
The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021 625

Encoding Gene Expression Using Deep

Autoencoders for Expression Inference

Raju Bhukya

Department of Computer Science and Engineering, National Institute of Technology, India

Abstract: Gene expression of an organism contains all the information that characterises its observable traits. Researchers

have invested abundant time and money to quantitatively measure the expressions in laboratories. On account of such

techniques being too expensive to be widely used, the correlation between expressions of certain genes was exploited to

develop statistical solutions. Pioneered by the National Institutes of Health Library of Integrated Network-Based Cellular

Signature (NIH LINCS) program, expression inference techniques has many improvements over the years. The Deep Learning

for Gene expression (D-GEX) project by University of California, Irvine approached the problem from a machine learning

perspective, leading to the development of a multi-layer feedforward neural network to infer target gene expressions from

clinically measured landmark expressions. Still, the huge number of genes to be inferred from a limited set of known

expressions vexed the researchers. Ignoring possible correlation between target genes, they partitioned the target genes

randomly and built separate networks to infer their expressions. This paper proposes that the dimensionality of the target set

can be virtually reduced using deep autoencoders. Feedforward networks will be used to predict the coded representation of

target expressions. In spite of the reconstruction error of the autoencoder, overall prediction error on the microarray based

Gene Expression Omnibus (GEO) dataset was reduced by 6.6%, compared to D-GEX. An improvement of 16.64% was

obtained on cross platform normalized data obtained by combining the GEO dataset and an RNA-Seq based 1000G dataset.

Keywords: Deep autoencoder, gene expression, internal covariance shift, machine learning, MLP, PCA.

Received March 5, 2019; accepted April 13, 2020

https://doi.org/10.34028/iajit/18/5/1

1. Introduction

The overview of an organism's cellular function can be

obtained by collectively measuring the expression of

its genes. Gene expression profiling is the area in

molecular biology that performs this key functionality

[9]. The expression of a gene is the quantity that

describes the mapping from the organism's genotype to

its phenotype. Proteins and RNAs are synthesized

using this information. Several clinical techniques are

employed to directly measure the expression of a gene.

Deoxyribonucleic Acid (DNA) microarrays measure

the relative activity of previously identified target

genes [2]. Sequence based techniques like Ribonucleic

Acid (RNA) -Seq provide information on the

sequences of genes in addition to their expression

level. Thus, gene expression can be viewed as a

quantitative representation of an organism's genetic

code. Regulation of gene expression is crucial for its

overall development [1]. Expression is profiled under a

variety of conditions such as diseases, drug intake and

induced genetic mutations, to understand the inner

workings of the organism [2].

The methods to measure the gene expression can be

broadly classified under two categories, clinical and

statistical. The Connectivity Map (CMap) project is an

example of the clinical technique [14]. Even with the

advent of latest technological innovations, whole

genome expression profiling is too expensive to be

used in an academic set up. The CMap project in the

initial phase was able to perform just 564 genome wide

expression profiles using the Affymetrix GeneChip

microarrays [2]. On the contrary, statistical methods

rely on inferring the expression of several genes using

the directly measured expressions of certain carefully

selected genes. These techniques rely on the high

correlation between the thousands of genes in the

human genome. The Library of Integrated Network-

based Cellular Signatures (LINCS) program initiated

by the National Institute of Health, USA employed this

observation to formulate a cost effective alternative to

whole genome expression profiling [17]. They used

Principal Components Analysis (PCA) to discover that

about 1000 genes explained close to 80% of the

variance in the genome expression. The 978 relevant

genes that constituted this set were termed as landmark

genes. L1000 Luminex bead technology was used to

measure the expression of this select set of genes [17].

The landmark expression signature was considered to

accurately represent the cellular state at any given

time. Using this information, the expressions of the rest

were inferred by Linear Regression (LR). The

unmeasured inferred genes were termed as target genes

[2].

However, the relative number of the target genes

(about 21000) with respect to the landmark genes (978)

vexed the researchers. The LINCS program assumed

https://doi.org/10.34028/iajit/18/5/1

626 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

linear relationship between the target and landmark

gene expressions, and thus employed multi-task LR to

predict the expressions of the target genes. Effectively,

they had to build approximately 21000 models, each

one fitted for a specific target gene, in order to profile

the genome wide gene expression. The predicted

values were compared with the expression profiles

from the L1000 project. This linear model had the

advantage of being highly scalable, but it failed to

capture the non-linear relationships between some

genes. Poor scalability of non-linear techniques like

kernel machines steered the researchers away from

such alternatives [2]. Researchers at the University of

California, Irvine (UCI) decided that a machine

learning approach would be ideal for expression

profiling [2]. Their argument was that it would

enhance the scalability and ensure better data

representation. The complex hierarchical non linear

relationships between genes were captured using deep

learning [7, 8]. Deep learning, also called hierarchical

learning uses multiple layers of abstraction to learn

complex data representations [23]. The study at UCI

culminated in the formulation of D-GEX, which is a

multi-task multi-layer feed-forward neural network.

The best performing model with 5 layers (1 input layer,

3 hidden layers of 9000 nodes each, 1 output layer)

was reported to be 15% more accurate than the LR

model [2].

The D-GEX project has a handful of drawbacks.

Some are general to any deep neural network, while

the high dimensionality of the human genome dataset

poses a significant computational inefficiency [26].

Theoretically, deeper networks are able to capture

complex non-linear relationships within the data. But

as the depth of the network grows, it becomes

increasingly difficult to train the network because the

errors propagated back towards the lower layers keeps

on decreasing [3]. This is known as the vanishing

gradient problem in deep neural networks [22]. Thus

there is little or no change in weights of the first few

layers. Hence, search for better results in deeper

networks is hindered by this bottleneck. The

dimensions the human genome expression data is

978x21290 (978 landmarks versus 21290 targets) [23].

Large number of features results in extremely slow

training [13]. In addition to that, it is much harder to

find a good solution when the number of features is

large. This particular hiccup is known as the curse of

dimensionality. High dimensional datasets are prone to

become too sparse, which means that two randomly

chosen instances are highly likely to be very far away

from each other [3]. Previously unseen instances may

diverge from the instances that the network was trained

on and thus predictions will be inaccurate. Having

greater dimensions ushers in the additional risk of

overfitting the data [6]. Ideally, large number of

training instances can account for the high

dimensionality, but increasing the sample size is not

easy in this particular context of expression signatures

[3]. Coming to the specifics of the D-GEX model, the

hidden units are activated using the hyperbolic tangent

function [2]. With its mean at 0, hyperbolic tangent is a

better non linear activation function than logistic

function. But the function saturates to +1 or -1 for

higher positive and negative inputs respectively.

Effectively, the derivatives are pulled down to zero and

the vanishing gradient problem kicks in [3]. Another

key drawback of D-GEX was that training was done

separately for randomly segregated batches of target

genes due to hardware limitations [2]. This in turn

increases the overall error. Also, by partitioning the

target genes randomly, they completely ignored

possible correlation between them.

Here, we present an alternative way to profile

human genome expression. Since the key bottleneck is

the large number of target genes, we propose that a

deep autoencoder can be used to encode the target

expression into a concise representation [11]. A

modified multi-layer feed-forward neural network, that

keeps the vanishing gradient problem at bay, is used to

perform the actual prediction by regression. In order to

ascertain the performance improvement of this

encoded model over D-GEX, we compared the

prediction errors of both on the cross-quantiled data

from the Microarray based Gene Expression Omnibus

(GEO) data and RNA-Seq based 1000G data.

Additionally, the model was trained on the original

GEO data to efficiently predict entire target profiles

(21290 target genes) using a single network.

2. Proposed Model

Similar to the D-GEX approach, gene expression

inference is treated as a supervised learning problem.

The learning scenario is akin to that of multi-task

regression. Expression profiles that were generated by

the LINCS program are used to train and test models

built for the expression inference.

2.1. Dataset

Gene Expression Omnibus (GEO) is a publicly

available database repository of high throughput gene

expression data and hybridization arrays, chips,

microarrays [23]. The GEO expression data was made

publicly available by the LINCS program. It was

curated by the Broad Institute from the publicly

available GEO database. It consists of 112634 gene

expression profiles from the Affymetrix microarray

platform. The 978 landmark genes and 21290 target

genes of the human genome are represented by 22268

probes per profile. The expression levels are

normalized into the range 4-15 [2].

A supplementary Illumina RNA-Seq platform

dataset, titled as 1000 Genomes (1000G) RNA-Seq

expression data is also used for training. This dataset is

not derived from the Affymetrix Microarray platform

Encoding Gene Expression Using Deep Autoencoders for Expression Inference 627

and thus is used for testing the cross platform viability

of the models developed. The expression levels of 462

profiles of lymphoblastoid cell line samples measured

in RPKM format based on Gencode V12 annotations

constitute 1000G [2].

Since the two datasets that are used for training are

derived from different platforms, there may be probes

that are present in one but not in the other. One

Gencode probe may include multiple probes of the

Microarray platform [2]. This means that not all genes

covered in the GEO dataset is covered in the 1000G

dataset. Using the gene ID and name information from

the two datasets, probes that are common to both

platforms were identified and the rest are pruned off.

After pruning, we are left with 943 landmark genes and

9520 target genes, which exactly matched the feature

set that was used to train D-GEX. To bring the two

datasets in the same range, they are quantile

normalized with standard normal distribution as

reference [2]. This normalized GEO Expression data is

used for training the models. The normalized 1000G

dataset is set aside for testing and inferring the cross

platform viability of the predictions. The original GEO

dataset is used to build a complete model that can

predict the entire target signature from the landmark

expression.

2.2. Encoding Phase Using Auto Encoder

Applying Principal Components Analysis (PCA)

exclusively for the target gene set, it was identified that

significant correlation does exist between the target

genes [2]. PCA projected the 21290 target genes into

approximately 500 features as shown in Figure 1, with

almost 99% of the variance retained. The

reconstruction error was not that significant, either.

Figure 1. Principal components analysis on target expressions.

 Thus, the target expression can effectively be

represented using much less number of features,

without compromising on the accuracy. PCA is used

solely to validate our attempt to encode the target

signature. The projections made by PCA are based on

an assumption of linearity and thus cannot represent

the complexity of correlation patterns [12, 25]. Instead,

autoencoders are employed to form complex nonlinear

encodings of the target expressions [21].

Autoencoders are artificial neural networks capable

of learning efficient coding of the input data without

any supervision [27]. Basically, an auto encoder learns

to copy its inputs to its outputs. Effectively, the auto

encoder learns the identity function, under certain

constraints [3]. The constraints are defined by the

architecture of the network. The number of neurons in

the output layer must be equal to that of the number of

inputs. By limiting the number of nodes in the hidden

layer to a value less than the number of nodes in the

input and output layers, the auto encoder learns concise

representations of input data. Auto encoders learn by

reducing the error in reconstructing the input data [27].

An auto encoder typically consists of two phases-an

encoder phase and a decoder phase. The encoder phase

learns the coding and the decoder phase reconstructs

the inputs from the learnt coding. Stacking auto

encoders one above another creates a deep auto

encoder which can learn much more complex coding

[3]. The cardinal principle of a deep auto encoder is

that it is symmetrical about its central hidden layer. A

technique called tying weights, where the weights of

the encoder phase are reused for the decoder phase in

the transposed form can simplify the training process

[3].

We separately trained two auto encoders-one to

encode the whole target set (21290 genes) and another

to encode the target genes in cross-platform

normalized dataset. The ideal length of the coding was

experimentally determined to be 2000. This choice

accounts for the non-linearity which was not

considered by PCA. For ease of training, deep

architectures with 3 hidden layers were selected.

Different number of nodes were tried for the first and

third layer (5000, 6000, 8000), with the innermost

encoding layer consisting of 2000 neurons [2].

2.3. Using the Coded Representation

In order to test the usability and effectiveness of the

coding, a multilayer feed forward network is

constructed and trained on the landmark expressions

and the target coding. Except the input layer nodes,

each node in this predictor network is a neuron with a

nonlinear activation function. Such networks are

widely identified as Multi-Layer Perceptrons (MLP).

Formally, an MLP can be considered as a non-linear

transformation
NM RRf : , where M is the size of

the input vector and N is the size of the output vector

[2]. Deep networks are formed by introducing more

layers in between the input and output layers.

Two MLP networks were constructed-one each for

the coding learnt by the two auto encoder models. The

performance of these networks on both datasets was

compared with the D-GEX model. A variety of

changes were made to the MLP network of D-GEX.

628 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

The following subsections describe the nature and

necessity of the alterations.

1) Activation: the hyperbolic tangent function used in

D-GEX can capture the non-linearity, but it is prone

to the vanishing gradients problem since it saturates

to ±1 for high/low input values [2]. The middle

ground between the linear activation and purely

non-linear activation is attained using Restricted

Linear Units (ReLU) [16]. But the derivative of

ReLU is pulled to 0 for negative values. The

Exponential Linear Unit (ELU) was derived as an

alternative to ReLU in neural networks [5]. The

exponential linear function is defined as





 .if x)α(e

.if x>x
f(x)=

x 01

0

ELUs are preferred widely since they are not

vulnerable to the vanishing gradient problem. This is

because they are continuous everywhere, even at the

origin, as depicted in Figure 2.

Figure 2. Exponential linear function.

ELUs have become the norm for non linear

activation in recent times. The inner layers of our

MLPs are formed using neurons with ELU activation.

The output layer neurons are linear units since the

output values are continuous [2].

2) Initialization: the vanishing gradient problem can be

alleviated by the combination of a good activation

function and initialization strategy [3]. Initializing

weights randomly is a not preferred in deep neural

networks because it can direct the cost function to

local minima. An alternative is to sample from a

normal distribution so that the total variance of the

inputs of each layer and the total variance of the

outputs are similar [15]. This ensures that the

gradients would have the same variance before and

after flowing through a layer. The mean and

standard deviation is computed from the fan-in and

fan-out of each. The He Initialization scheme for the

Exponential Linear function samples from a normal

distribution with mean 0 and standard deviation,

outputinput nn 

4
=

Or an uniform distribution between -r and +r where

outputinput nn
r



12
=

This variance scaling initialization scheme is used for

the lower layers of our MLP. Since the network is used

for regression, the initial values of output layer is

sampled from a uniform distribution in the range [-

1x10-4, 1x10-4] [2].

3) Optimization: weights in neural networks are

updated by the standard back-propagation algorithm

[4]. A variety of optimization techniques helps to

improve the training speed. Gradient descent is the

most common technique for optimization [3].

Momentum optimization method was derived as a

way to accelerate the simple gradient descent

optimization [3]. Gradient descent simply updates

the weights by subtracting the gradient of the cost

function)(J multiplied by the learning rate [3].

The key idea in Momentum optimization is to give

sufficient weight to the previous gradients and not just

the current derivative. Each epoch adds the local

gradient to the momentum vector m and it updates the

weights using this parameter [18].

))((= 


 Jmm



 ,

 Where 𝛽

is momentum, and

m =

Nesterov Accelerated Gradient (NAG) is a small

variant of the momentum optimization, which has been

empirically observed to be faster than the momentum

technique [2]. The key idea is to measure the gradient

at a position slightly ahead in the direction of the

momentum, instead of measuring it locally [3].

))((= mJmm 


 





m =

With this slight modification, the convergence rate of

the cost function is sufficiently improved [3].

Optimisation of both the MLP networks is done using

NAG with the hyperparameter momentum set to 0.9.

4) Regularization: a bane of neural networks is their

tendency to overfit the data on which they were

trained [22]. Some techniques that are adopted

while training to prevent this problem is collectively

known as regularization techniques. Simple

techniques like L1 and L2 regularization imposes

certain restrictions on the range of values that the

weights of the network can take. The most widely

used regularization technique is dropout [3]. The

approach is very simple - at every training step,

every neuron (except the output neurons) is

temporarily dropped out of the network with a

probability p. The dropped neurons will be

completely ignored during this training step, but

(1)

(2)

(3)

(4)

(5)

(6)

Encoding Gene Expression Using Deep Autoencoders for Expression Inference 629

may become active in the next one [16]. Here, the

hyperparameter p (called dropout rate) controls the

number of neurons dropped out in each step.

Dropout prevents the formation of small cliques of

interdependent neurons by forcing them to interact

with every other neuron at some training step [3]. A

good generalized model is obtained as a result.

 Another crude form of regularization is performed by

pre-empting training when the performance on a

validation set (not part of the training set) keeps on

diminishing for several consecutive epochs [24]. This

technique is termed as early stopping. The models are

backed up at regular intervals and when a better model

is not obtained for k epochs, training is terminated and

the last saved model is restored for testing and further

analysis [3]. Both early stopping and dropout

regularization are used together while training the

MLP networks. Here, k was set as 25 and a dropout

rate of 10% (or a keep rate of 90%) was chosen.

5) Hidden Layer Configuration: there is no universal

consensus on the ideal number of hidden layers and

the number of neurons per hidden layer to be used

while constructing a good neural network. A global

solution is non-existent since the number varies

from one application to another. Nevertheless,

researchers have come up with certain workarounds

where a quasi-ideal hidden layer configuration is

deduced from known parameters. For instance,

irrespective of the nature of the data, the number of

neurons per hidden layer can be derived using the

cardinality of the dataset and the sample size. One

widely accepted observation is that a standard 2-

layer feed-forward neural network with

2

22)(





m

N
Nm neurons in the first hidden layer

and)

2

(

m

N
m neurons in the second hidden layer

can represent N distinct input samples with any

desired precision [24]. Here, m is the number of

output neurons. For our MLP, such a 2 hidden layer

model consisting of 11850 and 11826 nodes

respectively is adopted (our chosen m=2000 and

N≈70000, the number of training samples).

6) Learning rate: the hyperparameter learning rate

controls the step size in gradient descent [28].

Learning rate of the MLP is initialized to 5x10-4. For

optimal learning, this value is programmatically

tuned using a decay rate of 0.9 until it reaches a

minimum of 1x10-5. A small subset of the training

set is used for this tuning procedure.

2.4. Selecting Best Model

The cross platform normalized dataset is partitioned

into 3 disjoint sets-train, validation and test. The

dataset is initially divided into 20 clusters. From each

cluster, a maximum of 4500 expression profiles are

written onto train and 700 onto validation. The

remnants of each cluster, if any, are added to test. The

MLP has 943 nodes in the input layer and 2000 nodes

in the output layer.

The same approach is used to partition the original

GEO dataset into GEO-train, GEO-val and GEO-test.

This MLP has 978 input nodes and 2000 output nodes.

In each case, the performance on the validation set is

monitored every 5 epochs. Training will be stopped

early if the latest model performs worse than the model

25 epochs prior to it. The model with the least

validation error is the best performing model. The

performance is measured using the metric Mean

Absolute Error (MAE) [2, 10]. For n samples,

 ,

||

= 1=

N

yy

MAE
ii

n

i



Where yi s are the actual values and yi s are the

predicted values [2, 10]. Different models are

compared based on their MAE on the respective test

sets. The 1000G dataset is used as a test set for the

MLP trained on the quantile normalized data.

3. Experimental Results

In order to measure the effectiveness of this proposed

approach, many networks are trained and tested. The

first phase finds the ideal autoencoder configuration,

subject to the hardware context. The second phase

compares the prediction accuracy of our MLP model

with the D-GEX model. All the models were trained

and tested using the Tensorflow library in Python on

an i7-3770 CPU@ 3.40GHz x8 [2].

3.1. Autoencoder Phase

In order to empirically determine the ideal number of

nodes in the 3-hidden layer autoencoders, each of the

candidate autoencoder architectures were trained for

150 epochs and saved after their reconstruction errors

were recorded. From Table 1, it is evident that the

6000x2000x6000 configuration produced the best 3-

layer encoding. It can also be observed that as the

coding length increased, the reconstruction error also

deceased. But, as the difference in nodes between the

first layer and coding layer increase, the reconstruction

error starts to grow slightly upwards. It is noted that as

number of nodes in the coding layer increases the train

and test time is gradually increasing. Attempts to

increase the number of neurons in the coding layer

further were stalled due to lack of primary memory.

The encoded target expressions were written onto disk

for training the prediction networks.

(7)

630 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

Table 1. Reconstruction error of autoencoders.

Number of

nodes in layers 1

and 3

Number of

nodes in coding

layer

Reconstructi

on error

Training

time (min)

Testing

time

(min)

5000 500 0.7837 20 4

6000 500 0.6554 23 5.3

8000 500 0.6632 26 5.4

5000 1000 0.6935 30 6

6000 1000 0.5912 33 6.5

8000 1000 0.6023 38 7.3

5000 2000 0.5346 40 8

6000 2000 0.4478 46 9.1

8000 2000 0.4671 54 11

3.2. MLP Phase

Training of the MLP networks were done for a

maximum of 250 epochs. The test sets were run

through the saved MLP models to obtain the predicted

target encodings, which were decoded using the saved

auto encoder models. The final decoded target

expressions were used to compute the MAE of the

models.

3.3. Performance of Models on Cross Platform

Normalized Data

Two 3-layer feed forward networks with 9000 nodes in

each layer were trained on train for 250 epochs, one

for target genes 0-4760 and another for genes 4760-

9520. The parameters were directly adapted from the

best performing D-GEX model [2]. Activation of lower

layers was done using hyperbolic tangent function.

Output units had linear activation. Momentum

technique was used for optimization. Dropout was

performed with 10% dropout rate. MAE of both the

networks was combined to produce the total error rate

for genes 0-9520, which is described in Table 2. The

performance of this D-GEX model was recorded and

saved to compare with our models.

Then, an MLP network was constructed to predict

the encoded target expressions. The activation function

for lower layers was the exponential linear function,

and linear function for the output layer. Early stopping

regularization was used alongside dropout with 10%

dropout rate. Optimization was done using NAG

technique. The number of nodes in the first two hidden

layers was 11850 and 11826, respectively [19]. This

post-encoding prediction network is titled E-MLP.

Table 2. Comparison of models.

Model Error on validation Error on test

D-GEX 1.1342 1.2927

E-MLP 0.9833 1.0775

The decoded target predictions were compared to

the original target expressions to derive the final error

rate mentioned in Table 2. The encoded prediction

model showcased 16.64% improvement in test error

over D-GEX.

 It can be observed that the reconstruction error of

0.4478 can be reduced substantially by training a

deeper auto encoder, which would further pull down

the overall predictive error. Figure 3 show that our

model has clear superiority over D-GEX in terms of

the validation errors.

Figure 3. Comparison of validation errors.

The expressions of each target gene predicted by D-

GEX and our encoded MLP were compared, which is

represented in Figure 4. Our model produced better

predictions for 99.87% of the target genes.

Figure 4. Comparison of gene-wise errors.

3.4. Performance on 1000G Dataset

Both the models were tested on the 1000G dataset, and

the results are described in Table 3. Encoding the

target before prediction boosted prediction accuracy

over D-GEX by 49.23%.

 Table 3. Predictive errors on 1000G.

Model
Genes

(0-4760)
Genes (4760-9520) Total

D-GEX 0.7756 0.7757 1.5513

E-MLP 0.3794 0.4082 0.7876

From Figure 5. it is clearly observable that the

predictive error on 1000G by D-GEX was almost

halved by encoding, although the models were trained

on the normalized version of GEO dataset. This is an

evidence of the cross platform viability of the E-MLP

model.

Encoding Gene Expression Using Deep Autoencoders for Expression Inference 631

Figure 5. Testing models on 1000G.

3.5. Performance of Models on GEO Data

Similar to the E-MLP model for the cross platform

normalized data, another MLP was constructed and

trained for the entire GEO dataset with 978 landmark

genes and 21290 target genes. An autoencoder with 3

hidden layers of 8000, 2000 and 8000 nodes

respectively was used to encode the target expressions.

The internal layer configuration was chosen on the

basis of our observation that sudden decrease in the

number of nodes per successive layers led to large

reconstruction error. Deeper models were not viable

due to limited main memory. The parameters for the

predictive MLP network were directly adapted from

the previous model. The hidden layer configuration of

this MLP is identical to the 11850x11826

configuration that was used in E-MLP. Since the

output nodes have been significantly reduced by the

encoding phase, there was no need to look beyond 2-

hidden layer feed-forward networks.

For the consolidated model that performs genome-

wide microarray based profiling, the MAE on the test

set was observed to be 1.8484. The principal

contributor to this quantity was the reconstruction error

of the autoencoder, which was close to 1.81. In order

to compare the performance with the existing D-GEX

model, the target gene set was divided into 5 disjoint

sets of 4258 genes each. 5 MLP networks with an input

layer consisting layer of 978 nodes, 3 hidden layers of

9000 nodes and an output layer of 4258 genes were

constructed and trained on each of these target subsets.

The MAEs of all 5 models were computed and is

shown in Table 4. Since the models are independent of

each other, the overall error of the D-GEX model on

the GEO dataset is computed as the sum of errors on

all the models.

Table 4. MAE on 5 disjoint sets of target genes.

Set 1 Set 2 Set 3 Set 4 Set 5

0.3873 0.4032 0.3982 0.3964 0.3862

The overall error of the D-GEX model is thus

1.9713. This translates to an accuracy improvement of

6.6%. Although deeper encoders can produce better

representations with minimum reconstruction error,

hardware limitations hampered our attempts to increase

the depth of the autoencoders. A deeper autoencoder

can pull down the reconstruction error and thus

improve the overall prediction accuracy.

4. Conclusions and Future Work

Gene expression profiling is an effective cost efficient

method that characterises cellular state under various

biological conditions. Direct measurement using

laboratorial techniques like the Luminex Bead

Technology is too expensive [15]. The D-GEX project

successfully found an alternative using a deep learning

solution. But the large number of target genes was a

bottleneck in D-GEX, which was countered by

building separate models for disjoint sets of target

genes. Here, we have presented a statistical approach

to profile thousands of genes at once using a

combination of two neural network architectures. An

auto encoder overcomes the redundancy by encoding

the target expression into a concise representation. This

enabled the construction of a single trained MLP to

profile complete genome expressions. The MLP

architecture of D-GEX is adopted for the second phase

and modifications are made in the choice of the

activation function, optimization technique,

regularization strategy and hidden layer configuration.

The modified encoded model resulted in a 16.64%

improvement in performance on the normalized GEO

data. The mean absolute error on the RNA-Seq based

1000G data is lesser than that of the test error on GEO

dataset. This lends proof to the cross platform viability

of the model. Additionally, a performance

improvement of 6.6% was obtained on the original

GEO data.

The percentage improvement is to be considered

solely as a justification for the efficiency introduced by

the encoding stage. In the current implementation, the

depth of the autoencoder is severely restricted due to

hardware limitations. Architectures with more number

of hidden layers with a gradual decrease in the number

of neurons in each successive layer of the encoder

phase can further reduce the reconstruction error which

would result in better encoding [20]. Training using

multiple GPU cores could accelerate training and the

additional memory would enable us to accommodate

deeper architectures [2]. Using GPUs, deep networks

could be efficiently trained using a greedy layer-wise

approach. The change made to the distribution of the

inputs of each layer as the parameters of the previous

layers are updated is termed as Internal Covariance

Shift (ICS). Batch Normalization (BN) addresses this

problem [20]. This technique involves an additional

normalization step in each layer, resulting in slower

training in deep networks. Using BN for shallow

networks is thus redundant. When the autoencoder is

632 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

made deeper, using BN would be essential to prevent

the vanishing gradient problem.

References

[1] Amilpur S. and Bhukya R., “EDeepSSP:

Explainable Deep Neural Networks for Exact

Splice Sites Prediction,” Journal of

Bioinformatics and Computational Biology, vol.

18, no. 04, 2020.

[2] Arel I., Rose D., and Karnowski T., “Deep

Machine Learning-A New Frontier in Artificial

Intelligence Research,” IEEE Computational

Intelligence Magazine, vol. 5, no. 4, pp. 13-18,

2010.

[3] Bansal M., Belcastro V., Ambesi-Impiombato A.,

and Di Bernardo D., “How to Infer Gene

Networks from Expression Profiles,” Molecular

Systems Biology, vol. 3, no. 1, pp. 1-10, 2007.

[4] Baldi P., “Autoencoders, Unsupervised Learning,

and Deep Architectures,” in Proceedings of

ICML Workshop on Unsupervised and Transfer

Learning, Washington, pp. 37-50, 2012.

[5] Baldi P. and Sadowski P., “Understanding

Dropout,” Advances in Neural Information

Processing Systems, vol. 26, pp. 2814-2822,

2013.

[6] Bengio Y., “Learning Deep Architectures for

AI,” Foundations and Trends® in Machine

Learning, vol. 2, no. 1, pp. 1-127, 2009.

[7] Bhukya R. and Ashok A., “Gene Expression

Prediction Using Deep Neural Networks,” The

International Arab Journal of Information

Technology, vol. 17, no. 3, pp. 422-431, 2020.

[8] Bhukya R. and Sumit D., “Referential DNA Data

Compression Using Hadoop Map Reduce

Framework Using Deep Neural Networks,” The

International Arab Journal of Information

Technology, vol. 17, no. 2, pp. 207-214, 2020.

[9] Caruana R., Lawrence S., and Giles L.,

“Overfitting in Neural Nets: Backpropagation,

Conjugate Gradient, and Early Stopping,” in

Proceedings of 13th International Conference on

Neural Information Processing Systems, Denver,

pp. 402-408, 2000.

[10] Chen Y., Li Y., Narayan R., Subramanian A., and

Xie X., “Gene Expression Inference with Deep

Learning,” Bioinformatics, vol. 32, no. 12, pp.

1832-1839, 2016.

[11] Clevert D., Unterthiner T., and Hochreiter S.,

“Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUS),” arXiv

preprint arXiv:1511.07289, pp. 1-14, 2015.

[12] Dasari C. and Bhukya R., “InterSSPP:

Investigating Patterns Through Interpretable

Deep Neural Networks for Accurate Splice

Signal Prediction,” Chemometrics and Intelligent

Laboratory Systems, vol. 206, 2020.

[13] De Sousa C., “An Overview on Weight

Initialization Methods for Feedforward Neural

Networks,” in Proceedings of the International

Joint Conference on Neural Networks,

Vancouver, pp. 52-59, 2016.

[14] Edgar R., Domrachev M., and Lash A., “Gene

Expression Omnibus: NCBI Gene Expression

and Hybridization Array Data Repository,”

Nucleic Acids Research, vol. 30, no. 1, pp. 207-

210, 2002.

[15] Géron A., Hands-On Machine Learning with

Scikit-Learn and TensorFlow Concepts, Tools,

and Techniques to Build Intelligent Systems,

O’Reilly Media, 2019.

[16] Glorot X. and Bengio Y., “Understanding the

Difficulty of Training Deep Feedforward Neural

Networks,” in Proceedings of the 13th

International Conference on Artificial

Intelligence and Statistics, Sardinia, pp. 249-256,

2010.

[17] Glorot X., Bordes A., and Bengio Y., “Deep

Sparse Rectifier Neural Networks,” in

Proceedings of the 14th International Conference

on Artificial Intelligence and Statistics, FL, pp.

315-323, 2011.

[18] Huang G., “Learning Capability and Storage

Capacity of Two-Hidden-Layer Feedforward

Networks,” IEEE Transactions on Neural

Networks, vol. 14, no. 2, pp. 274-281, 2003.

[19] Ioffe S. and Szegedy C., “Batch Normalization:

Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” in
Proceedings of the 32nd International Conference

on Machine Learning, Lille, pp. 448-456, 2015.

[20] Lamb J., Crawford E., Peck D., Modell J., Blat I.,

Wrobel M., Lerner J., Brunet J., Subramanian A.,

Ross K., Reich M., Hieronymus H., Wei G.,

Armstrong S., Haggarty S., Clemons P., Wei R.,

Carr S., Lander E., and Golub T., “The

Connectivity Map: Using Gene-Expression

Signatures to Connect Small Molecules, Genes,

And Disease,” Science, vol. 313, no. 5795, pp.

1929-1935, 2006.

[21] Le Q., Ranzato M., Monga R., Devin M., Chen

K., Corrado G., Dean J., and Ng A., “Building

High-Level Features Using Large Scale

Unsupervised Learning,” in Proceedings of the

29th International Conference on Machine

Learning, Scotland, pp. 8595-8598, 2011.

[22] Lecun Y., Bengio Y., and Hinton G., “Deep

Learning,” Nature, vol. 521, pp. 436-444, 2015.

[23] Lin C., Jain S., Kim H., and Bar-Joseph Z.,

“Using Neural Networks for Reducing the

Dimensions of Single-Cell RNA-Seq Data,”

Nucleic Acids Research, vol. 45, no. 17, pp. 1-11,

2017.

[24] NIH LINCS Program. http://lincsproject.org/

www.lincsproject.org, Last Visited, 2013.

Encoding Gene Expression Using Deep Autoencoders for Expression Inference 633

[25] Pierson E. and Yau C., “ZIFA: Dimensionality

Reduction for Zero-Inflated Single-Cell Gene

Expression Analysis,” Genome Biology, vol. 16,

no. 1, 2015.

[26] Rumelhart E., Hinton E., and Williams J.,

“Learning Representations by Back-Propagating

Errors,” Nature, vol. 323, no. 6088, pp. 533-536,

1986.

[27] Senior A., Heigold G., Ranzato M., and Yang K.,

“An Empirical Study of Learning Rates in Deep

Neural Networks for Speech Recognition,” in

Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing,

Vancouver, pp. 6724-6728, 2013.

[28] Vincent P. and Larochelle H., “Stacked

Denoising Autoencoders: Learning Useful

Representations in a Deep Network with a Local

Denoising Criterion Pierre-Antoine Manzagol,”

Journal of Machine Learning Research, vol. 11,

pp. 3371- 3408, 2010.

Raju Bhukya has received his

B.Tech in Computer Science and

Engineering from Nagarjuna

University in the year 2003,

M.Tech degree in Computer

Science and Engineering from

Andhra University in the year 2005

and P.hD in Computer Science and Engineering from

National Institute of Technology (NIT) Warangal in

the year 2014. He is currently working as an Assistant

Professor in the Department of Computer Science and

Engineering in National Institute of Technology,

Warangal, Telangana, India. He is currently working in

the areas of Bio-Informatics and Data Mining.

