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Abstract: Distributed heterogeneous computing environment comprises of diverse set of interconnected resources that are 

capable of performing computationally complex tasks efficiently. In order to exploit the high performance of such a system, the 

task scheduling problem demands for the efficient mapping of the tasks. Because of its fundamental importance, the problem 

has been studied extensively and several algorithms have been proposed. In this paper, we propose two novel approaches for 

the task scheduling problem and compare the proposed work on the basis of randomly generated task graphs with the well-

known existing algorithms. The simulation results elucidate on the basis of different cost and performance metrics that for 

most of the scenarios, the proposed approaches outperform the existing ones considerably. 
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1. Introduction 

Availability of distributed set of powerful machines, 
intercommunicating through high speed links, provides 
a computing platform for executing applications with 
multifarious computational demands. Applications 
running on such Heterogeneous Distributed Computing 
Systems (HDCS) are decomposed into set of tasks with 
or without dependencies among themselves. Optimal 
mapping of the tasks, i.e., their matching and then 
appropriate scheduling on diverse set of machines in a 
way to step up the overall efficiency of the system and 
gain promising potentials of the distributed resources is 
the main objective of the mapping algorithms for such 
a distributed HDCS. Mapping of tasks to machines 
should be done so as to reduce the overall execution 
time of the application. 

Generally, task scheduling problem is modeled by 
Directed Acyclic Graph (DAG) in which application 
tasks are shown through nodes of the graph and data 
dependencies among the tasks are represented through 
edges with communication costs labeled on the edges 
and computation costs labeled on the nodes. The task 
scheduling problem addressed here is a static model as 
different properties of the application, such as 
execution times of the tasks on various machines and 
inter- task communication costs are known in advance. 

Plethora of algorithms exists in the literature for 

solving the task scheduling problem but, being NP-

complete [5], finding near optimal solution for the 

problem requires  more efficient  scheduling strategies. 

High s peed up  and efficiency  can be  attained only if 

mapping of tasks on machines is done appropriately as 
it can truly exploit system parallelism. The motivation 
behind this research work is to propose some new 
strategies for excogitating ways to enhance the system 
performance. Two novel algorithms have been 
introduced in the paper that address the task scheduling 
problem and perform mapping of the tasks to machines 
in a way to lessen the overall time required for the 
execution of the application. Proposed work has been 
compared with the work in [6,13] in terms of different 
performance and cost metrics such as efficiency, 
speedup, Schedule Length Ratio (SLR) and makespan. 
The comparison illustrates that the proposed 
algorithms yield improved results over the existing 
work. 

The organization of the paper has been made as: 
Section 2 demonstrates the task scheduling problem. A 
brief description of the related work has been given in 
section 3. Proposed algorithms are in section 4 and the 
results have been presented in section 5. In the end, 
section 6 concludes the paper.  

2. Task Scheduling Problem 

The task scheduling system consists of an application 

program, some environment to run the application on 

and a strategy for the scheduling. Generally, a DAG is 

used for this purpose, with a set V of nodes 

representing n tasks and set E of edges depicting the 

dependencies among the tasks. There is an entry task 

for each DAG with no parents and an end task with no 

children. 
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The heterogeneous computing environment, on 

which the application is to be executed, consists of a 

set P of m autonomous processors intercommunicating 

with each other through high speed networks of 

varying bandwidth described in Bmxm matrix. Estimated 

time to compute a task on every processor is given in a 

computation cost matrix W of size n×m. The 

communication cost, Ci, j for transferring output, datai,j, 

of a task ti to tj , if both are being executed on same 

processors, is 0. If this is not the case, then following 

relation gives the communication cost, Ci, j between the 

two dependent tasks. 

                                      i, j x,y, j
C = data / Bi

  

For the sake of simplicity, data transfer cost is assumed 
to be 1.0 in this case. The whole scenario is explained 
with the help of an example DAG of Figure 1 with 10 
nodes (tasks). Computation cost matrix is given in 
Table 1. 

 

Figure 1. DAG. 

Table 1. Computation cost matrix. 

Task P1 P2 P3 

1 12 13 9 

2 17 18 19 

3 27 30 28 

4 49 44 43 

5 10 11 10 

6 18 18 19 

7 10 13 14 

8 25 23 27 

9 35 34 39 

10 15 16 15 

Let the earliest start time and earliest completion 
time for the execution of a task ti on a processor pj be 
EST(ti, pj) and ECT(ti, pj) respectively. EST for the 
entry task, on all the processors, is 0 i.e., 

                                      0 jEST(t , p ) = 0                       

For the rest of the tasks in the application graph, the 
EST and ECT values are recursively computed using 
the Equations 3 and 4 respectively. After the 
scheduling of a task ti on a processor pj, the EST and 

ECT become the Actual Start Time (AST) and Actual 
Completion Time (ACT) for the task ti. An important 
consideration here is that a task can be scheduled to 
execute only if all of its parent tasks have already been 
executed. 

                 ,( , ) max{ [ ],max( ( ))}i j p i jEST t p avail j ACT t C= +  

                          ,( , ) ( , )i j i j i jECT t p W EST t p= +  

Where, tp belongs to the set of immediate predecessors 
of task ti, avail[j] is the time when processor pj will be 
available for the execution of the task ti and Ci,j is the 
communication cost between the executing task and its 
parent task. Finally, when all the tasks are mapped to 
the appropriate processors, the overall completion time 
of the task graph gives the schedule length/makes pan 
for that application graph, i.e. 

                               
max{ ( )}endmakespan ACT t=  

Efficient scheduling of the application requires 
adopting a scheduling strategy that minimizes the 
makes pan. 

3. Related Work 

High performance of the HDCS demands for the 
efficient scheduling strategies for an application.  
Because of its fundamental importance, the problem 
has been studied extensively and bunch of algorithms 
exist in the literature. The classification of the 
algorithms has been done into different categories such 
as list scheduling algorithms [5, 7, 9, 10, 13], guided 
random algorithms [3], cluster based [8] and task 
duplication algorithms [1, 2, 4]. 

List scheduling algorithms have been chosen as a 
research area for the work proposed in the paper. Here, 
priority based approach is followed and an ordered list 
of tasks is maintained on the basis of their priorities 
[13]. Few of the algorithms in this category that exist 
in literature are Mapping Heuristics (MH) [10], 
Modified Critical Path (MCP) [14], Levelized Min 
Time (LMT) [5], Dynamic Critical Path for Grids 
(DCP-G) [12],  Heterogeneous Earliest Finish Time 
(HEFT) [13], Critical Path On a Processor (CPOP)  
[13] and Performance Effective Task Scheduling 
(PETS) [6]. A brief description of these algorithms is 
given below. 

3.1. Mapping Heuristic  

The computation cost for a task, in case of MH, is the 
ratio of number of instructions that are to be executed 
in the task and the processor speed. Priorities are 
assigned to the tasks on the basis of static upward 
ranks. The main drawback associated with the MH 
algorithm is that it does not follow insertion based 
strategy [13]. 

3.2. Levelized Min Time  

LMT is a two phase algorithm, task prioritization and 
processor selection. In first phase, level-wise 
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prioritization of the tasks is done such that a lower 
level task has higher rank than the higher level task. 
Second phase assigns the tasks to the fastest processor 
on the basis of computation and communication costs. 
LMT, however, considers only the computation costs 
of the tasks to assign the priorities.  

3.3. Dynamic Critical Path for Grids  

This algorithm considers the lower and upper bounds 
for the starting time of a task and generates a Critical 
Path (CP) on this basis. It follows Min-Min algorithm 
strategy as a task is assigned to a processor that 
executes it fastest. The main focus here is to minimize 
the CP length. 

3.4. Heterogeneous Earliest Finish Time  

HEFT is one of the most well-known algorithms for 
the scheduling of task graphs. Here, priorities are 
assigned to the tasks on the basis of their upward ranks 
which are based on average execution times of tasks 
and average communication costs among the 
processors of two successive tasks. A processor which 
gives minimum finish time for a task is selected for its 
execution. 

3.5. Critical Path on a Processor  

CPOP uses downward ranks along with upward ranks 

for the task prioritization. Along with this, it uses the 

CP of a graph and a critical processor is used for 

mapping of tasks that lie on the CP. For remaining 

tasks, the processor which gives minimum finish time 

is selected for execution. 

3.6. Performance Effective Task Scheduling  

PETS algorithms has three phases. It performs level-
wise sorting of the tasks before task prioritization and 
processor selection phases. In the first phase, 
independent tasks are grouped together so that they can 
be executed in parallel. Processor selection phase for 
PETS is same as for HEFT and CPOP. 

In our proposed algorithms, the rank computation 
phase has been extended to include some more 
attributes that affect the overall makespan of the 
application. The modifications in the rank computation 
process result in obtaining efficiency in the scheduling 
phase of the algorithm. We have considered the 
average computation costs of the tasks, the 
communication costs that are required to transfer 
output of the tasks to their immediate successors and 
the received communication costs from the immediate 
predecessors of the tasks. Besides these, we have also 
considered the number of edges for each task i.e., 
number of tasks that are dependent on a particular task 
so that, a task with more number of dependent tasks 
may have higher rank. Detailed description of the 
proposed work is given below. HEFT, CPOP and 
PETS have been chosen for the purpose of comparison 
with the proposed algorithms. 

4. Proposed Algorithms 

4.1. HMCT 

Heterogeneous Minimum Completion Time (HMCT) 

is the first proposed algorithm in the paper. HMCT has 

two main phases: Task prioritization and processor 

selection. Priorities of the task are computed on the 

basis of their upward and downward ranks. Two new 

factors, Output Transfer Cost (OTC) and Edge Percent 

(EP) have been introduced to compute the downward 

ranks along with the average computation cost of the 

tasks. OTC basically is the total cost that is required 

for transferring the output data from a parent task to all 

its immediate child tasks, i.e., OTC for a task ti is the 

total cost required to transfer the output of ti to its 

immediate successors. The second new factor used in 

the paper, EP, finds out the percentage of the tasks that 

are directly dependent on the output of a task ti. By 

doing this, a task that has more dependent tasks will 

have higher rank and thus will be scheduled for 

execution earlier, hence opening way for the execution 

of dependent tasks. 

The average computation cost of the task ti, (Avg_CC 

(ti)) on all the processors is computed as: 

                                

( )
m

j=1
i i i, jAvg_CC t = w / m∑  

OTC for the end task is always 0; for the rest of the 

tasks, it is computed by the following equation: 

                                       

( ) ( )
x

j =1
iOTC t = C i, j∑  

Where, ti is the task whose OTC is to be computed and 
x is the number of its successor task. If there are total E 
edges in an application DAG then EP(ti) of a task ti  
that has total x dependent tasks, is the percentage of 
edges ti has from total E edges. Like OTC, EP for the 
end task is 0 and for remaining tasks it is calculated 
using the following relation: 

                                    
i

x
EP(t ) = ×100

E

 

Downward rank (rank_d) of a task ti is finally, 
computed by combining all the three factors as shown 
in the following relation.  

                       
( ) ( ) ( ) ( )i i i irank_d t = Avg_CC t + OTC t + EP t   

For the upward ranks, first of all Received Cost (RC) is 
computed. RC is calculated using the following 
relation. 

                                       
( ) ( ( ) ( ))i i i, jRC t = max Avg_CC p + C p  

Where, pi is the set of parents of ti. Finally, the upward 

ranks (rank_u) are computed as:     

                  
( ) ( ) ( ( ( )))i i irank_u t = RC t + max rank_u succ t  

Where, succ(ti) is the set of immediate successors of ti. 
Total rank (rank) for a task ti is the sum of its upward 
and downward ranks, i.e. 

                         
( ) ( ) ( )i i irank t = rank_d t + rank_u t  

(6) 

(7) 

(12) 

(11) 

(10) 

(9) 

(8) 



Novel Approaches for Scheduling Task Graphs in Heterogeneous Distributed Computing Environment                                   273 

 

In the second phase, appropriate processor for the 
execution of a task is to be selected. EST and ECT 
values for all the tasks are computed on all the available 
set of processors using the Equations 3 and 4. The 
selected processor is the one which gives the least value 
for ECT of the task. Like HEFT, the proposed 
Algorithms work on the insertion based policy, 
according to which, a task can be scheduled between 
two already scheduled tasks if there is an idle time slot 
available, provided the priority constraints are not 
violated. 

4.2. Level-wise Prioritization and Scheduling 

Level-wise Prioritization and Scheduling (LPS) 

approach, second technique proposed in the paper, has 

an additional phase, level wise sorting of the tasks, 

besides the task prioritization and processor selection 

phases. In the level wise sorting phase, DAG is 

traversed in a way such that independent tasks at each 

level are grouped together so that they can run in 

parallel. Task prioritization and processor selection 

phases are same as for HMCT. The pseudo codes for 

both the algorithms HMCT and LPS have been 

summarized in Algorithms 1 and 2 respectively. Both 

the proposed algorithms are explained with the 

example DAG of Figure 1. Table 2 shows computed 

Avg_CC, OTC, RC, EP and rank value for all the tasks. 

According to the rank, the priority list for HMCT is t1, 

t2, t4, t3, t5, t6, t9, t8, t7 and t10. LPS priority list, on the 

other hand is, t1, t2, t4, t3, t6, t5, t9, t8, t7 and t10. ECT and 

EST for the tasks on all the processors are given in 

Table 3 for HMCT Algorithm. These attributes can be 

computed for LPS Algorithms in the same way. For 

this particular example, the schedule length obtained 

through both the proposed algorithms is same as shown 

in Figure 2, but this certainly is not the case for each 

generated DAG. HMCT and LPS generate schedule 

length of 154 while the results of HEFT, CPOP and 

PETS are 208, 167 and181 respectively.  

Algorithm 1: HMCT algorithm 

Input: DAG, number of processors. 

Output: Scheduled tasks, make span.  

do (beginning from entry node of the DAG) 

Compute the downward ranks (rank_d) for all the tasks by 

traversing the task graph downward. 

do (beginning from end node of the DAG) 

Compute the upward ranks (rank_u) for all the tasks by 

traversing the task graph upward. 

Compute the overall ranks of the tasks by summing up the 

downward and upward ranks. 

Set the priorities of the tasks according to the non-increasing 

order of their overall ranks.  

while (there are tasks that have not yet been scheduled) 

{ 

a. Select the highest priority task. 

b. Compute ECT of the task on each processor by following 

the insertion based policy. 

c. Assign the task to the processor that gives least ECT. 

}      

Algorithm 2: LPS algorithm. 

Input: DAG, number of processors. 

Output: Scheduled tasks, make span.  

Do (beginning from entry node of the DAG) 

Compute the downward ranks (rank_d) for all the tasks by 

traversing the task graph downward. 

Do (beginning from end node of the DAG) 

Compute the upward ranks (rank_u) for all the tasks by 

traversing the task graph upward. 

Compute the overall rank of the tasks by summing up the 

downward and upward ranks. 

Beginning from the first level, set the priorities of the tasks 

according to the non-increasing order of their overall ranks on 

each level such that a task at higher level has higher rank. 

While (there are tasks that have not yet been scheduled) 

 { 

a. Select the highest priority task. 

b. Compute ECT of the task on each processor by following 

the insertion based policy. 

c. Assign the task to the processor that gives least ECT. 

} 

  Table 2. Computed attributes for HMCT and LPS. 

Task Avg_CC OTC RC EP Rank_D Rank_U Rank 

1 11.33 169 0 25.00 205.33 279.67 485.00 

2 18.00 122 92.33 12.50 152.50 279.67 432.17 

3 28.33 51 66.33 12.50 91.83 242.00 333.83 

4 45.33 132 13.33 18.75 196.08 204.00 400.08 

5 10.33 43 42.33 6.25 59.58 218.00 277.58 

6 18.33 76 96.33 6.25 100.58 190.67 291.25 

7 12.33 35 81.33 6.25 53.58 175.67 229.25 

8 25.00 19 93.00 6.25 50.25 187.33 237.58 

9 36.00 43 64.33 6.25 85.25 158.67 243.92 

10 15.33 0 94.33 0 15.33 94.33 109.67 

Table 3. Computed EST and ECT on each processor and the 

selected processor for HMCT. 

 

Tasks 

w.r.t 

Priorities 

Processors 
 

Selected 

Processor 

P1 P2 P3 

EST ECT EST ECT EST ECT 

1 0 12 0 13 0 9 P3 

2 90 107 90 108 9 28 P3 

4 11 60 11 55 28 71 P2 

3 64 91 64 94 28 56 P3 

6 106 124 55 73 106 125 P2 

5 40 50 73 84 56 66 P1 

9 92 127 92 126 56 95 P3 

8 103 128 103 126 100 127 P2 

7 91 101 126 139 95 109 P1 

10 149 164 138 154 149 164 P2 

      

Figure 2. Schedule length for the HMCT and LPS. 

5. Results and Discussion 

In this section, the proposed techniques have been 

evaluated through their comparison with HEFT, CPOP 

and PETS. Random task graph generator function has 

been implemented through which DAGs with diverse 
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attributes have been generated and then used for the 

experimental purposes. Moreover, evaluation of the 

proposed algorithms has also been made on the basis 

of task graphs from real world application. 

5.1. Attributes of the Task Graph  

The attributes of the DAGs depend on various input 
parameters such as, number of nodes in the graph (N), 
height/shape parameter of the graph (α), out degree of 
a node, communication to Computation Cost Ratio 
(CCR) and range percentage of computation cost (β). 
Different combinations of values (given below) have 
been selected in the DAG generation for the 
experimental purpose. 

N= {20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400} 

α = {0.5, 1.0, 1.5, 2.0} 

CCR = {3, 5, 7, 10, 15, 20, 25} 

Out_degree = {1, 2, 3, 4, 5} 

β = I0.25, 0.5, 0.75, 1.0I 

Height of a DAG is generated randomly from a 
uniform distribution whose mean is equal to sqrt(n)/α 
and its width from sqrt(n)xα. For small values of α, the 
generated DAG is longer and has low parallelism while 
a shorter DAG with high parallelism results if α is kept 
high. Heterogeneity among the processors is controlled 
through the range parameter β. A significant variation 
can be produced in the computation times of the tasks 
on different processors with large value of β. 

5.2. Comparison Metrics 

The comparison among the proposed techniques and 
the existing ones is made on the basis of different 
performance and cost metrics. A little description of 
these metrics is given below. 

• Make Span: Is the main performance metric which 
gives the overall completion time for all the tasks in 
a given graph. 

• SLR: As different task graphs with diverse attributes 
are generated and studied, SLR is computed in 
which schedule length is normalized to some lower 
bound. For an algorithm, SLR value is the ratio of 
its makespan and sum of minimum computation 
costs of tasks on the CP, i.e. 

                             
( )

makespan
SLR =

min CompCost_on_CP

                         

• Speedup: Is the third metric used for the comparison 
purpose of the algorithms which is obtained by 
dividing the sequential execution times of the 
graphs by their parallel execution times.  

• Efficiency: Is the ratio of speedup and the number of 
processors used. 

5.3. Experimental Results 

5.3.1. Randomly Generated Task Graphs 

The quality of the algorithms with respect to different 
attributes of the graphs mentioned above is evaluated 
by generating diverse set of random task graphs and 

the results are shown below. From the results, it can 
apparently be seen that the performance of the 
proposed algorithms is considerably well as compared 
with the existing algorithms. 

In Figure 3, average makespan for the proposed 
techniques and the existing ones is compared against 
different values of the shape parameter α. For each 
value of α, 100 task graphs were randomly generated 
and their makespans were obtained for the proposed 
and the existing algorithms selected here for the 
comparison purpose. The results show that the average 
makespan for both the proposed algorithms is less 
compared with HEFT, PETS and CPOP. For α=1, the 
percentage improvement in makespan of HMCT and 
LPS compared with HEFT is 8% and 10% 
respectively. 

M
ak
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 Shape Parameter 

Figure 3. Average make span for varying α 

Figure 4, 5 and 6 compare the algorithms for the 
average value of SLR obtained against varying α 
values, number of nodes and varying CCR values 
respectively. Again, 100 task graphs were generated 
for each case and the results were compared. The 
performance of an algorithm is considered best if it has 
smallest SLR value. On this basis, it can be seen from 
the Figures below that HMCT and LPS outperform the 
existing algorithms in most of the cases.  

Figure 4 shows that the average SLR value 
increases when the parallelism among the DAGs is 
increased i.e., the value of α is increased. The 
performance ranking of the algorithms for longer 
DAGs (when α is 0.5 and 1.0)  is HMCT, LPS, PETS, 
HEFT and CPOP. As the α reaches to 2.0, length of the 
generated DAG becomes much shorter and the 
performance of CPOP becomes comparable with 
HMCT and LPS. 

As the number of nodes increases in Figure 5, the 

difference of average SLR value of the proposed 

algorithms with the existing ones increases which 

shows that the performance of HMCT and LPS for 

large applications with more number of tasks is better 

as compared to small applications. The maximum 

percentage improvement of the proposed algorithms in 

this scenario is approximately 9%. 
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Figure 4. Average SLR for varying α. 

(13) 
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Figure 5. Average SLR for varying no of nodes. 
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Figure 6. Average SLR for varying CCR. 

Figure 6 shows the cases for CCR values of 3, 5, 7, 
10, 15, 20 and 25. Average value of SLR shows an 
increasing trend with the increase in value of CCR. For 
small values of CCR (3, 5), there is slight difference in 
the values of HMCT, LPS and HEFT. But as the CCR 
value increases, the performance of HMCT and LPS 
improves quite well. When CCR is larger, 
communication costs received and transferred by a task 
dominate the rank assignment function while for small 
CCR values, scheduling list order is not affected as 
dominating factor here is average computation cost. 
The proposed algorithms show approximately 8% 
improvement in the results compared with the existing 
well known algorithms. 

Speedup and efficiency comparison of the 
Algorithms for varying number of nodes and number 
of processors respectively is also made and given in 
the Figures 7 and 8, respectively. It is clear from 
Figure 7 that there is great improvement in the speedup 
obtained through HMCT and LPS compared with 
HEFT, PETS and CPOP. This improvement rises as 
the number of nodes are increased which shows that 
our proposed Algorithms outperform the other reported 
algorithms. The maximum speedup improvement of 
HMCT and LPS here is almost 10%. 
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Figure 7. Average speedup comparison. 
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Figure 8. Average efficiency comparison. 

5.3.2. Task Graphs of Real World Problems 

In another experiment, task graph of a real world 

problem, molecular dynamics code [11], has been 

taken. The task graph is an irregular one. The number 

of tasks in the graph and the structure of the 

application are defined already, only the CCR values 

have been used to evaluate the quality of the proposed 

algorithms with respect to average SLR. Figure 9 

shows that the proposed algorithms outperform the 

existing ones. 
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Figure 9. Average SLR for varying CCR. 

6. Conclusions 

Optimal mapping of the tasks in an HDCS requires 

efficient strategies for task scheduling problem in order 

to obtain near optimal results. In this paper, two new 

task scheduling algorithms have been proposed and 

extensively been tested against different comparison 

metrics and compared with the existing well known 

algorithms. Diverse set of task graphs with varying 

characteristics have randomly been generated and used 

for the comparison of the existing and proposed 

algorithms. The results of the comparative analysis are 

evident of the fact that the proposed algorithms 

perform significantly better in most of the cases. 
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