachkar A., Slaoui K., and Rais N.,

“Optimal Fuzzy Clustering in Overlapping

Clusters,” The International Arab Journal of

Information Technology, vol. 5, no. 4, pp. 146-

152, 2008.

[4] Antonellis, P., Antoniou D., Kanellopoulos Y.,

Makris C., Theodoridis E., Tjortjis C., and

Tsirakis N., “Clustering for Monitoring Software

Systems Maintainability Evolution,” Electronic

Notes in Theoretical Computer Science, vol. 233,

pp. 43-57, 2009.

[5] Arisholm E., Briand L., and Foyen A., “Dynamic

Coupling Measurement for Object-Oriented

Software,” IEEE Transactions on Software

Engineering, vol. 30, no. 8, pp. 491-506, 2004.

[6] Arisholm E., “Empirical Assessment of the

Impact of Structural Properties on the

Changeability of Object Oriented Software,”

Information and Software Technology, vol. 48,

no. 11, pp. 1046-1055, 2006.

[7] Benestad H., Anda B., and Arisholm E.,

“Understanding Cost Drivers of Software

Evolution: A Quantitative and Qualitative

Investigation of Change Effort in Two Evolving

Software Systems,” Empirical Software

Engineering, vol. 15, no. 2, pp. 166-203, 2010.

[8] Bhatt P., Shroff G., and Mishra A., “Dynamics of

Software Maintenance,” ACM SIGSOFT

Software Engineering Notes, vol. 29, no. 4, pp. 1-

5, 2004.

[9] Briand L. and Wust J., “Empirical Studies of

Quality Models in Object-Oriented Systems,”

Advances in Computers, vol. 56, no. 1, pp. 97-

166, 2002.

[10] Briand L., Daly J., and Wust J., “A Unified

Framework for Coupling Measurement in

Object-Oriented Systems,” IEEE Transactions on

Software Engineering, vol. 25, no. 1, pp. 91-121,

1999.

[11] Briand L., Labiche Y., and Sullivan L., “Impact

Analysis and Change Management of UML

Models,” in Proceedings of International

Conference on Software Maintenance,

Amsterdam, pp. 256-265, 2003.

[12] Chidamber S., Darcy D., and Kemerer C.,

“Managerial Use of Metrics for Object-Oriented

Software,” IEEE Transactions on Software

Engineering, vol. 24, no. 8, pp. 629-639, 1998.

[13] Cosine Similarity, https://en.wikipedia.org/wiki

/Cosine_similarity, Last Visited, 2016.

[14] Fayyad U., Piatetsky-Shapiro G., and Smyth P.,

“From Data Mining to Knowledge Discovery in

Databases,” American Association for Artificial

Intelligence Magazine, vol. 17, no. 3, pp. 37-54,

1996.

[15] Fowler M., Beck K., Brant J., Opdyke W., and
Roberts D., Refactoring: Improving the Design of

Existing Code, Boston: Addison-Wesley, 1999.

106 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

[16] Ghosheh E., Qaddour J., Kuofie M., and Black

S., “A Comparative Analysis of Maintainability

Approaches for Web Applications,” in

Proceedings of the IEEE International

Conference on Computer Systems and

Applications, Dubai, pp. 1155-1158, 2006.

[17] Gui G. and Scott P., “Ranking Reusability of

Software Components Using Coupling Metrics,”

Journal of Systems and Software, vol. 80, no. 9,

pp. 1450-1459, 2007.

[18] Gupta V. and Chhabra J., “Package Coupling

Measurement in Object-Oriented Software,”

Journal of Computer Science and

Technology, vol. 24, no. 2, pp. 273-283, 2009.

[19] Jabangwe R., Borstler J., Smite D., and Wohlin

C., “Empirical Evidence on the Link between

Object-Oriented Measures and External Quality

Attributes: A Systematic Literature Review,”

Empirical Software Engineering, vol. 20, no. 3,

pp. 640-693, 2015.

[20] Li W. and Henry S., “Object-Oriented Metrics

that Predict Maintainability,” Journal of Systems

and Software, vol. 23, no. 2, pp. 111-122, 1993.

[21] Luo C., Li Y., and Chung S., “Text Document

Clustering Based on Neighbors,” Data and

Knowledge Engineering, vol. 68, no. 11, pp.

1271-1288, 2009.

[22] Li B., Sun X., Leung H., and Zhang S., “A

Survey of Code-Based Change Impact Analysis

Techniques,” Software Testing, Verification and

Reliability, vol. 23, no. 8, pp. 613-646, 2013.

[23] MacCormack A., Rusnak J., and Baldwin C.,

“Exploring the Structure of Complex Software

Designs: an Empirical Study of Open Source and

Proprietary Code,” Journal of Management

Science, vol. 52, no. 7, pp. 1015-1030, 2006.

[24] Parashar A. and Chhabra J., “An Approach for

Clustering Class Coupling Metrics To Mine

Object Oriented Software Components,” The

International Arab Journal of Information

Technology, vol. 13, no. 3, pp. 239-248, 2016.

[25] Poshyvanyk D., Marcus A., Ferenc R., and

Gyimothy T., “Using Information Retrieval

Based Coupling Measures for Impact Analysis,”

Empirical Software Engineering, vol. 14, no. 1,

pp. 5-32, 2009.

[26] Praditwong K., Harman M., and Yao X.,

“Software Module Clustering as A Multi-

Objective Search Problem,” IEEE Transactions

on Software Engineering, vol. 37, no. 2, pp. 264-

282, 2011.

[27] Romanowski C., Nagi R., and Sudi M., “Data

Mining In an Engineering Design Environment:

or Applications from Graph Matching,”

Computers and Operations Research, vol. 33,

no. 11, pp. 3150-3160, 2006.

[28] Sun X., Leungc H., Li B., and Li B., “Change

Impact Analysis and Changeability Assessment

for A Change Proposal: An Empirical Study,”

The Journal of Systems and Software, vol. 96, pp.

51-60, 2014.

[29] Vanhilst M., Garg P., and Lo C., “Repository

Mining and Six Sigma for Process

Improvement,” in Proceedings of International

Workshop on Mining Software Repositories, St.

Louis, pp. 1-4, 2005.

[30] Vanya A., Premraj R., and Vliet H., “Resolving

Unwanted Couplings through Interactive

Exploration of Co-Evolving Software Entities-an

Experience Report,” Information and Software

Technology, vol. 54, no. 4, pp. 347-359, 2012.

[31] Xie T., Acharya M., Thummalapenta S., and

Taneja K., “Improving Software Reliability and

Productivity via Mining Program Source Code,”

in Proceeding of IEEE International Symposium

on Parallel and Distributed Processing, Miami,

pp. 1-5, 2008.

[32] Zaidman A., Bois B., and Demeyer S., “How

Webmining and Coupling Metrics Improve Early

Program Comprehension,” in Proceedings of the

IEEE International Conference on Program

Comprehension, Athens, pp. 74-78, 2006.

[33] Zhong S., Khoshgoftaa T., and Seliya N.,

“Analyzing Software Measurement Data with

Clustering Techniques,” IEEE Intelligent

Systems, vol. 9, no. 2, pp. 20-27, 2004.

http://www.sciencedirect.com/science/journal/03050548/33/11
http://www.sciencedirect.com/science/journal/03050548/33/11

Assessing Impact of Class Change by Mining Class Associations 107

Anshu Parashar pursuing his Ph.D.

degree from Department of Computer

Engineering, National Institute of

Technology, Kurukshetra, INDIA.

He did B.Techn (2002) and M.Tech.

(2008) in Computer Science and

Engineering. He has published more

than 28 papers in various International, National

Conferences and Journals. He has more than 12 years

of teaching experience. His area of interest includes

software engineering, data mining and object-oriented

systems.

Jitender Chhabra working as

Professor, Department of Computer

Engineering, National Institute of

Technology, Kurukshetra, INDIA.

He did both his B.Tech and M.Tech.

in Computer Engineering from

Regional Engineering College

Kurukshetra (now National Institute of Technology) as

Gold Medalist. He did his PhD in Software Metrics

from Delhi. He has published more than 95 papers in

various International and National Conferences &

Journals including journals of IEEE, ACM, Springer &

Elsevier. He has more than 23 years of teaching &

research experience. He is author of three books from

McGraw Hill including the one Schaum Series

International book titled "Programming with C". He is

Reviewer of IEEE Transactions, Elsevier, Springer,

Wiley & many other Journals. He has worked in

collaboration with multinational IT companies HP and

TCS in the area of Software Engineering. His area of

interest includes software engineering, data mining,

soft computing and object-oriented systems.

