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Abstract: Gene expression of an organism contains all the information that characterises its observable traits. Researchers 

have invested abundant time and money to quantitatively measure the expressions in laboratories. On account of such 

techniques being too expensive to be widely used, the correlation between expressions of certain genes was exploited to 

develop statistical solutions. Pioneered by the National Institutes of Health Library of Integrated Network-Based Cellular 

Signature (NIH LINCS) program, expression inference techniques has many improvements over the years. The Deep Learning 

for Gene expression (D-GEX) project by University of California, Irvine approached the problem from a machine learning 

perspective, leading to the development of a multi-layer feedforward neural network to infer target gene expressions from 

clinically measured landmark expressions. Still, the huge number of genes to be inferred from a limited set of known 

expressions vexed the researchers. Ignoring possible correlation between target genes, they partitioned the target genes 

randomly and built separate networks to infer their expressions. This paper proposes that the dimensionality of the target set 

can be virtually reduced using deep autoencoders. Feedforward networks will be used to predict the coded representation of 

target expressions. In spite of the reconstruction error of the autoencoder, overall prediction error on the microarray based 

Gene Expression Omnibus (GEO) dataset was reduced by 6.6%, compared to D-GEX. An improvement of 16.64% was 

obtained on cross platform normalized data obtained by combining the GEO dataset and an RNA-Seq based 1000G dataset. 
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1. Introduction 

The overview of an organism's cellular function can be 

obtained by collectively measuring the expression of 

its genes. Gene expression profiling is the area in 

molecular biology that performs this key functionality 

[9]. The expression of a gene is the quantity that 

describes the mapping from the organism's genotype to 

its phenotype. Proteins and RNAs are synthesized 

using this information. Several clinical techniques are 

employed to directly measure the expression of a gene. 

Deoxyribonucleic Acid (DNA) microarrays measure 

the relative activity of previously identified target 

genes [2]. Sequence based techniques like Ribonucleic 

Acid (RNA) -Seq provide information on the 

sequences of genes in addition to their expression 

level. Thus, gene expression can be viewed as a 

quantitative representation of an organism's genetic 

code. Regulation of gene expression is crucial for its 

overall development [1]. Expression is profiled under a 

variety of conditions such as diseases, drug intake and 

induced genetic mutations, to understand the inner 

workings of the organism [2].  

The methods to measure the gene expression can be 

broadly classified under two categories, clinical and 

statistical. The Connectivity Map (CMap) project is an 

example of the clinical technique [14]. Even with the 

advent of latest technological innovations, whole 

genome expression profiling is too expensive to be 

used in an academic set up. The CMap project in the 

initial phase was able to perform just 564 genome wide 

expression profiles using the Affymetrix GeneChip 

microarrays [2]. On the contrary, statistical methods 

rely on inferring the expression of several genes using 

the directly measured expressions of certain carefully 

selected genes. These techniques rely on the high 

correlation between the thousands of genes in the 

human genome. The Library of Integrated Network-

based Cellular Signatures (LINCS) program initiated 

by the National Institute of Health, USA employed this 

observation to formulate a cost effective alternative to 

whole genome expression profiling [17]. They used 

Principal Components Analysis (PCA) to discover that 

about 1000 genes explained close to 80% of the 

variance in the genome expression. The 978 relevant 

genes that constituted this set were termed as landmark 

genes. L1000 Luminex bead technology was used to 

measure the expression of this select set of genes [17]. 

The landmark expression signature was considered to 

accurately represent the cellular state at any given 

time. Using this information, the expressions of the rest 

were inferred by Linear Regression (LR). The 

unmeasured inferred genes were termed as target genes 

[2].  

However, the relative number of the target genes 

(about 21000) with respect to the landmark genes (978) 

vexed the researchers. The LINCS program assumed 
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linear relationship between the target and landmark 

gene expressions, and thus employed multi-task LR to 

predict the expressions of the target genes. Effectively, 

they had to build approximately 21000 models, each 

one fitted for a specific target gene, in order to profile 

the genome wide gene expression. The predicted 

values were compared with the expression profiles 

from the L1000 project. This linear model had the 

advantage of being highly scalable, but it failed to 

capture the non-linear relationships between some 

genes. Poor scalability of non-linear techniques like 

kernel machines steered the researchers away from 

such alternatives [2]. Researchers at the University of 

California, Irvine (UCI) decided that a machine 

learning approach would be ideal for expression 

profiling [2]. Their argument was that it would 

enhance the scalability and ensure better data 

representation. The complex hierarchical non linear 

relationships between genes were captured using deep 

learning [7, 8]. Deep learning, also called hierarchical 

learning uses multiple layers of abstraction to learn 

complex data representations [23]. The study at UCI 

culminated in the formulation of D-GEX, which is a 

multi-task multi-layer feed-forward neural network. 

The best performing model with 5 layers (1 input layer, 

3 hidden layers of 9000 nodes each, 1 output layer) 

was reported to be 15% more accurate than the LR 

model [2]. 

The D-GEX project has a handful of drawbacks. 

Some are general to any deep neural network, while 

the high dimensionality of the human genome dataset 

poses a significant computational inefficiency [26]. 

Theoretically, deeper networks are able to capture 

complex non-linear relationships within the data. But 

as the depth of the network grows, it becomes 

increasingly difficult to train the network because the 

errors propagated back towards the lower layers keeps 

on decreasing [3]. This is known as the vanishing 

gradient problem in deep neural networks [22]. Thus 

there is little or no change in weights of the first few 

layers. Hence, search for better results in deeper 

networks is hindered by this bottleneck. The 

dimensions the human genome expression data is 

978x21290 (978 landmarks versus 21290 targets) [23]. 

Large number of features results in extremely slow 

training [13]. In addition to that, it is much harder to 

find a good solution when the number of features is 

large. This particular hiccup is known as the curse of 

dimensionality. High dimensional datasets are prone to 

become too sparse, which means that two randomly 

chosen instances are highly likely to be very far away 

from each other [3]. Previously unseen instances may 

diverge from the instances that the network was trained 

on and thus predictions will be inaccurate. Having 

greater dimensions ushers in the additional risk of 

overfitting the data [6]. Ideally, large number of 

training instances can account for the high 

dimensionality, but increasing the sample size is not 

easy in this particular context of expression signatures 

[3]. Coming to the specifics of the D-GEX model, the 

hidden units are activated using the hyperbolic tangent 

function [2]. With its mean at 0, hyperbolic tangent is a 

better non linear activation function than logistic 

function. But the function saturates to +1 or -1 for 

higher positive and negative inputs respectively. 

Effectively, the derivatives are pulled down to zero and 

the vanishing gradient problem kicks in [3]. Another 

key drawback of D-GEX was that training was done 

separately for randomly segregated batches of target 

genes due to hardware limitations [2]. This in turn 

increases the overall error. Also, by partitioning the 

target genes randomly, they completely ignored 

possible correlation between them.  

Here, we present an alternative way to profile 

human genome expression. Since the key bottleneck is 

the large number of target genes, we propose that a 

deep autoencoder can be used to encode the target 

expression into a concise representation [11]. A 

modified multi-layer feed-forward neural network, that 

keeps the vanishing gradient problem at bay, is used to 

perform the actual prediction by regression. In order to 

ascertain the performance improvement of this 

encoded model over D-GEX, we compared the 

prediction errors of both on the cross-quantiled data 

from the Microarray based Gene Expression Omnibus 

(GEO) data and RNA-Seq based 1000G data. 

Additionally, the model was trained on the original 

GEO data to efficiently predict entire target profiles 

(21290 target genes) using a single network.  

2. Proposed Model  

Similar to the D-GEX approach, gene expression 

inference is treated as a supervised learning problem. 

The learning scenario is akin to that of multi-task 

regression. Expression profiles that were generated by 

the LINCS program are used to train and test models 

built for the expression inference. 

2.1. Dataset 

Gene Expression Omnibus (GEO) is a publicly 

available database repository of high throughput gene 

expression data and hybridization arrays, chips, 

microarrays [23]. The GEO expression data was made 

publicly available by the LINCS program. It was 

curated by the Broad Institute from the publicly 

available GEO database. It consists of 112634 gene 

expression profiles from the Affymetrix microarray 

platform. The 978 landmark genes and 21290 target 

genes of the human genome are represented by 22268 

probes per profile. The expression levels are 

normalized into the range 4-15 [2]. 

A supplementary Illumina RNA-Seq platform 

dataset, titled as 1000 Genomes (1000G) RNA-Seq 

expression data is also used for training. This dataset is 

not derived from the Affymetrix Microarray platform 
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and thus is used for testing the cross platform viability 

of the models developed. The expression levels of 462 

profiles of lymphoblastoid cell line samples measured 

in RPKM format based on Gencode V12 annotations 

constitute 1000G [2]. 

Since the two datasets that are used for training are 

derived from different platforms, there may be probes 

that are present in one but not in the other. One 

Gencode probe may include multiple probes of the 

Microarray platform [2]. This means that not all genes 

covered in the GEO dataset is covered in the 1000G 

dataset. Using the gene ID and name information from 

the two datasets, probes that are common to both 

platforms were identified and the rest are pruned off. 

After pruning, we are left with 943 landmark genes and 

9520 target genes, which exactly matched the feature 

set that was used to train D-GEX. To bring the two 

datasets in the same range, they are quantile 

normalized with standard normal distribution as 

reference [2]. This normalized GEO Expression data is 

used for training the models. The normalized 1000G 

dataset is set aside for testing and inferring the cross 

platform viability of the predictions. The original GEO 

dataset is used to build a complete model that can 

predict the entire target signature from the landmark 

expression. 

2.2. Encoding Phase Using Auto Encoder 

Applying Principal Components Analysis (PCA) 

exclusively for the target gene set, it was identified that 

significant correlation does exist between the target 

genes [2]. PCA projected the 21290 target genes into 

approximately 500 features as shown in Figure 1, with 

almost 99% of the variance retained. The 

reconstruction error was not that significant, either.  

 

 

Figure 1. Principal components analysis on target expressions. 

 Thus, the target expression can effectively be 

represented using much less number of features, 

without compromising on the accuracy. PCA is used 

solely to validate our attempt to encode the target 

signature. The projections made by PCA are based on 

an assumption of linearity and thus cannot represent 

the complexity of correlation patterns [12, 25]. Instead, 

autoencoders are employed to form complex nonlinear 

encodings of the target expressions [21]. 

Autoencoders are artificial neural networks capable 

of learning efficient coding of the input data without 

any supervision [27]. Basically, an auto encoder learns 

to copy its inputs to its outputs. Effectively, the auto 

encoder learns the identity function, under certain 

constraints [3]. The constraints are defined by the 

architecture of the network. The number of neurons in 

the output layer must be equal to that of the number of 

inputs. By limiting the number of nodes in the hidden 

layer to a value less than the number of nodes in the 

input and output layers, the auto encoder learns concise 

representations of input data. Auto encoders learn by 

reducing the error in reconstructing the input data [27]. 

An auto encoder typically consists of two phases-an 

encoder phase and a decoder phase. The encoder phase 

learns the coding and the decoder phase reconstructs 

the inputs from the learnt coding. Stacking auto 

encoders one above another creates a deep auto 

encoder which can learn much more complex coding 

[3]. The cardinal principle of a deep auto encoder is 

that it is symmetrical about its central hidden layer. A 

technique called tying weights, where the weights of 

the encoder phase are reused for the decoder phase in 

the transposed form can simplify the training process 

[3]. 

We separately trained two auto encoders-one to 

encode the whole target set (21290 genes) and another 

to encode the target genes in cross-platform 

normalized dataset. The ideal length of the coding was 

experimentally determined to be 2000. This choice 

accounts for the non-linearity which was not 

considered by PCA. For ease of training, deep 

architectures with 3 hidden layers were selected. 

Different number of nodes were tried for the first and 

third layer (5000, 6000, 8000), with the innermost 

encoding layer consisting of 2000 neurons [2].  

2.3. Using the Coded Representation 

In order to test the usability and effectiveness of the 

coding, a multilayer feed forward network is 

constructed and trained on the landmark expressions 

and the target coding. Except the input layer nodes, 

each node in this predictor network is a neuron with a 

nonlinear activation function. Such networks are 

widely identified as Multi-Layer Perceptrons (MLP). 

Formally, an MLP can be considered as a non-linear 

transformation
NM RRf : , where M is the size of 

the input vector and N is the size of the output vector 

[2]. Deep networks are formed by introducing more 

layers in between the input and output layers.  

Two MLP networks were constructed-one each for 

the coding learnt by the two auto encoder models. The 

performance of these networks on both datasets was 

compared with the D-GEX model. A variety of 

changes were made to the MLP network of D-GEX. 
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The following subsections describe the nature and 

necessity of the alterations.  

1) Activation: the hyperbolic tangent function used in 

D-GEX can capture the non-linearity, but it is prone 

to the vanishing gradients problem since it saturates 

to ±1 for high/low input values [2]. The middle 

ground between the linear activation and purely 

non-linear activation is attained using Restricted 

Linear Units (ReLU) [16]. But the derivative of 

ReLU is pulled to 0 for negative values. The 

Exponential Linear Unit (ELU) was derived as an 

alternative to ReLU in neural networks [5]. The 

exponential linear function is defined as 





 .if x)α(e

.if x>x
f(x)=

x 01
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ELUs are preferred widely since they are not 

vulnerable to the vanishing gradient problem. This is 

because they are continuous everywhere, even at the 

origin, as depicted in Figure 2.  

 

 

Figure 2. Exponential linear function. 

ELUs have become the norm for non linear 

activation in recent times. The inner layers of our 

MLPs are formed using neurons with ELU activation. 

The output layer neurons are linear units since the 

output values are continuous [2]. 

2) Initialization: the vanishing gradient problem can be 

alleviated by the combination of a good activation 

function and initialization strategy [3]. Initializing 

weights randomly is a not preferred in deep neural 

networks because it can direct the cost function to 

local minima. An alternative is to sample from a 

normal distribution so that the total variance of the 

inputs of each layer and the total variance of the 

outputs are similar [15]. This ensures that the 

gradients would have the same variance before and 

after flowing through a layer. The mean and 

standard deviation is computed from the fan-in and 

fan-out of each. The He Initialization scheme for the 

Exponential Linear function samples from a normal 

distribution with mean 0 and standard deviation, 

outputinput nn 
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Or an uniform distribution between -r and +r where 
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This variance scaling initialization scheme is used for 

the lower layers of our MLP. Since the network is used 

for regression, the initial values of output layer is 

sampled from a uniform distribution in the range [-

1x10-4, 1x10-4] [2].  

3) Optimization: weights in neural networks are 

updated by the standard back-propagation algorithm 

[4]. A variety of optimization techniques helps to 

improve the training speed. Gradient descent is the 

most common technique for optimization [3]. 

Momentum optimization method was derived as a 

way to accelerate the simple gradient descent 

optimization [3]. Gradient descent simply updates 

the weights by subtracting the gradient of the cost 

function )(J  multiplied by the learning rate [3]. 

The key idea in Momentum optimization is to give 

sufficient weight to the previous gradients and not just 

the current derivative. Each epoch adds the local 

gradient to the momentum vector m and it updates the 

weights using this parameter [18]. 
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is momentum, and  

m =  

Nesterov Accelerated Gradient (NAG) is a small 

variant of the momentum optimization, which has been 

empirically observed to be faster than the momentum 

technique [2]. The key idea is to measure the gradient 

at a position slightly ahead in the direction of the 

momentum, instead of measuring it locally [3]. 
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With this slight modification, the convergence rate of 

the cost function is sufficiently improved [3]. 

Optimisation of both the MLP networks is done using 

NAG with the hyperparameter momentum set to 0.9.  

4) Regularization: a bane of neural networks is their 

tendency to overfit the data on which they were 

trained [22]. Some techniques that are adopted 

while training to prevent this problem is collectively 

known as regularization techniques. Simple 

techniques like L1 and L2 regularization imposes 

certain restrictions on the range of values that the 

weights of the network can take. The most widely 

used regularization technique is dropout [3]. The 

approach is very simple - at every training step, 

every neuron (except the output neurons) is 

temporarily dropped out of the network with a 

probability p. The dropped neurons will be 

completely ignored during this training step, but 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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may become active in the next one [16]. Here, the 

hyperparameter p (called dropout rate) controls the 

number of neurons dropped out in each step. 

Dropout prevents the formation of small cliques of 

interdependent neurons by forcing them to interact 

with every other neuron at some training step [3]. A 

good generalized model is obtained as a result. 

 Another crude form of regularization is performed by 

pre-empting training when the performance on a 

validation set (not part of the training set) keeps on 

diminishing for several consecutive epochs [24]. This 

technique is termed as early stopping. The models are 

backed up at regular intervals and when a better model 

is not obtained for k epochs, training is terminated and 

the last saved model is restored for testing and further 

analysis [3]. Both early stopping and dropout 

regularization are used together while training the 

MLP networks. Here, k was set as 25 and a dropout 

rate of 10% (or a keep rate of 90%) was chosen.  

5) Hidden Layer Configuration: there is no universal 

consensus on the ideal number of hidden layers and 

the number of neurons per hidden layer to be used 

while constructing a good neural network. A global 

solution is non-existent since the number varies 

from one application to another. Nevertheless, 

researchers have come up with certain workarounds 

where a quasi-ideal hidden layer configuration is 

deduced from known parameters. For instance, 

irrespective of the nature of the data, the number of 

neurons per hidden layer can be derived using the 

cardinality of the dataset and the sample size. One 

widely accepted observation is that a standard 2-

layer feed-forward neural network with 

2

22)(





m

N
Nm neurons in the first hidden layer 

and )

2

(

m

N
m neurons in the second hidden layer 

can represent N distinct input samples with any 

desired precision [24]. Here, m is the number of 

output neurons. For our MLP, such a 2 hidden layer 

model consisting of 11850 and 11826 nodes 

respectively is adopted (our chosen m=2000 and 

N≈70000, the number of training samples).  

6) Learning rate: the hyperparameter learning rate 

controls the step size in gradient descent [28]. 

Learning rate of the MLP is initialized to 5x10-4. For 

optimal learning, this value is programmatically 

tuned using a decay rate of 0.9 until it reaches a 

minimum of 1x10-5. A small subset of the training 

set is used for this tuning procedure.  

2.4. Selecting Best Model 

The cross platform normalized dataset is partitioned 

into 3 disjoint sets-train, validation and test. The 

dataset is initially divided into 20 clusters. From each 

cluster, a maximum of 4500 expression profiles are 

written onto train and 700 onto validation. The 

remnants of each cluster, if any, are added to test. The 

MLP has 943 nodes in the input layer and 2000 nodes 

in the output layer.  

The same approach is used to partition the original 

GEO dataset into GEO-train, GEO-val and GEO-test. 

This MLP has 978 input nodes and 2000 output nodes. 

In each case, the performance on the validation set is 

monitored every 5 epochs. Training will be stopped 

early if the latest model performs worse than the model 

25 epochs prior to it. The model with the least 

validation error is the best performing model. The 

performance is measured using the metric Mean 

Absolute Error (MAE) [2, 10]. For n samples, 

   ,

||

= 1=

N

yy

MAE
ii

n

i


 

Where yi s are the actual values and yi s are the 

predicted values [2, 10]. Different models are 

compared based on their MAE on the respective test 

sets. The 1000G dataset is used as a test set for the 

MLP trained on the quantile normalized data. 

3. Experimental Results 

In order to measure the effectiveness of this proposed 

approach, many networks are trained and tested. The 

first phase finds the ideal autoencoder configuration, 

subject to the hardware context. The second phase 

compares the prediction accuracy of our MLP model 

with the D-GEX model. All the models were trained 

and tested using the Tensorflow library in Python on 

an i7-3770 CPU@ 3.40GHz x8 [2].  

3.1. Autoencoder Phase 

In order to empirically determine the ideal number of 

nodes in the 3-hidden layer autoencoders, each of the 

candidate autoencoder architectures were trained for 

150 epochs and saved after their reconstruction errors 

were recorded. From Table 1, it is evident that the 

6000x2000x6000 configuration produced the best 3-

layer encoding. It can also be observed that as the 

coding length increased, the reconstruction error also 

deceased. But, as the difference in nodes between the 

first layer and coding layer increase, the reconstruction 

error starts to grow slightly upwards. It is noted that as 

number of nodes in the coding layer increases the train 

and test time is gradually increasing. Attempts to 

increase the number of neurons in the coding layer 

further were stalled due to lack of primary memory. 

The encoded target expressions were written onto disk 

for training the prediction networks. 

 

 

(7) 
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Table 1. Reconstruction error of autoencoders. 

Number of 

nodes in layers 1 

and 3 

Number of 

nodes in coding 

layer 

Reconstructi

on error 

Training 

time (min) 

Testing 

time 

(min) 

5000 500 0.7837 20 4 

6000 500 0.6554 23 5.3 

8000 500 0.6632 26 5.4 

5000 1000 0.6935 30 6 

6000 1000 0.5912 33 6.5 

8000 1000 0.6023 38 7.3 

5000 2000 0.5346 40 8 

6000 2000 0.4478 46 9.1 

8000 2000 0.4671 54 11 

3.2. MLP Phase 

Training of the MLP networks were done for a 

maximum of 250 epochs. The test sets were run 

through the saved MLP models to obtain the predicted 

target encodings, which were decoded using the saved 

auto encoder models. The final decoded target 

expressions were used to compute the MAE of the 

models.  

3.3. Performance of Models on Cross Platform 

Normalized Data 

Two 3-layer feed forward networks with 9000 nodes in 

each layer were trained on train for 250 epochs, one 

for target genes 0-4760 and another for genes 4760-

9520. The parameters were directly adapted from the 

best performing D-GEX model [2]. Activation of lower 

layers was done using hyperbolic tangent function. 

Output units had linear activation. Momentum 

technique was used for optimization. Dropout was 

performed with 10% dropout rate. MAE of both the 

networks was combined to produce the total error rate 

for genes 0-9520, which is described in Table 2. The 

performance of this D-GEX model was recorded and 

saved to compare with our models. 

Then, an MLP network was constructed to predict 

the encoded target expressions. The activation function 

for lower layers was the exponential linear function, 

and linear function for the output layer. Early stopping 

regularization was used alongside dropout with 10% 

dropout rate. Optimization was done using NAG 

technique. The number of nodes in the first two hidden 

layers was 11850 and 11826, respectively [19]. This 

post-encoding prediction network is titled E-MLP. 

Table 2. Comparison of models. 

Model Error on validation Error on test 

D-GEX 1.1342 1.2927 

E-MLP 0.9833 1.0775 

The decoded target predictions were compared to 

the original target expressions to derive the final error 

rate mentioned in Table 2. The encoded prediction 

model showcased 16.64% improvement in test error 

over D-GEX. 

 It can be observed that the reconstruction error of 

0.4478 can be reduced substantially by training a 

deeper auto encoder, which would further pull down 

the overall predictive error. Figure 3 show that our 

model has clear superiority over D-GEX in terms of 

the validation errors. 

 
Figure 3. Comparison of validation errors. 

The expressions of each target gene predicted by D-

GEX and our encoded MLP were compared, which is 

represented in Figure 4. Our model produced better 

predictions for 99.87% of the target genes. 

 

Figure 4. Comparison of gene-wise errors. 

3.4. Performance on 1000G Dataset 

Both the models were tested on the 1000G dataset, and 

the results are described in Table 3. Encoding the 

target before prediction boosted prediction accuracy 

over D-GEX by 49.23%. 

 Table 3. Predictive errors on 1000G. 

Model 
Genes 

(0-4760) 
Genes (4760-9520) Total 

D-GEX 0.7756 0.7757 1.5513 

E-MLP 0.3794 0.4082 0.7876 

From Figure 5. it is clearly observable that the 

predictive error on 1000G by D-GEX was almost 

halved by encoding, although the models were trained 

on the normalized version of GEO dataset. This is an 

evidence of the cross platform viability of the E-MLP 

model.  



Encoding Gene Expression Using Deep Autoencoders for Expression Inference                                                                      631 

 

Figure 5. Testing models on 1000G. 

3.5. Performance of Models on GEO Data 

Similar to the E-MLP model for the cross platform 

normalized data, another MLP was constructed and 

trained for the entire GEO dataset with 978 landmark 

genes and 21290 target genes. An autoencoder with 3 

hidden layers of 8000, 2000 and 8000 nodes 

respectively was used to encode the target expressions. 

The internal layer configuration was chosen on the 

basis of our observation that sudden decrease in the 

number of nodes per successive layers led to large 

reconstruction error. Deeper models were not viable 

due to limited main memory. The parameters for the 

predictive MLP network were directly adapted from 

the previous model. The hidden layer configuration of 

this MLP is identical to the 11850x11826 

configuration that was used in E-MLP. Since the 

output nodes have been significantly reduced by the 

encoding phase, there was no need to look beyond 2-

hidden layer feed-forward networks.  

For the consolidated model that performs genome-

wide microarray based profiling, the MAE on the test 

set was observed to be 1.8484. The principal 

contributor to this quantity was the reconstruction error 

of the autoencoder, which was close to 1.81. In order 

to compare the performance with the existing D-GEX 

model, the target gene set was divided into 5 disjoint 

sets of 4258 genes each. 5 MLP networks with an input 

layer consisting layer of 978 nodes, 3 hidden layers of 

9000 nodes and an output layer of 4258 genes were 

constructed and trained on each of these target subsets.  

The MAEs of all 5 models were computed and is 

shown in Table 4. Since the models are independent of 

each other, the overall error of the D-GEX model on 

the GEO dataset is computed as the sum of errors on 

all the models.  

Table 4. MAE on 5 disjoint sets of target genes. 

Set 1 Set 2 Set 3 Set 4 Set 5 

0.3873 0.4032 0.3982 0.3964 0.3862 

The overall error of the D-GEX model is thus 

1.9713. This translates to an accuracy improvement of 

6.6%. Although deeper encoders can produce better 

representations with minimum reconstruction error, 

hardware limitations hampered our attempts to increase 

the depth of the autoencoders. A deeper autoencoder 

can pull down the reconstruction error and thus 

improve the overall prediction accuracy.  

4. Conclusions and Future Work  

Gene expression profiling is an effective cost efficient 

method that characterises cellular state under various 

biological conditions. Direct measurement using 

laboratorial techniques like the Luminex Bead 

Technology is too expensive [15]. The D-GEX project 

successfully found an alternative using a deep learning 

solution. But the large number of target genes was a 

bottleneck in D-GEX, which was countered by 

building separate models for disjoint sets of target 

genes. Here, we have presented a statistical approach 

to profile thousands of genes at once using a 

combination of two neural network architectures. An 

auto encoder overcomes the redundancy by encoding 

the target expression into a concise representation. This 

enabled the construction of a single trained MLP to 

profile complete genome expressions. The MLP 

architecture of D-GEX is adopted for the second phase 

and modifications are made in the choice of the 

activation function, optimization technique, 

regularization strategy and hidden layer configuration. 

The modified encoded model resulted in a 16.64% 

improvement in performance on the normalized GEO 

data. The mean absolute error on the RNA-Seq based 

1000G data is lesser than that of the test error on GEO 

dataset. This lends proof to the cross platform viability 

of the model. Additionally, a performance 

improvement of 6.6% was obtained on the original 

GEO data.  

The percentage improvement is to be considered 

solely as a justification for the efficiency introduced by 

the encoding stage. In the current implementation, the 

depth of the autoencoder is severely restricted due to 

hardware limitations. Architectures with more number 

of hidden layers with a gradual decrease in the number 

of neurons in each successive layer of the encoder 

phase can further reduce the reconstruction error which 

would result in better encoding [20]. Training using 

multiple GPU cores could accelerate training and the 

additional memory would enable us to accommodate 

deeper architectures [2]. Using GPUs, deep networks 

could be efficiently trained using a greedy layer-wise 

approach. The change made to the distribution of the 

inputs of each layer as the parameters of the previous 

layers are updated is termed as Internal Covariance 

Shift (ICS). Batch Normalization (BN) addresses this 

problem [20]. This technique involves an additional 

normalization step in each layer, resulting in slower 

training in deep networks. Using BN for shallow 

networks is thus redundant. When the autoencoder is 



632                                                   The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021 

made deeper, using BN would be essential to prevent 

the vanishing gradient problem.  
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