
286 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

A Comparative Analysis of Software Protection

Schemes

Muhammad Khan
1
, Muhammad Akram

1
, and Naveed Riaz

2

1
Shaheed Zulfikar Ali Bhutto Institute of Sciences and Technology, Pakistan

2
College of Computer Science and Information Technology, University of Dammam, Saudi Arabia

Abstract: In the era of software globalization, the need for securing software is much sought to ensure its smooth functioning

for continuous availability of services to the users. Particularly, in cloud computing environment, all the software in the cluster

needs to be secured and shielded against unauthorized accesses. Software crackers are always in the search of flaws in the

software to obtain access to the software functionally by penetrating into the software skeleton. This paper reviews and

critically analyzes various software protection techniques, both software-based and hardware-based, that can help control the

software piracy issues in order to determine their efficacy and specific use in different environments and scenarios. The

software protection techniques explored in this paper include cryptography, software watermarking, secure access scheme,

software aging, guards, obfuscation and multi-block hashing techniques. The paper also discusses the taxonomy of the

software protection techniques and the probable attack models that can be launched against each technique to evade the

protection mechanism.

Keywords: Software tempering, software reversing, cryptography, watermarking, digital rights management.

Received March 21, 2013; accepted March 17; 2014, published online June 26, 2014

1. Introduction

Software protection plays an important role in the fields

of computer science and information technology [26].

In ours Internet age, the use of various types of

software has become an essential part of industry, trade

and commerce, official routine work and even in our

personal daily life activities. The biggest challenge

being faced by the software industry is the handy

duplication and redistribution of software components

and digital documents; hence, the issue of software

security due to potential threats of reverse engineering,

piracy and tampering has become a matter of prime

concern. The piracy rate in some countries has been

anticipated to be as high as ninety two percent.
A number of techniques have been formulated to

protect software from unauthorized use and make it
temper resistant. Due to serious issues of software
piracy, reverse engineering, tempering, exploits and
virus/Trojan attacks, researchers have developed a
number of software protection techniques to augment
the security of the computer systems [26]. Security
related challenges and problems fall into two broader
categories; technical challenges that relate to
availability of technology and infrastructure of
information structure; and social challenges that relate
to the impact of human factor on security of a system
[24]. The ideal software protection mechanism is to
achieve the concept of ‘one machine, one code’ [12].
This mechanism can be turned into reality by
introducing dynamic registration code that takes into
account fingerprint of the hardware e.g., disk serial
number, BIOS information, MAC addresses etc.

Software piracy is the foremost problem for the

software industry as huge financial losses suffered by

the software producers are primarily due to rampant

illegal distribution and unauthorized use of products

made by them [21]. Software is required to be

safeguarded in such a way that it should always retain

its functionality as well as protect the intellectual

property and frustrate the attempts of reproducing its

illegal copies [21]. The earlier proposed

methodologies include: Cryptographic techniques and

physical tamper-resistant devices like dongles.

Software encryption methodologies involve using

encrypted code where program instructions are

decrypted on the fly prior to their execution. Software

diversity is another protection mechanism against

different software attacks (e.g., viruses) which can be

easily achieved through slightly obfuscating new

instances of a program which are functionally

comparable to the original code. Moreover,

formulating and putting in place effective content

protection strategies for Digital Rights Management

(DRM) systems are need of the day for the publishing

and entertaining industries as volume of the digital

contents being produced and distributed are increasing

day by day. DRM has become a necessity for

managing and distributing digital contents over the

Internet as copyright protection is much sought by the

digital content industry for its progressive

development [29]. DRM technologies not only entail

observance of the prescribed rules and policies, but

also require application of the cryptographic

techniques. Software tamper-resistance methods, like

A Comparative Analysis of Software Protection Schemes 287

obfuscation techniques, attempt to restrain unsolicited

uses of software [11] by making the code more and

more difficult to analyze and comprehend. Legitimate

reasons for a program to look for and stop the

debugging environment are merely for supporting anti

piracy and authorize use of software licenses [9]. DRM

technologies consist of a set of protocols and system

architectural designs to provide solutions to the

software piracy issues. To this end, DRM also require

necessary legislative support from the governments to

protect intellectual property rights of the researchers

and software industry.
The main focus of this paper is to study the latest

trends in the software copy prevention techniques. A
survey of software protection techniques along with
their strengths and areas of application is provided in
this paper. The software protection techniques
discussed in the literature are also critically evaluated to
determine gaps that still remain to be addressed. The
gaps, thus identified, may serve as future research
directions. This paper is structured into six sections. An
introduction to the software protection technique in this
section is followed by an insight into reverse
engineering process. A brief description of various
hardware and software based protection techniques in
provided in section 3. The next section summarizes
literature review of the current software and hardware
based techniques devised over the time to protect
digital media and software from piracy and tempering.
A comparative and critical analysis of the
contemporary protection techniques is enunciated in
section 5 and finally we conclude in the last section.

2. Insight into Reversing Process

The main aim of performing reverse engineering is to
search for loopholes or security breaches in the
software either to exploit or steal the main logic or
algorithm behind the functionality of the software [2].
Reverse engineering is the systematic process of
analyzing a piece of software code to identify different
software objects/components and their interaction with
each other to comprehend an abstract view of the
functionality of the software system. Such abstract
representations of the working mechanism of the
software then help either to modify the existing
software or recreate a duplicate version of the cracked
software to fulfill certain mercantile interests by the
software companies or vendors. The associated
technologies with antidebugging include exception
handling, junk code, checksum, hardware registers and
process hiding [12].

There are a number of open source and commercial

tools that can be used to conduct software reverse

engineering process. These tools are generally

categorized as de-compilers, disassembler, debuggers,

un-packers, Program Executables (PE) editors, hex

editors and deobfuscators etc., code obfuscation is a

promising technique to protect software from being

reverse engineered both in static and dynamic analyses.

Code obfuscation is achieved through altering

programs in such a way that its original functionality

remains intact but its readability and internal

interaction of different components become very

difficult to comprehend during the reverse engineering

analyses. This technique also can be used to create

code at the runtime, for instance the self modifying

code, thus constraining the malware attacks.

Limiting the code and data leakages within the

program is an important aspect to ensure security of

the software as most of the attacks launched by the

attackers and crackers pertain to exploiting buffer,

stack and heap overflow vulnerabilities.

2.1. Categorizing Reverse Engineering Tools

The process of reverse engineering necessitates a

range of tools to gather, extract, organize and classify

contents of an executable. For Microsoft Windows

environment, these tools are generally categorised into

four groups [3]: Hex editors, disassemble/debugger,

de-compilers and de-obfuscators, PE editors, memory

dumpers and unpackers. A brief description of these

reverse engineering tools is discussed below.

2.1.1. Hex Editors

Hex editors are used to view and edit binaries (DLLs,

EXEs) in hexadecimal format. A user can easily

change a string or even an instruction of an executable

using a basic hex editor. Some hex editors (e.g., HHD

and Ultra Edit) offer file comparison utility. But, if

search facility is not available in a hex editor then a

debugger or a disassembler is normally used to locate

the position of the instruction in the binary file which

is required to be modified. Nonetheless, some

dissasemblers e.g., OllyDbg, also support the basic

features of a hex editors. Advanced hex editors like

WinHex, Hackman and Hex Workshop have the

ability to edit the memory, view and manipulate

physical and logical drives and carry out hash

calculations.

2.1.2. Disassemblers/Debuggers

A disassembler converts binary/executable code into

assembly language code. Some disassemblers also

present heuristic examination of the disassembled

code e.g., locating iterations of loops, function calls

and data structures used in the program. Debuggers

augment disassemblers functionality by providing

views of the current state of stacks and registers.

Advanced debuggers also allow setting breakpoints

inside the assembly code for illustrating runtime state

of the programs and help edit the programs.

Disassemblers/debuggers are particularly of much

worth to unpack software, revealing program

structure, decoding password and identifying faults in

a program for faults. IDA Pro is quite good at

generating the disassembly, but its debugging

288 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

capabilities are merely at par with a simplistic

debugger. OllyDbg is a better choice as it offers both

the disassembly and debugging features.

2.1.3. De-Compilers

De-compilers are specific to programming languages
and even specific to compilers within the same
language. The purpose of decompilers is to reproduce
high-level source code from a given executable file.
However, if a decompiler fails to produce the source
code then it generates its equivalent assembly code.
The output generated by decompilers is nonetheless,
vital to functionality of a program. Decompilers aim at
reproducing the original source code from the
executables, however, Java decompilers are much
effective even if obfuscation is applied. This could be
due to the reason that Java bytecode is not as complex
as the assembly language code is. Decompilers that
produce better human readable code for binaries have
yet to become reality.

2.1.4. De-Obfuscators

Deobfuscators are designed to reverse the obfuscation
applied to a source code. Obfuscators are used to make
the readability of the source code difficult to
comprehend and they can also operate on binary files.
There are a number of deobfuscators that attempt to
regenerate the original source code by distilling the
obfuscator’s effects on the source code. PE editors pull
out headers of the binary files and allow changes to the
headers to remove any hidden/secret code. Programs
that are designed to alter themselves in the memory can
be debugged through memory dumpers. An unpacker
could be used to restore the original code and are
generally a good tool to permeate commercial
protection schemes.

3. Software Protection Techniques

The term software protection means to safeguard the

contents of application programs from unauthorized use

and illegal distribution. There are two broader

categories of software protection techniques; hardware

based and software based solutions. The hardware

based protections are limited to attaching dongle or

smart cards with the computer system in order to run a

software application. The software based protections

are generally available in the form of encryption,

license file protection, anti reverse engineering methods

and watermarking etc. In addition, the hybrid solutions

can also be used like MAC binding or disk serial

registration.

3.1. Hardware-Based Protection Techniques

The current trend in software protection techniques is

the current trend in software protection techniques is to

employ hardware based protection in order to attain a

higher degree of copy protection [10]. Hardware based

protection involves a tamper resistance trusted

processor that constantly scans and substantiates every

piece of source code that seeks access to execute. A

dongle that usually plug into either a USB or serial

port is a hardware based software protection technique

that is specifically designed to make sure that only

authorized users can use licensed software

applications. Normally, dongles are used with

expensive applications. Such applications check the

presence of dongle on the ports whenever they are

start up. Presently, dongle is one of the best reliable

techniques to safeguard commercial software from

piracy.

Hardware based software protection techniques

usually entail a trusted processor that substantiates

every piece of software code that seeks execution.

Trusted processor maintains catalogue of the keys

needed for digital signature verification and

decrypting the license files. This essentially means

that the same software will be encrypted differently by

each processor by virtue of having unique encryption

key. Besides, all the data traffic transmitted over the

network is also encrypted. Trusted processor based

techniques are quite useful against piracy as the

specific hardware is required to run the software.

Associating or binding software to a particular

machine is another alternative as it discreetly sends its

ascribed registration serial number to the relevant

software company to ensure that the pirated copy of

the software is not being used. Smart cards, digital

memory card and dongles, which are generally

categorized as portable hardware security devices, are

also used to link execution of commercial software

subject to connecting them with the computing

devices. Hardware-based protection techniques are

quite efficient, but additional hardware costs as well as

hardware and software versioning dependencies

constrict their expediency and widespread usage.

3.2. Software-Based Protection Techniques

Software protection, sometimes called copy protection,

necessitates employing requisite safeguards against

reverse engineering or tempering of software

applications. Password or key check is the simplest and

the most commonly used software protection

mechanism. It is generally applied at the time of software

installation and it is also a popular mechanism in the

shareware and the software products launched by the

Microsoft.

3.2.1. Multi-Block Hashing Scheme

Multi block hashing schemes employ partitioning an
executable into many blocks of independent sizes
separated in a way that each block contains set of
instruction that pertain to a specific functionally. The
instruction blocks are ordinarily stored in encrypted
form containing hash key corresponding to the next
block; thus making a chain of the entire executable
program. A program controller that contains the

A Comparative Analysis of Software Protection Schemes 289

decryption procedure is stored at the end of the
executable to decipher the blocks. However, the first
block, known as the entrance block, is ordinarily not
encrypted and whenever a program executes, it passes
the corresponding hash value to program controller to
successively decode the subsequent blocks. Since, hash
values are calculated dynamically, therefore, static
reversing of the program becomes nearly impossible.

3.2.2. Cryptography

Cryptography is used to cipher information by using a

key. Cryptographic protection techniques entail storing

software in encrypted form on digital media which is

decrypted just prior to execution. Sometimes, multiple

encrypted keys e.g., encrypting DES key with RSA

private key are used to further strengthen software

protection. For foolproof security, some researchers

suggest to burn the decryption key within the machine

at the time of manufacturing. Live monitoring of the

memory to discover the decryption key could be the

only possible attack in such a situation. Min et al. [22]

address the issue of data security in terms of integrity,

availability and confidentiality of data stored on the

enterprise networks by using MD5 and AES encryption

based machine codes.

3.2.3. Emulation Based Software Protection

Design and implementation errors in the applications

(e.g., input driven format strings, stack overflows,

integer overflows and buffer overflows etc.,) lead to

software exploitation [17]. Emulation based software

protection techniques have been proposed in the

literature that suggests running the applications in a

Sandbox; e.g., Sandboxie [25] is a utility that offers

code execution in a protected sandbox layer in the

memory.

3.2.4. Modular Approach Employing UMLsec

Security design is generally supported through UMLsec

provided in the form of a Unified Modelling Language

(UML) extension profile. Constraints associated with

UMLsec are used to chalk out criteria for secure data

handling and data communication. An attacker model

in the form of threats that it poses to the system is

ordinarily defined in UMLsec. Therefore, verification

routines are required to be defined to verify UMLsec

models [15]. UMLsec integrates security related

information in UML specifications. For security critical

systems, security relevant information is embedded

within the system specification diagrams that are

primarily based on the notation of the UML [14]. There

are tools available that generate code from the Role

Based Access Control (RBAC) properties defined

through UMLsec [23]. UMLsec is also known as a

modular approach and is primarily used to comply with

software’s authentication, integration and

supplementary security requirements.

3.2.5. Code Mutation Scheme

Code mutation techniques scramble the set of
instructions at the time of obfuscation and toggle them
back into original instructions at runtime. After
execution, the instructions are scrambled again.
Software mutation makes code inexplicable by adding
synthetic data. Likewise, obfuscation makes the job of
a reverse too hard to extract semantic information
from the code.

3.2.6. Software Aging Techniques

The release of periodic updates of software compatible

with the older versions is sometimes known as

software aging technique. Such software updates

incorporate bug fixes, hot fixes and new features by

preserving software synchronization with the earlier

versions. Nevertheless, this technique is more

beneficial for those applications which are immensely

document centric e.g., MS Word that heavily relies on

particular formatting.

3.2.7. Protected Access Techniques

Protected access techniques split the software into
multiple blocks which are surrounded by the security
controller. Security controller filters the access request
by corroborating the secure accessing history of the
controls and grant access to the software if it is
originated from a trusted channel.

3.2.8. Secure Naming Techniques

The secure naming techniques are used to protect

software from reversing, piracy and unauthorized

alteration. The secure naming techniques can be

applied on both functions and files. In secure function

naming method, a function is either registered or is

assigned a nickname. System allows execution of only

the registered functions maintained in its lookup table.

In case a nickname of a function is used, then the

system replaces the nickname with the original name

whenever a function seeks execution. The secure file

naming technique is generally used in the web

technologies by barring direct access to the files. Files

are labelled in such a way that they are only accessible

through a function or program and their direct access

through a web interface always fails. It is also possible

to embed a variable name into a function or file’s

name so that the system generates the real function of

file’s name on the fly. This feature increases the piracy

and decryption costs so high that it makes it virtually

impracticable.

3.2.9. Software Guards

A software guard is a small piece of code segment that

applies checksums on executable binaries to find

whether software has been altered or not. Guards are

normally placed into the software at different places

[21]. In Java bytecode, guards are mostly used in the

290 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

program segments including loops. Each loop has a

guard associated with it and it is evaluated just before

the execution of loop. Guard’s value is strictly linked to

the coding logic and accordingly alters whenever the

program is modified. In case the code gets modified,

then program counter also changes which is ultimately

detected by the guard. Software guards are usually

placed inside the code. Chang and Atallah [5] propose a

technique that encompasses software guards

specifically programmed to perform arbitrary tasks like

code checksum segments to verify integrity of software.

Guards also help make software tamper resistant by

performing boundary checking. Some software guards

also have the limited capabilities of repairing the code,

for instance, if a guard detects that certain code

segment has become faulty then it automatically

downloads/installs fresh copy of the code.

3.2.10. Watermarking

Obfuscation and watermarking are interconnected

software protection techniques [30]. Software

watermarking is a reactive approach to protect software

from piracy and ensure copyright protection for

commercial software [26, 28]. Watermarking is the

process of embedding a distinctive hidden text that

generally pertains to ascertain the ownership of the

software into the software code. The owner or

copyright holder of the software can later on extract

this secret message hidden inside the software to obtain

an evidence of piracy and unauthorized use of the

software. Watermarking technique was originally

devised for specific digital media contents such as

video, images and audio files but there has been

growing interest in applying watermarking in non

media contents such as relational databases and natural

language text/document file [1] which protects software

through inserting hidden information into software as

an identifier of the ownership of copyright for the

software. Software fingerprinting is another technique

that implants a distinctive user’s identification number

into each and every copy of the software to track illegal

use of software licensees [21]. Collberge and

Thomborson [6] suggest that watermarking techniques

should possess two properties; stealth making it

difficult to discover the watermark and resilience-

restraining efforts made by the crackers to remove

watermarks.

4. Literature Review

One of the possible solution for software piracy is to

use tamperproof hardware tokens that mainly depend

on two premises; firstly, ensuring physical security of

the hardware based temper resistant device and

secondly, by introducing complexity in the software

code that makes it hard to analyze by dodging the

attempts made by the attackers while looking for

presence of the token.

Sasirekha and Hemalatha [26] analyze existing

software protection techniques and suggest that

cryptography is the more appropriate approach in this

regard. The more beneficial technique could be to use

code dependencies within the employed cryptographic

technique so that the software code can be decrypted

and verified at the runtime. The benefit of the

proposed technique is that if the code is statically

modified, then it would result in producing a corrupted

executable indicating the signs of tempering. Though

this technique is useful to avert the static analysis and

static tempering efforts, but does not provide solution

for preventing dynamic analysis when the code

becomes available in the memory in its original form.

Guoyuan et al. [12] provide a survey of shareware

protection schemes by highlighting the need to protect

shareware software from antidebugging. Since,

shareware are generally free of cost software products,

therefore, the only software protection that can be

applied is to secure the ownership of the software by

thwarting the possibilities of reverse engineering. The

proposed solution, therefore, is also limited in scope

and is primarily based on melting the protection

solution into the development lifecycle. An alternate

solution could be to use VMs for securing software.

The proposed technique has a limited scope as it only

addresses the anti reversing methodology for

sharewares.
Jamkhedkar and Heileman [13] studied problems

associated with the existing DRM technologies and
proposed an open layered framework, that
incorporates various interoperating technologies, for
developing DRM systems. Rights Expression
Languages (RELs) design principles are also studied
as part of developing the open layered framework as
refactoring RELs is vital to attain a fair degree of
DRM interoperability. In this regard, middle ware
services for DRM that outline specific tasks and area
of operation of the actual DRM system need to be an
integrated part of a DRM framework. The strength of
the proposed framework is that it ensures a strong
mechanism for security of the digital contents but such
a system would be too complex as for each
middleware service of framework may necessitate
implementing different types of security controls and
business logic.

Zhang [29] report a survey of the state of the art of

DRM systems and suggests employing effective usage

control technologies in DRM systems to facilitate user

to access, download, transfer and share protected or

copyrighted contents. In this perspective, a holistic

view of the existing usage control mechanisms and

models that take into account RELs, authentication

and authorization management security models and

secure utilization of end user digital devices. DRM

systems should also maintain necessary mechanism to

trace sharing of rights among end users as it is

particularly much desirable for social networking

system.

A Comparative Analysis of Software Protection Schemes 291

Maña and Pimentel [19] proposed a software

protection scheme based on tamperproof processor by

exploiting smart card technology. The proposed

technique is based on asymmetric cryptosystem in

which private key is embedded on the card. The

messages are encrypted with public key and the card

that contains the matching private key can only decrypt

those messages. The methodology is based on

generating unique certificates for each user and requires

being burn onto the smart card. The merit of the

presented technique is it robustness against attacks as it

can bypass code substitution and threats to license

management protocols. The core limitation of the

scheme is that asymmetric cryptosystem is highly

computationally expensive that results in performance

degradation. Therefore, it is not an ideal solution as it is

imperative to strike a balance between the security and

processing speed.

Zhang [28] proposes a software watermarking

technique that employs hash function which contains

watermark signature into it. Hash function extracts the

embedded watermark at the run time through the

predefined parameters. The hash function is calculated

through manipulating certain programmatic constants

defined within the program and any alteration/

tampering with the values of constants would lead to

erratic behavior indicating the signs of software

tampering. The main distinguishing feature of the

proposed hashing technique from its counterparts is that

it calculates watermark dynamically.

Ghosh et al. [11] present a software tamper resistant

approach that employs obfuscation in the forms of

encryption and checksum guards through process level

virtualization. The idea is to build software application

in a way that it only runs in Virtual Machine (VM)

environment where the Just In Time (JIT) compiler

performs the necessary decryption and executes the

code. The decrypted code is periodically discarded to

avert attempts to analyze the application code or taking

snapshot of its memory dump. Despite the proposed

technique carries certain advantages of protecting the

software from unauthorized use, but the periodic

discarding of the code from the memory results in

decrypting the original code again and again for a

single execution of the program which will definitely

result in slowing down the application performance.

Furthermore, the specialized VM executable would also

require to be supplied with the software and no

mechanism is suggested to protect the VM software.

Kimball [17] proposes two emulation based software

protection techniques that are especially designed to

protect software from reverse engineering. The

techniques employ page granularity code signing and

encrypted code execution methodologies which are

executed within the trusted emulators (sandbox). An

application code needs to incorporate anti debugging,

anti disassembly and obfuscation methods in addition

to encrypting the code. The proposed techniques though

minimize the chances of reverse engineering as they

run in a sandox (or an emulator), but still the

encrypted code needs to be decrypted before

execution.

Erlingsson et al. [8] propose a software guards

model, named as XFI, to protect user mode and kernel

mode address spaces. The XFI executes code without

creating any additional software in a type safe

language as well as without creating a new process.

XFI supports low level architectural features (e.g.,

language based protection). XFI addresses the issue of

running the native plug in code safely through

interposition of system calls, thus isolating the un-

trusted code. The proposed methodology segregates

all the kernel extensions in a detached protection area

to inhibit chances of faults to occur. Though such a

software guard facilitates safe execution of the code,

but its overheads are considerably higher as it keeps

watching both the user mode and kernel mode address

spaces and needs administrative privileges to execute.

Zhu et al. [31] provide an overview of software

watermarking techniques supplemented with

watermarking attack models, its taxonomy and

algorithms. The four types of watermarks are

identified as: Preventive, assertion, permission and

affirmation marks. Prevention marks are used to

restrict unauthorized software use. Assertion marks in

fact symbolize a legitimate claim to the software

ownership. Permission marks authorize limited

changes to be made to software and affirmation marks

are used to ascertain authenticity of an end user.

Lin et al. [18] emphasize that lack of self protection

against anti debugging is the main source for

encouraging reverse engineering. In this regard,

benefitting hardware virtualization could serve the

purpose. One possible solution could be to monitor the

debug events in the higher privilege level instead of

the conventional kernel space.
Dedic et al. [7] propose a probabilistic program

transformation algorithm to make software tamper
resistant by mimicking the series of steps taken by a
hacker during the course of reversing a program in the
form of a flow graph. By sequencing the walk of a
hacker made on a program and depicting it in the
shape of a graph not only provide a vivid picture of
the modus operandi, but also is useful to pinpoint the
possible areas of the code segments to be protected.
The proposed approach entails inserting a number of
tamper detection checks at various locations within the
program. Each tamper check has specific scope and
the predefined piece of program fragment to monitor.
These checks are required to be homogeneous to
detect any sign of tempering. The proposed
methodology is useful to be incorporated in DRM
systems. However, such algorithms may suffer from
exponential or polynomial computational time
complexity.

Birrer et al. [2] argue that static obfuscation
techniques alone are not robust enough to protect the

292 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

software and suggest adding a metamorphic layer of
protection in the form of program fragmentation on top
of the traditional obfuscation techniques. The proposed
program fragmentation technique amalgamates
outlining and jump tables obfuscation that place
different sections of the code into disparate locations in
the memory in order to reduce the program’s locality.
For this purpose a jump table is maintained that links
different sections of the program in accordance with its
actual flow. The proposed technique adds further
complexity to the already obfuscated code and makes
the job of a reverse engineer more difficult as
understanding and tracing the actual execution of the
programs becomes too complicated.

Min et al. [22] address the issue of data security in
terms of integrity, availability and confidentiality of
data/software stored on the enterprise networks by
using MD5 and AES encryption based on generating
the unique machine codes. The key idea proposed is
based on exploiting unique machine code (i.e., MAC
address) feature. The methodology suggests generating
a unique registration code for each installation of the
software that includes MAC address as well as time of
installation followed by MD5 encryption of the
generated code. In case, the software is modified or
replicated on another machine then the variation in the
registration code will automatically halt the execution
of the software. The proposed methodology can only
work within an enterprise network where machines are
interconnected and will fail if the same software is
replicated on other isolated networks or standalone
machines.

Temper resistant code encryption technique has been
proposed by Cappaert et al. [4] that employs bulk
encryption over the software code and applies on
demand decryption as and when required. The proposed
technique is an effective safeguard against both static
and dynamic analyses of software code. The technique
uses various chunks of the program codes to encrypt
and decrypt the other segments of the code. Such code
segment dependencies act as a software guard and
make it very difficult to tamper the original code as
tampering in certain part will eventually result in
malfunctioning of the other code segment.

The software protection techniques discussed in this
paper are either used individually or as a blend of
multiple techniques. This section draws an abridged
comparison of these techniques in terms of their area of
usage and benefits/ limitations.

Product key protection is somewhat a weak method
of software copy protection as it can be circumvented
through key generators or associating a patch with the
executable. Though multi block hashing techniques
impede static decompilation and fairly lessen the
chances of reversing the code, but they are not
economical in terms of their computational complexity.
Likewise, hardware based protection approaches
eliminate the chances of replicating software through a
specialized form of protection mechanism, but are
pretty expensive and lack user friendliness. Digital
watermarking would only be effective if there is no

perceptible difference between the watermark and the
original contents. Watermark embedded in the
information should be inseparable so that a reverser
could not remove or alter it without damaging the
object. Code mutation, that makes readability of the
code complex, is a promising alternative as it
absolutely transforms the veneer of code without
changing its functionality. Guards also help tackle
software piracy issue, but their usage is relatively
limited. Software aging techniques are only effective
for document and data centric applications.
Cryptographic techniques are still a better choice, but
the software vendors need to supply decrypting
routines and the decryption key with the software [21].
However, once the decryption code snippet and the
decryption key are distributed, the software can easily
be reverse engineered. Watermarking is generally used
when it is not always possible to preclude reversing
attacks. Though the protected access methodologies
can restrain the chances of direct accesses to the
secure data, but an intelligently designed reversing
process can still dig out data during the course of data
streaming; therefore, these techniques are typically
suitable for open source web technologies where
source code is not encrypted. Watermarking and
fingerprinting are two extensions of DRM technology
that help enable content monetization across several
media - centric applications. Khan [16] suggests that
Bayesian techniques are more promising than other
conventional machine learning techniques for timeline
reconstruction which can help copyright protection
and authentication purposes. In general, data
protection and security is categorised as a non
functional requirement [27]. Masoumi and Amiri [20]
proposed a digital video watermarking scheme based
on scene change analysis which embeds a digital
watermark into an electronic document.

5. Comparative and Critical Analysis of

Software Protection Techniques

A critical review of the various software protection

techniques described in the contemporary literature is

provided in Table 1, see appendix.

6. Conclusions

Digital assets are under growing threat of damages

and comprises. There is a pressing need to protect

these assets from piracy and unauthorized use. This

paper reviewed a number of software protection

techniques that help eliminate chances of unauthorized

access, tampering/ destruction and making illegal

copies of the software applications. The prime focus

of these techniques is to ensure software security

against virus attacks, making the process of reverse

engineering more and more difficult, cost-intensive

and time consuming, baring the software piracy and

making software temper-resistant. Despite the

presence of several hardware and software based

A Comparative Analysis of Software Protection Schemes 293

protection techniques, there is still no guarantee of

totally software security against the aforesaid threats

as the PE and binaries can always be reverse

engineered. However, we believe that a mixture of the

different hardware and software based protection

techniques can help further eliminate the chances of

software misuse and to achieve nearly total software

security. Surprisingly, legal protection means like

patents, copyrights and trademarks have not been

much adapted as an additional cover for software

patents. We believe that legal protection means could

also help further curtail software piracy and misuse

issues.

As a future dimension to this research, we intend to

make a watermarking based software protection

technique that not only embed obfuscation but also

ensure authentication from the vendor server.

References

[1] Atallah J., “A Survey of Watermarking

Techniques for Non-media Digital Objects,” in

Proceedings of the 3
rd
 Australasian Information

Security Workshop, Australia, pp.73-73, 2005.

[2] Birrer D., RainesA., Baldwin O., Mullins E., and

Bennington W., “Program Fragmentation as a

Metamorphic Software Protection,” in

Proceedings of the 3
rd
 International Symposium

on Information Assurance and Security,

Washington, USA, pp. 369-374, 2007.

[3] Canzanese J., Oyer M., Mancoridis S., and Kam

M., “A Survey of Reverse Engineering Tools for

the 32-bit Microsoft Windows Environment,”

available at: https://www.cs.drexel.edu/~spiros/

teaching/CS675/asmrceFINAL.pdf, last visited

2005.

[4] Cappaert J., Preneel B., Anckaert B., Madou M.,

and DeBosschere K., “Towards Tamper Resistant

Code Encryption: Practice and Experience,” in

Proceedings of the 4
th
 International Conference

on Information Security Practice and Experience,

Berlin, UK, pp. 86-100, 2008.

[5] Chang H. and Atallah M., “Protecting Software

Code by Guards,” in Proceedings of the 1
st
ACM

Workshop on Digital Rights Management,

London, UK, pp.160-175, 2002.

[6] Collberg C. and Thomborson C., “Watermarking

Tamper-roofing and Obfuscation-tools for

Software Protection,” IEEE Transactions on

Software Engineering, vol. 28, no. 8, pp. 735-746,

2002.

[7] Dedic N., Jakubowski M., and Venkatesan R., “A

Graph Game Model for Software Tamper

Protection,” in Proceedings of the 9
th

International Workshop Information Hiding,

Saint Malo, France, pp. 1-15, 2007.

[8] Erlingsson U., Abadi M., Vrable M., Budiu M.,

and Necula C., “XFI: Software Guards for System

Address Spaces,” in Proceedings of the 7
th

Symposium on Operating Systems Design and

Implementation OSDI'06, Seattle, USA, pp. 75-

88, 2006.

[9] Gagnon M., Taylor S., and Ghosh A., “Software

Protection Through Anti-debugging,” Security

Privacy, IEEE, vol. 5, no. 3, pp. 82-84, 2007.

[10] Genov E., “Designing Robust Copy Protection

for Software Products,” in Proceedings of the 9
th

International Conference on Computer Systems

and Technologies and Workshop for PhD

Students in Computing, New York, USA, 2008.

[11] Ghosh S., Hiser D., and DavidsonW., “A Secure

and Robust Approach to Software Tamper

Resistance,” available at:

http://link.springer.com/chapter/ 10.1007/ 978-3-

642-16435-4_3#page-1, last visited 2010.

[12] Guoyuan L., Jiutao T., and Bing G., “A Survey

of Shareware Protection Schemes,” in

Proceedings of the 2
nd
 International Conference

on Signal Processing System, Dalian, China, pp.

697-700, 2010.

[13] Jamkhedkar A. and Heileman L., “Digital Rights

Management Architectures,” Computers and

Electrical Engineering Archive,” vol. 35, no. 2,

pp. 376-394, 2009.

[14] Jurjens J., “UMLsec: Extending UML for Secure

Systems Development,” in Proceedings of the 5
th

International Conference on the Unified

Modeling Language, Berlin, UK, pp. 412-425,

2002.

[15] Jurjens J. and Shabalin P., “Automated

Verification of UMLsec Models for Security

Requirements,” available at: http://www.

verisoft.de/.rsrc/PublikationSeite/uml04.pdf, last

visited 2004.

[16] KhanA., “Performance Analysis of Bayesian

Networks and Neural Networks in Classification

of File System Activities,” Computers and

Security, vol. 31, no. 4, pp.391-401, 2012.

[17] Kimball W., “Emulation-Based Software

Protection. Black Hat DC,” available at:

http://www.blackhat.com/presentations/bh-dc-0

9/Kimball/BlackHat-DC-09-Kimball-Emulation-

Software-Protection.pdf, last visited 2009.

[18] Lin Q., Xia M., Yu M., Yud P., Zhu M., Gao S.,

Qi Z., Chen K., and Guan H., “SPAD: Software

Protection Through Anti-debugging using

Hardware Virtualization,” in Proceedings of

ACM Symposium on Applied Computing,

Taichung, Taiwan, pp. 623-624, 2011.

[19] Maña A. and Pimentel E., “An Efficient

Software Protection Scheme,” in Proceedings of

the 16
th
 International Conference on Information

Security: Trusted Information, Paris, France, pp.

385-401, 2001.

[20] Masoumi M. and Amiri S., “Content Protection

in Video Data Based on Robust Digital

294 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

Watermarking Resistant to Intentional and

Unintentional Attacks,” the International Arab

Journal of Information Technology, vol. 11, no. 2,

pp. 204-212, 2014.

[21] Memon M., Khan A., Baig A., and Shah A., “A

Study of Software Protection Techniques,”

Innovation and Advanced Techniques in

Computer and Information Sciences and

Engineering, pp. 249-253, 2007.

[22] Min Z., Qiong-mei L., and Cheng W., “Practices

of Agile Manufacturing Enterprise Data Security

and Software Protection,” in Proceedings of the

2
nd
 International Conference on Industrial

Mechatronics and Automation, Wuhan, China,

pp. 318-321, 2010.

[23] Montrieux L., Jürjens J., Yu Y., Haley B.,

Schobbens Y., and Toussaint H., “Tool Support

for Code Generation from a UMLsec Property,”

in Proceedings of the 25
th
 IEEE/ACM

International Conference on Automated Software

Engineering, New York, USA, pp. 357-358,

2010.

[24] Mouratidis H., Jurjens J., and Fox J., “Towards a

Comprehensive Framework for Secure System

Development,” available at: https://www-

secse.cs.tu-dortmund.de/jj/ publications/ papers/

caise06.pdf, last visited 2006.

[25] Sandboxie., available at: www.sandboxie.com,

last visited 2012.

[26] Sasirekha N. and Hemalatha M., “A Survey on

Software Protection Techniques Against Various

Attacks,” Global Journal of Computer Science

and Technology, vol. 12, no. 1, pp. 53-58, 2012.

[27] Umar M. and Khan A., “A Framework to

Separate Non-functional Requirements for

System Maintainability,” Kuwait Journal of

Science and Engineering, vol. 39, no. 1B, pp.

211-231. 2012.

[28] Zhang X., He F., and Zuo W “Hash Function

Based Software Watermarking,” in Proceedings

of the Advanced Software Engineering and its

Applications, Hainan Island, pp. 95-98, 2008.

[29] Zhang Z., “Digital Rights Management

Ecosystem and its Usage Controls: A Survey,”

International Journal of Digital Content

Technology and its Applications, vol. 5, no. 3, pp.

247-263, 2011.

[30] Zhu F., “Concepts and Techniques in Software

Watermarking and Obfuscation,” PhD Thesis,

University of Auckland, New Zealand, 2007.

[31] Zhu F., Thomborson C., and Wang Y., “A Survey

of Software Watermarking,” in Proceedings of

IEEE International Conference on Intelligence

and Security Informatics, Berlin, UK, pp. 454-

458, 2005.

Muhammad Khan obtained DPhil

degree in computer system

engineering from the University of

Suusex, UK. His research interests

include software engineering, cyber

administration, information security

policies, digital forensic analysis

and machine learning techniques.

Muhammad Akram is presently

pursuing for his MS degree in

computing at Shaheed Zulfikar Ali

Bhutto Institute of Science and

Technology, Pakistan. He is

working in the field of information

technology for a long time. His

research interests are in the fields of software

engineering, information security policies and

embedded architectures.

Naveed Riaz received PhD degree

from Graz University of

Technology 2008 in software

engineering and an MS degree in

software engineering 2005 from

National University of Sciences and

Technology, Pakistan. His research

interests include model-based and qualitative

reasoning, theoretical computer sciences, distributed

computing and digital image processing.

A Comparative Analysis of Software Protection Schemes 295

Appendix

Table 1. Critical analysis of software protection techniques.

Ref # Technique/ Methodology Strengths Scope/Limitation

Sasirekha and

Hemalatha [26]
Cryptography based software protection technique.

Thwarts static analysis and static tempering of the

program.

Is not effective against dynamic analysis when the original

code becomes available in the memory.

Guoyuan et al. [12]
Shareware protection schemes to protect software from anti-

debugging by thwarting the possibilities of reverse engineering.
-

The scope is limited as it is based on melting the protection

solution into the development lifecycle and it only

addresses the anti-reversing methodology for sharewares.

Jamkhedkar and

Heileman [13]

Open layered framework that incorporates various interoperating

technologies, for developing DRM systems.

It ensures a strong mechanism for security of the

digital contents.

It is a complex solution as for each middleware service of

framework it requires implementing different types of

security controls and business logic.

Zhang [29]

Suggests employing effective usage control technologies in DRM

systems to facilitate user to access, download, transfer and share

protected or copyrighted contents.

It employs usage control mechanisms and models that

allows RELs, authentication and authorization

management security models and secure utilization of

end-user digital devices.

-

Maña and Pimentel

[19]

Software protection scheme based on tamperproof processor by

exploiting smart card technology. It is based on asymmetric

cryptosystem in which private key is embedded on the smart card.

It is a robust technique against attacks as it can bypass

code substitution and threats to license management

protocols.

The limitation of the scheme is that asymmetric

cryptosystem is computationally expensive which results in

performance degradation.

Zhang [28]

Watermarking technique which employs hash function that

contains watermark signature. Hash function extracts the

embedded watermark at the run-time.

The strength of this technique is that watermark is

calculated dynamically through hash function.
-

Ghosh et al. [11]
Employs obfuscation in the forms of encryption and checksum

guards through process-level virtualization.

It is an effective technique for protecting the software

from unauthorized use with enhanced security.

Scope of the proposed technique is limited as it requires

periodic discarding of the code from the memory which

results in decrypting the original code again and again for a

single execution resulting in performance degradation. The

specialized VM executable is also limitation for each

software. It also doesn’t suggest mechanism to protect the

VM software itself.

Kimball [17]

Emulation-based software protection techniques to protect

software from reverse engineering by page-granularity code

signing and encrypted code execution within emulators

(sandbox).

It minimizes the chances of reverse engineering as it

requires sandbox or an emulator to execute the

software.

Is not efficient because the encrypted code needs to be

decrypted before execution which will cause performance

degradation.

Erlingsson et al. [8]
A software guards model named XFI is proposed to protect user-

mode and kernel-mode address spaces.

XFI supports low-level architectural features (e.g.,

language-based protection) which facilitates safe

execution of the code.

The proposed technique has overhead of watching both the

user-mode and kernel-mode address spaces with

administrative privileges.

Zhu et al. [31]
Software Watermarking techniques supplemented with

watermarking attack models, its taxonomy and algorithms.

Four types of watermark models ensure security,

ownership, user authenticity and unauthorized uses of

software.

-

Lin et al. [18]

Suggests Hardware virtualization for self-protection against anti-

debugging/reverse engineering.

- -

Dedic et al. [7]
Program-transformation algorithm by simulating hacker’s steps to

reversing a program in the form of a flow graph.
This proposed technique is useful for DRM systems.

The program-transformation algorithm may suffer from

exponential or polynomial time complexity which limits

scope of the proposed technique.

Birrer et al. [2]

Suggests adding a metamorphic layer of protection in the form of

program fragmentation on top of the traditional obfuscation

techniques.

The proposed technique adds further complexity to

the already obfuscated code making reverse

engineering more difficult.

-

Min et .al. [22]
Methodology uses encryption of the MAC address and generates

a unique registration code for each installation of the software.
-

The proposed methodology can only work within an

enterprise network where machines are interconnected, and

will fail if the same software is replicated on other isolated

networks or standalone machines.

Cappaert et al. [4]
The technique employs various chunks of the program codes to

encrypt and decrypt the other segments of the code.

The proposed technique is an effective safeguard

against both static and dynamic analyses of software

code as it employs code dependencies.

-

