
270 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

 Novel Approaches for Scheduling Task Graphs in

Heterogeneous Distributed Computing

Environment

Ehsan Munir
1
, Saima Ijaz

1
, Sheraz Anjum

1
, Ali Khan

3
, Waqas Anwar

2
, and Wasif Nisar

1

1
Department of Computer Science, COMSATS Institute of Information Technology, Wah Cantt, Pakistan

2
Department of Computer Science, COMSATS Institute of Information Technology, Abbottabad, Pakistan

3
Department of Electrical Engineering, COMSATS Institute of Information Technology, Lahore, Pakistan

Abstract: Distributed heterogeneous computing environment comprises of diverse set of interconnected resources that are

capable of performing computationally complex tasks efficiently. In order to exploit the high performance of such a system, the

task scheduling problem demands for the efficient mapping of the tasks. Because of its fundamental importance, the problem

has been studied extensively and several algorithms have been proposed. In this paper, we propose two novel approaches for

the task scheduling problem and compare the proposed work on the basis of randomly generated task graphs with the well-

known existing algorithms. The simulation results elucidate on the basis of different cost and performance metrics that for

most of the scenarios, the proposed approaches outperform the existing ones considerably.

Keywords: Heterogeneous distributed computing systems, directed acyclic graphs, task scheduling, task prioritization,

makespan.

Received December 4, 2012; accepted September 2, 2013, published online June 26, 2014

1. Introduction

Availability of distributed set of powerful machines,
intercommunicating through high speed links, provides
a computing platform for executing applications with
multifarious computational demands. Applications
running on such Heterogeneous Distributed Computing
Systems (HDCS) are decomposed into set of tasks with
or without dependencies among themselves. Optimal
mapping of the tasks, i.e., their matching and then
appropriate scheduling on diverse set of machines in a
way to step up the overall efficiency of the system and
gain promising potentials of the distributed resources is
the main objective of the mapping algorithms for such
a distributed HDCS. Mapping of tasks to machines
should be done so as to reduce the overall execution
time of the application.

Generally, task scheduling problem is modeled by
Directed Acyclic Graph (DAG) in which application
tasks are shown through nodes of the graph and data
dependencies among the tasks are represented through
edges with communication costs labeled on the edges
and computation costs labeled on the nodes. The task
scheduling problem addressed here is a static model as
different properties of the application, such as
execution times of the tasks on various machines and
inter- task communication costs are known in advance.

Plethora of algorithms exists in the literature for

solving the task scheduling problem but, being NP-

complete [5], finding near optimal solution for the

problem requires more efficient scheduling strategies.

High s peed up and efficiency can be attained only if

mapping of tasks on machines is done appropriately as
it can truly exploit system parallelism. The motivation
behind this research work is to propose some new
strategies for excogitating ways to enhance the system
performance. Two novel algorithms have been
introduced in the paper that address the task scheduling
problem and perform mapping of the tasks to machines
in a way to lessen the overall time required for the
execution of the application. Proposed work has been
compared with the work in [6,13] in terms of different
performance and cost metrics such as efficiency,
speedup, Schedule Length Ratio (SLR) and makespan.
The comparison illustrates that the proposed
algorithms yield improved results over the existing
work.

The organization of the paper has been made as:
Section 2 demonstrates the task scheduling problem. A
brief description of the related work has been given in
section 3. Proposed algorithms are in section 4 and the
results have been presented in section 5. In the end,
section 6 concludes the paper.

2. Task Scheduling Problem

The task scheduling system consists of an application

program, some environment to run the application on

and a strategy for the scheduling. Generally, a DAG is

used for this purpose, with a set V of nodes

representing n tasks and set E of edges depicting the

dependencies among the tasks. There is an entry task

for each DAG with no parents and an end task with no

children.

Novel Approaches for Scheduling Task Graphs in Heterogeneous Distributed Computing Environment 271

The heterogeneous computing environment, on

which the application is to be executed, consists of a

set P of m autonomous processors intercommunicating

with each other through high speed networks of

varying bandwidth described in Bmxm matrix. Estimated

time to compute a task on every processor is given in a

computation cost matrix W of size n×m. The

communication cost, Ci, j for transferring output, datai,j,

of a task ti to tj , if both are being executed on same

processors, is 0. If this is not the case, then following

relation gives the communication cost, Ci, j between the

two dependent tasks.

 i, j x,y, j
C = data / Bi

For the sake of simplicity, data transfer cost is assumed
to be 1.0 in this case. The whole scenario is explained
with the help of an example DAG of Figure 1 with 10
nodes (tasks). Computation cost matrix is given in
Table 1.

Figure 1. DAG.

Table 1. Computation cost matrix.

Task P1 P2 P3

1 12 13 9

2 17 18 19

3 27 30 28

4 49 44 43

5 10 11 10

6 18 18 19

7 10 13 14

8 25 23 27

9 35 34 39

10 15 16 15

Let the earliest start time and earliest completion
time for the execution of a task ti on a processor pj be
EST(ti, pj) and ECT(ti, pj) respectively. EST for the
entry task, on all the processors, is 0 i.e.,

 0 jEST(t , p) = 0

For the rest of the tasks in the application graph, the
EST and ECT values are recursively computed using
the Equations 3 and 4 respectively. After the
scheduling of a task ti on a processor pj, the EST and

ECT become the Actual Start Time (AST) and Actual
Completion Time (ACT) for the task ti. An important
consideration here is that a task can be scheduled to
execute only if all of its parent tasks have already been
executed.

 ,(,) max{ [],max(())}i j p i jEST t p avail j ACT t C= +

 ,(,) (,)i j i j i jECT t p W EST t p= +

Where, tp belongs to the set of immediate predecessors
of task ti, avail[j] is the time when processor pj will be
available for the execution of the task ti and Ci,j is the
communication cost between the executing task and its
parent task. Finally, when all the tasks are mapped to
the appropriate processors, the overall completion time
of the task graph gives the schedule length/makes pan
for that application graph, i.e.

max{ ()}endmakespan ACT t=

Efficient scheduling of the application requires
adopting a scheduling strategy that minimizes the
makes pan.

3. Related Work

High performance of the HDCS demands for the
efficient scheduling strategies for an application.
Because of its fundamental importance, the problem
has been studied extensively and bunch of algorithms
exist in the literature. The classification of the
algorithms has been done into different categories such
as list scheduling algorithms [5, 7, 9, 10, 13], guided
random algorithms [3], cluster based [8] and task
duplication algorithms [1, 2, 4].

List scheduling algorithms have been chosen as a
research area for the work proposed in the paper. Here,
priority based approach is followed and an ordered list
of tasks is maintained on the basis of their priorities
[13]. Few of the algorithms in this category that exist
in literature are Mapping Heuristics (MH) [10],
Modified Critical Path (MCP) [14], Levelized Min
Time (LMT) [5], Dynamic Critical Path for Grids
(DCP-G) [12], Heterogeneous Earliest Finish Time
(HEFT) [13], Critical Path On a Processor (CPOP)
[13] and Performance Effective Task Scheduling
(PETS) [6]. A brief description of these algorithms is
given below.

3.1. Mapping Heuristic

The computation cost for a task, in case of MH, is the
ratio of number of instructions that are to be executed
in the task and the processor speed. Priorities are
assigned to the tasks on the basis of static upward
ranks. The main drawback associated with the MH
algorithm is that it does not follow insertion based
strategy [13].

3.2. Levelized Min Time

LMT is a two phase algorithm, task prioritization and
processor selection. In first phase, level-wise

1

2 3 4 5

6 7 8 9

10

2

8

5

3

4

7

5

3

5

3

4

4

5

7

3

1

4

(1)

(2)

(3)

(4)

(5)

272 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

prioritization of the tasks is done such that a lower
level task has higher rank than the higher level task.
Second phase assigns the tasks to the fastest processor
on the basis of computation and communication costs.
LMT, however, considers only the computation costs
of the tasks to assign the priorities.

3.3. Dynamic Critical Path for Grids

This algorithm considers the lower and upper bounds
for the starting time of a task and generates a Critical
Path (CP) on this basis. It follows Min-Min algorithm
strategy as a task is assigned to a processor that
executes it fastest. The main focus here is to minimize
the CP length.

3.4. Heterogeneous Earliest Finish Time

HEFT is one of the most well-known algorithms for
the scheduling of task graphs. Here, priorities are
assigned to the tasks on the basis of their upward ranks
which are based on average execution times of tasks
and average communication costs among the
processors of two successive tasks. A processor which
gives minimum finish time for a task is selected for its
execution.

3.5. Critical Path on a Processor

CPOP uses downward ranks along with upward ranks

for the task prioritization. Along with this, it uses the

CP of a graph and a critical processor is used for

mapping of tasks that lie on the CP. For remaining

tasks, the processor which gives minimum finish time

is selected for execution.

3.6. Performance Effective Task Scheduling

PETS algorithms has three phases. It performs level-
wise sorting of the tasks before task prioritization and
processor selection phases. In the first phase,
independent tasks are grouped together so that they can
be executed in parallel. Processor selection phase for
PETS is same as for HEFT and CPOP.

In our proposed algorithms, the rank computation
phase has been extended to include some more
attributes that affect the overall makespan of the
application. The modifications in the rank computation
process result in obtaining efficiency in the scheduling
phase of the algorithm. We have considered the
average computation costs of the tasks, the
communication costs that are required to transfer
output of the tasks to their immediate successors and
the received communication costs from the immediate
predecessors of the tasks. Besides these, we have also
considered the number of edges for each task i.e.,
number of tasks that are dependent on a particular task
so that, a task with more number of dependent tasks
may have higher rank. Detailed description of the
proposed work is given below. HEFT, CPOP and
PETS have been chosen for the purpose of comparison
with the proposed algorithms.

4. Proposed Algorithms

4.1. HMCT

Heterogeneous Minimum Completion Time (HMCT)

is the first proposed algorithm in the paper. HMCT has

two main phases: Task prioritization and processor

selection. Priorities of the task are computed on the

basis of their upward and downward ranks. Two new

factors, Output Transfer Cost (OTC) and Edge Percent

(EP) have been introduced to compute the downward

ranks along with the average computation cost of the

tasks. OTC basically is the total cost that is required

for transferring the output data from a parent task to all

its immediate child tasks, i.e., OTC for a task ti is the

total cost required to transfer the output of ti to its

immediate successors. The second new factor used in

the paper, EP, finds out the percentage of the tasks that

are directly dependent on the output of a task ti. By

doing this, a task that has more dependent tasks will

have higher rank and thus will be scheduled for

execution earlier, hence opening way for the execution

of dependent tasks.

The average computation cost of the task ti, (Avg_CC

(ti)) on all the processors is computed as:

()
m

j=1
i i i, jAvg_CC t = w / m∑

OTC for the end task is always 0; for the rest of the

tasks, it is computed by the following equation:

() ()
x

j =1
iOTC t = C i, j∑

Where, ti is the task whose OTC is to be computed and
x is the number of its successor task. If there are total E
edges in an application DAG then EP(ti) of a task ti
that has total x dependent tasks, is the percentage of
edges ti has from total E edges. Like OTC, EP for the
end task is 0 and for remaining tasks it is calculated
using the following relation:

i

x
EP(t) = ×100

E

Downward rank (rank_d) of a task ti is finally,
computed by combining all the three factors as shown
in the following relation.

() () () ()i i i irank_d t = Avg_CC t + OTC t + EP t

For the upward ranks, first of all Received Cost (RC) is
computed. RC is calculated using the following
relation.

() (() ())i i i, jRC t = max Avg_CC p + C p

Where, pi is the set of parents of ti. Finally, the upward

ranks (rank_u) are computed as:

() () ((()))i i irank_u t = RC t + max rank_u succ t

Where, succ(ti) is the set of immediate successors of ti.
Total rank (rank) for a task ti is the sum of its upward
and downward ranks, i.e.

() () ()i i irank t = rank_d t + rank_u t

(6)

(7)

(12)

(11)

(10)

(9)

(8)

Novel Approaches for Scheduling Task Graphs in Heterogeneous Distributed Computing Environment 273

In the second phase, appropriate processor for the
execution of a task is to be selected. EST and ECT
values for all the tasks are computed on all the available
set of processors using the Equations 3 and 4. The
selected processor is the one which gives the least value
for ECT of the task. Like HEFT, the proposed
Algorithms work on the insertion based policy,
according to which, a task can be scheduled between
two already scheduled tasks if there is an idle time slot
available, provided the priority constraints are not
violated.

4.2. Level-wise Prioritization and Scheduling

Level-wise Prioritization and Scheduling (LPS)

approach, second technique proposed in the paper, has

an additional phase, level wise sorting of the tasks,

besides the task prioritization and processor selection

phases. In the level wise sorting phase, DAG is

traversed in a way such that independent tasks at each

level are grouped together so that they can run in

parallel. Task prioritization and processor selection

phases are same as for HMCT. The pseudo codes for

both the algorithms HMCT and LPS have been

summarized in Algorithms 1 and 2 respectively. Both

the proposed algorithms are explained with the

example DAG of Figure 1. Table 2 shows computed

Avg_CC, OTC, RC, EP and rank value for all the tasks.

According to the rank, the priority list for HMCT is t1,

t2, t4, t3, t5, t6, t9, t8, t7 and t10. LPS priority list, on the

other hand is, t1, t2, t4, t3, t6, t5, t9, t8, t7 and t10. ECT and

EST for the tasks on all the processors are given in

Table 3 for HMCT Algorithm. These attributes can be

computed for LPS Algorithms in the same way. For

this particular example, the schedule length obtained

through both the proposed algorithms is same as shown

in Figure 2, but this certainly is not the case for each

generated DAG. HMCT and LPS generate schedule

length of 154 while the results of HEFT, CPOP and

PETS are 208, 167 and181 respectively.

Algorithm 1: HMCT algorithm

Input: DAG, number of processors.

Output: Scheduled tasks, make span.

do (beginning from entry node of the DAG)

Compute the downward ranks (rank_d) for all the tasks by

traversing the task graph downward.

do (beginning from end node of the DAG)

Compute the upward ranks (rank_u) for all the tasks by

traversing the task graph upward.

Compute the overall ranks of the tasks by summing up the

downward and upward ranks.

Set the priorities of the tasks according to the non-increasing

order of their overall ranks.

while (there are tasks that have not yet been scheduled)

{

a. Select the highest priority task.

b. Compute ECT of the task on each processor by following

the insertion based policy.

c. Assign the task to the processor that gives least ECT.

}

Algorithm 2: LPS algorithm.

Input: DAG, number of processors.

Output: Scheduled tasks, make span.

Do (beginning from entry node of the DAG)

Compute the downward ranks (rank_d) for all the tasks by

traversing the task graph downward.

Do (beginning from end node of the DAG)

Compute the upward ranks (rank_u) for all the tasks by

traversing the task graph upward.

Compute the overall rank of the tasks by summing up the

downward and upward ranks.

Beginning from the first level, set the priorities of the tasks

according to the non-increasing order of their overall ranks on

each level such that a task at higher level has higher rank.

While (there are tasks that have not yet been scheduled)

 {

a. Select the highest priority task.

b. Compute ECT of the task on each processor by following

the insertion based policy.

c. Assign the task to the processor that gives least ECT.

}

 Table 2. Computed attributes for HMCT and LPS.

Task Avg_CC OTC RC EP Rank_D Rank_U Rank

1 11.33 169 0 25.00 205.33 279.67 485.00

2 18.00 122 92.33 12.50 152.50 279.67 432.17

3 28.33 51 66.33 12.50 91.83 242.00 333.83

4 45.33 132 13.33 18.75 196.08 204.00 400.08

5 10.33 43 42.33 6.25 59.58 218.00 277.58

6 18.33 76 96.33 6.25 100.58 190.67 291.25

7 12.33 35 81.33 6.25 53.58 175.67 229.25

8 25.00 19 93.00 6.25 50.25 187.33 237.58

9 36.00 43 64.33 6.25 85.25 158.67 243.92

10 15.33 0 94.33 0 15.33 94.33 109.67

Table 3. Computed EST and ECT on each processor and the

selected processor for HMCT.

Tasks

w.r.t

Priorities

Processors

Selected

Processor

P1 P2 P3

EST ECT EST ECT EST ECT

1 0 12 0 13 0 9 P3

2 90 107 90 108 9 28 P3

4 11 60 11 55 28 71 P2

3 64 91 64 94 28 56 P3

6 106 124 55 73 106 125 P2

5 40 50 73 84 56 66 P1

9 92 127 92 126 56 95 P3

8 103 128 103 126 100 127 P2

7 91 101 126 139 95 109 P1

10 149 164 138 154 149 164 P2

Figure 2. Schedule length for the HMCT and LPS.

5. Results and Discussion

In this section, the proposed techniques have been

evaluated through their comparison with HEFT, CPOP

and PETS. Random task graph generator function has

been implemented through which DAGs with diverse

274 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

attributes have been generated and then used for the

experimental purposes. Moreover, evaluation of the

proposed algorithms has also been made on the basis

of task graphs from real world application.

5.1. Attributes of the Task Graph

The attributes of the DAGs depend on various input
parameters such as, number of nodes in the graph (N),
height/shape parameter of the graph (α), out degree of
a node, communication to Computation Cost Ratio
(CCR) and range percentage of computation cost (β).
Different combinations of values (given below) have
been selected in the DAG generation for the
experimental purpose.

N= {20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400}

α = {0.5, 1.0, 1.5, 2.0}

CCR = {3, 5, 7, 10, 15, 20, 25}

Out_degree = {1, 2, 3, 4, 5}

β = I0.25, 0.5, 0.75, 1.0I

Height of a DAG is generated randomly from a
uniform distribution whose mean is equal to sqrt(n)/α
and its width from sqrt(n)xα. For small values of α, the
generated DAG is longer and has low parallelism while
a shorter DAG with high parallelism results if α is kept
high. Heterogeneity among the processors is controlled
through the range parameter β. A significant variation
can be produced in the computation times of the tasks
on different processors with large value of β.

5.2. Comparison Metrics

The comparison among the proposed techniques and
the existing ones is made on the basis of different
performance and cost metrics. A little description of
these metrics is given below.

• Make Span: Is the main performance metric which
gives the overall completion time for all the tasks in
a given graph.

• SLR: As different task graphs with diverse attributes
are generated and studied, SLR is computed in
which schedule length is normalized to some lower
bound. For an algorithm, SLR value is the ratio of
its makespan and sum of minimum computation
costs of tasks on the CP, i.e.

()

makespan
SLR =

min CompCost_on_CP

• Speedup: Is the third metric used for the comparison
purpose of the algorithms which is obtained by
dividing the sequential execution times of the
graphs by their parallel execution times.

• Efficiency: Is the ratio of speedup and the number of
processors used.

5.3. Experimental Results

5.3.1. Randomly Generated Task Graphs

The quality of the algorithms with respect to different
attributes of the graphs mentioned above is evaluated
by generating diverse set of random task graphs and

the results are shown below. From the results, it can
apparently be seen that the performance of the
proposed algorithms is considerably well as compared
with the existing algorithms.

In Figure 3, average makespan for the proposed
techniques and the existing ones is compared against
different values of the shape parameter α. For each
value of α, 100 task graphs were randomly generated
and their makespans were obtained for the proposed
and the existing algorithms selected here for the
comparison purpose. The results show that the average
makespan for both the proposed algorithms is less
compared with HEFT, PETS and CPOP. For α=1, the
percentage improvement in makespan of HMCT and
LPS compared with HEFT is 8% and 10%
respectively.

M
ak

e
sp

an

 Shape Parameter

Figure 3. Average make span for varying α

Figure 4, 5 and 6 compare the algorithms for the
average value of SLR obtained against varying α
values, number of nodes and varying CCR values
respectively. Again, 100 task graphs were generated
for each case and the results were compared. The
performance of an algorithm is considered best if it has
smallest SLR value. On this basis, it can be seen from
the Figures below that HMCT and LPS outperform the
existing algorithms in most of the cases.

Figure 4 shows that the average SLR value
increases when the parallelism among the DAGs is
increased i.e., the value of α is increased. The
performance ranking of the algorithms for longer
DAGs (when α is 0.5 and 1.0) is HMCT, LPS, PETS,
HEFT and CPOP. As the α reaches to 2.0, length of the
generated DAG becomes much shorter and the
performance of CPOP becomes comparable with
HMCT and LPS.

As the number of nodes increases in Figure 5, the

difference of average SLR value of the proposed

algorithms with the existing ones increases which

shows that the performance of HMCT and LPS for

large applications with more number of tasks is better

as compared to small applications. The maximum

percentage improvement of the proposed algorithms in

this scenario is approximately 9%.

 A
v
er

ag
e

S
L

R

 Shape Parameter

Figure 4. Average SLR for varying α.

(13)

Novel Approaches for Scheduling Task Graphs in Heterogeneous Distributed Computing Environment 275

 A
v
er

ag
e

S
L

R

 Number of Nodes

Figure 5. Average SLR for varying no of nodes.

A
v
er

ag
e

S
L

R

 CCR

Figure 6. Average SLR for varying CCR.

Figure 6 shows the cases for CCR values of 3, 5, 7,
10, 15, 20 and 25. Average value of SLR shows an
increasing trend with the increase in value of CCR. For
small values of CCR (3, 5), there is slight difference in
the values of HMCT, LPS and HEFT. But as the CCR
value increases, the performance of HMCT and LPS
improves quite well. When CCR is larger,
communication costs received and transferred by a task
dominate the rank assignment function while for small
CCR values, scheduling list order is not affected as
dominating factor here is average computation cost.
The proposed algorithms show approximately 8%
improvement in the results compared with the existing
well known algorithms.

Speedup and efficiency comparison of the
Algorithms for varying number of nodes and number
of processors respectively is also made and given in
the Figures 7 and 8, respectively. It is clear from
Figure 7 that there is great improvement in the speedup
obtained through HMCT and LPS compared with
HEFT, PETS and CPOP. This improvement rises as
the number of nodes are increased which shows that
our proposed Algorithms outperform the other reported
algorithms. The maximum speedup improvement of
HMCT and LPS here is almost 10%.

A
v
er

ag
e

S
p

ee
d
u
p

 Number of Nodes

Figure 7. Average speedup comparison.

 A

v
er

ag
e

E
ff

ic
ie

n
cy

 Number of processers

Figure 8. Average efficiency comparison.

5.3.2. Task Graphs of Real World Problems

In another experiment, task graph of a real world

problem, molecular dynamics code [11], has been

taken. The task graph is an irregular one. The number

of tasks in the graph and the structure of the

application are defined already, only the CCR values

have been used to evaluate the quality of the proposed

algorithms with respect to average SLR. Figure 9

shows that the proposed algorithms outperform the

existing ones.

A

v
er

ag
e

S
L

R

 CCR

Figure 9. Average SLR for varying CCR.

6. Conclusions

Optimal mapping of the tasks in an HDCS requires

efficient strategies for task scheduling problem in order

to obtain near optimal results. In this paper, two new

task scheduling algorithms have been proposed and

extensively been tested against different comparison

metrics and compared with the existing well known

algorithms. Diverse set of task graphs with varying

characteristics have randomly been generated and used

for the comparison of the existing and proposed

algorithms. The results of the comparative analysis are

evident of the fact that the proposed algorithms

perform significantly better in most of the cases.

References

[1] Bajaj R. and Agrawal D., “Improving Scheduling
of Tasks in a Heterogeneous Environment,”
IEEE Transaction on Parallel and Distributed
Systems, vol. 15, no. 2, pp. 107-118, 2004.

[2] Basker S. and SaiRanga P., “Scheduling Directed
A-cyclic Task Graphs on Heterogeneous
Network of Workstations to Minimize Schedule
Length,” in Proceedings of International
Conference on Parallel Processing Workshops,
pp. 97-103, 2003.

[3] Dhodhi K., Ahmad I., and Yatama A., “An
Integrated Technique for Task Matching and
Scheduling onto Distributed Heterogeneous
Computing Systems,” Journal of Parallel and
Distributed Computing, vol. 62, no. 9, pp. 1338-
1361, 2004.

[4] Dogan A. and Ozguner F., “LDBS: Duplication
based Scheduling Algorithm for Heterogeneous
Computing Systems,” in Proceedings of
International Conference on Parallel Processing,
pp. 352-359, 2002.

276 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

[5] Ijaz S., Munir E., Nisar W., and Anwar W.,

“Efficient Scheduling Strategy for Task Graphs

in Heterogeneous Computing Environment,” the

International Arab Journal of Information

Technology, vol. 10, no. 5, pp. 486-492, 2013.

[6] Ilavarasan E., Thambidurai P., and Mahilmannan

R., “Performance Effective Task Scheduling

Algorithm for Heterogeneous Computing

System,” in Proceedings of the 4
th
 International

Symposium on Parallel and Distributed

Computing, Lille, pp. 28-38, 2005.

[7] Iverson M., Ozguner F., and Follen G.,

“Parallelizing Existing Applications in a

Distributed Heterogeneous Environment” in

Proceedings of 4
th
 Heterogeneous Computing

Workshop, pp. 93-100, 1995.

[8] Kafil M. and Ahmed I., “Optimal Task

Assignment in Heterogeneous Distributed

Computing Systems,” IEEE Concurrency, vol. 6,

no. 3, pp. 42-51, 1998.

[9] Kim S., “A General Approach to Mapping of

Parallel Computation upon Multiprocessor

Architectures,” available at:

ftp://ftp.cs.utexas.edu/pub/ techreports/ tr88-04.

pdf, last visited 1988.

[10] Mahamat H. and Azween A., “A New Grid

Resource Discovery Framework,” the

International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 99-107, 2011.

[11] Munir E., Mohsin S., Hussain A., Nisar M., and

Ali S., “SDBATS: A Novel Algorithm for Task

Scheduling in Heterogeneous Computing

Systems,” in Proceedings of the 27
th

International Parallel and Distributed

Processing Symposium Workshops and PhD

Forum, Cambridge, USA, pp. 43-53, 2013.

[12] Rahman M., Venugopal S., and Buyya R., “A

Dynamic Critical Path Algorithm for scheduling

Scientific Workflow Applications on Global

Grids,” in Proceedings of the 3
rd

 IEEE

International Conference on e-Science and Grid

Computing, Bangalore, pp. 35-42, 2007.

[13] Topcuglou H., Hariri S., and Wu M.,

“Performance Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing,”

IEEE Transaction on Parallel and Distributed

Systems, vol. 13, no. 3, pp. 260-274, 2002.

[14] Wu M. and Gajski D., “Hypertool: A

Programming Aid for Message Passing

Systems,” IEEE Transaction on Parallel and

Distributed Systems, vol. 1, no. 3, pp. 330-343

1990.

Ehsan Munir received his PhD

degree in computer software and

theory from Harbin Institute of

Technology Harbin, China in 2008.

He completed his MS degree in

computer science from Barani

Institute of Information Technology,

Pakistan in 2001. Currently, he is an associate

professor and head in the Department of Computer

Science at COMSATS Institute of Information

Technology, Pakistan. His research interests are task

scheduling algorithms in heterogeneous parallel and

distributed computing.

Samia Ijaz received her BS degree

in computer science and Engineering

from University of Engineering and

Technology, Pakistan, in 2005. She

has recently completed her MS in

computer sciences from COMSATS

Institute of Information Technology,

Pakistan, in 2011. Her research interests include

computer networks, task scheduling algorithms in

heterogeneous computing and image processing.

Sheraz Anjum received PhD degree

in Engineering microelectronics and

solid-state electronics from Institute

of Microelectronics, Graduate

University of Chinese Academy of

Sciences, China, in 2008, the degree

of MSc computer engineering from

University of Engineering and Technology, Pakistan,

in 2005 and MSc in electronics from Quaid-E-Azam

University, Pakistan, in 1999. Currently he is working

as Associate Professor at the Department of Electrical

Engineering, COMSATS Institute of Information

Technology, pakistan. His research interests include

but not limited to digital system design, design and

analysis of networks on chip architectures and

algorithms, reconfigurable architectures, multi-

processor heterogeneous computing and design of

advance DSP architecture.

Novel Approaches for Scheduling Task Graphs in Heterogeneous Distributed Computing Environment 277

Ali Khan completed his BS degree

in electrical engineering from

University of Engineering &

Technology, Pakistan in 2003 and

PhD degree in information and

communication engineering from

Harbin Institute of Technology,

Harbin, China (PRC) in 2008. He is an Assistant

Professor in Electrical Engineering Department at

COMSATS Institute of Information Technology,

Pakistan. he is also Head of Wireless Sensor Networks

Research Group and supervising graduate and post

graduate research in the areas of mobile ad-hoc

networks, distributed computing, WSN applications,

MAC layer issues and mote design.

Waqas Anwar received his PhD

degree in computer science from

Harbin Institute of Technology

Harbin, China in 2008. He is

currently an assistant professor in

the Department of Computer

Science at COMSATS Institute of

Information Technology, Pakistan. His areas of

research are NLP and computational intelligence.

Wasif Nisar received his PhD

degree candidate in computer

science from Institute of Software,

GUCAS China in 2008. He received

his BSc degree in 1998 and MSc

degree computer science in 2000

from University of Peshawar,

Pakistan. His research interest includes software

estimation, software process improvement, distributed

systems, databases and CMMI-based project

management.

